# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import cv2 import torch from PIL import Image from ultralytics.data.augment import classify_transforms from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import DEFAULT_CFG, ops class ClassificationPredictor(BasePredictor): """ A class extending the BasePredictor class for prediction based on a classification model. This predictor handles the specific requirements of classification models, including preprocessing images and postprocessing predictions to generate classification results. Attributes: args (dict): Configuration arguments for the predictor. Methods: preprocess: Convert input images to model-compatible format. postprocess: Process model predictions into Results objects. Notes: - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. Examples: >>> from ultralytics.utils import ASSETS >>> from ultralytics.models.yolo.classify import ClassificationPredictor >>> args = dict(model="yolo11n-cls.pt", source=ASSETS) >>> predictor = ClassificationPredictor(overrides=args) >>> predictor.predict_cli() """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initialize the ClassificationPredictor with the specified configuration and set task to 'classify'. This constructor initializes a ClassificationPredictor instance, which extends BasePredictor for classification tasks. It ensures the task is set to 'classify' regardless of input configuration. Args: cfg (dict): Default configuration dictionary containing prediction settings. overrides (dict, optional): Configuration overrides that take precedence over cfg. _callbacks (list, optional): List of callback functions to be executed during prediction. """ super().__init__(cfg, overrides, _callbacks) self.args.task = "classify" def setup_source(self, source): """Set up source and inference mode and classify transforms.""" super().setup_source(source) updated = ( self.model.model.transforms.transforms[0].size != max(self.imgsz) if hasattr(self.model.model, "transforms") and hasattr(self.model.model.transforms.transforms[0], "size") else False ) self.transforms = ( classify_transforms(self.imgsz) if updated or not self.model.pt else self.model.model.transforms ) def preprocess(self, img): """Convert input images to model-compatible tensor format with appropriate normalization.""" if not isinstance(img, torch.Tensor): img = torch.stack( [self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0 ) img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) return img.half() if self.model.fp16 else img.float() # Convert uint8 to fp16/32 def postprocess(self, preds, img, orig_imgs): """ Process predictions to return Results objects with classification probabilities. Args: preds (torch.Tensor): Raw predictions from the model. img (torch.Tensor): Input images after preprocessing. orig_imgs (list[np.ndarray] | torch.Tensor): Original images before preprocessing. Returns: (list[Results]): List of Results objects containing classification results for each image. """ if not isinstance(orig_imgs, list): # Input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) preds = preds[0] if isinstance(preds, (list, tuple)) else preds return [ Results(orig_img, path=img_path, names=self.model.names, probs=pred) for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]) ]