Files
Resume/ultralytics/models/yolo/classify/predict.py
2025-11-08 19:15:39 +01:00

94 lines
4.1 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import cv2
import torch
from PIL import Image
from ultralytics.data.augment import classify_transforms
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG, ops
class ClassificationPredictor(BasePredictor):
"""
A class extending the BasePredictor class for prediction based on a classification model.
This predictor handles the specific requirements of classification models, including preprocessing images
and postprocessing predictions to generate classification results.
Attributes:
args (dict): Configuration arguments for the predictor.
Methods:
preprocess: Convert input images to model-compatible format.
postprocess: Process model predictions into Results objects.
Notes:
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
Examples:
>>> from ultralytics.utils import ASSETS
>>> from ultralytics.models.yolo.classify import ClassificationPredictor
>>> args = dict(model="yolo11n-cls.pt", source=ASSETS)
>>> predictor = ClassificationPredictor(overrides=args)
>>> predictor.predict_cli()
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initialize the ClassificationPredictor with the specified configuration and set task to 'classify'.
This constructor initializes a ClassificationPredictor instance, which extends BasePredictor for classification
tasks. It ensures the task is set to 'classify' regardless of input configuration.
Args:
cfg (dict): Default configuration dictionary containing prediction settings.
overrides (dict, optional): Configuration overrides that take precedence over cfg.
_callbacks (list, optional): List of callback functions to be executed during prediction.
"""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "classify"
def setup_source(self, source):
"""Set up source and inference mode and classify transforms."""
super().setup_source(source)
updated = (
self.model.model.transforms.transforms[0].size != max(self.imgsz)
if hasattr(self.model.model, "transforms") and hasattr(self.model.model.transforms.transforms[0], "size")
else False
)
self.transforms = (
classify_transforms(self.imgsz) if updated or not self.model.pt else self.model.model.transforms
)
def preprocess(self, img):
"""Convert input images to model-compatible tensor format with appropriate normalization."""
if not isinstance(img, torch.Tensor):
img = torch.stack(
[self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0
)
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
return img.half() if self.model.fp16 else img.float() # Convert uint8 to fp16/32
def postprocess(self, preds, img, orig_imgs):
"""
Process predictions to return Results objects with classification probabilities.
Args:
preds (torch.Tensor): Raw predictions from the model.
img (torch.Tensor): Input images after preprocessing.
orig_imgs (list[np.ndarray] | torch.Tensor): Original images before preprocessing.
Returns:
(list[Results]): List of Results objects containing classification results for each image.
"""
if not isinstance(orig_imgs, list): # Input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
preds = preds[0] if isinstance(preds, (list, tuple)) else preds
return [
Results(orig_img, path=img_path, names=self.model.names, probs=pred)
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
]