Files
Resume/models/TSVM.py
2025-11-08 19:15:39 +01:00

87 lines
3.2 KiB
Python

"""
Article : Twin Support Vector Machine
Link : https://sci-hub.tw/https://ieeexplore.ieee.org/document/4135685
Author : Saeed Khosravi
"""
import numpy as np
from cvxopt import solvers, matrix
class TSVM:
def __init__(self, X, y, C1, C2, eps=1e-4):
self.A = X[y[:, 0] == 1, :]
self.B = X[y[:, 0] == -1, :]
self.C1 = C1
self.C2 = C2
self.eps = eps
def fit(self):
self.w1, self.b1 = self.plane1(self.A, self.B, self.C1, self.eps)
self.w2, self.b2 = self.plane2(self.A, self.B, self.C2, self.eps)
def predict(self, x_test):
norm2_w1 = np.linalg.norm(self.w1)
norm2_w2 = np.linalg.norm(self.w2)
distance_1 = np.abs(np.dot(x_test, self.w1) + self.b1)/norm2_w1
distance_2 = np.abs(np.dot(x_test, self.w2) + self.b2)/norm2_w2
y_pred = np.zeros_like(distance_1)
for i in range(y_pred.shape[0]):
if (distance_1[i] < distance_2[i]):
y_pred[i][0] = 1;
else:
y_pred[i][0] = -1;
self.preds = y_pred
return y_pred # Return predictions
def plane1(self, A, B, c, eps):
e1 = np.ones((A.shape[0],1))
e2 = np.ones((B.shape[0],1))
H = np.concatenate((A,e1), axis=1)
G = np.concatenate((B,e2), axis=1)
HTH = np.dot(H.T, H)
if np.linalg.matrix_rank(H)<H.shape[1]:
HTH += eps*np.eye(HTH.shape[0], HTH.shape[1])
_P = matrix(np.dot(np.dot(G, np.linalg.inv(HTH)),G.T), tc = 'd')
_q = matrix(-1 * e2, tc = 'd')
_G = matrix(np.concatenate((np.identity(B.shape[0]),-np.identity(B.shape[0])), axis=0), tc = 'd')
_h = matrix(np.concatenate((c*e2,np.zeros_like(e2)), axis=0), tc = 'd')
qp_sol = solvers.qp(_P, _q, _G, _h, kktsolver='ldl', options={'kktreg':1e-9, 'show_progress':False})
qp_sol = np.array(qp_sol['x'])
z = -np.dot(np.dot(np.linalg.inv(HTH), G.T), qp_sol)
w = z[:z.shape[0]-1]
b = z[z.shape[0]-1]
return w, b[0]
def plane2(self, A, B, c, eps):
e1 = np.ones((A.shape[0],1))
e2 = np.ones((B.shape[0],1))
H = np.concatenate((A,e1), axis=1)
G = np.concatenate((B,e2), axis=1)
GTG = np.dot(G.T, G)
if np.linalg.matrix_rank(G)<G.shape[1]:
GTG += eps*np.eye(GTG.shape[0], GTG.shape[1])
#solving the qp by cvxopt
_P = matrix(np.dot(np.dot(H, np.linalg.inv(GTG)), H.T), tc = 'd')
_q = matrix(-1 * e1, tc = 'd')
_G = matrix(np.concatenate((np.identity(A.shape[0]),-np.identity(A.shape[0])), axis=0), tc = 'd')
_h = matrix(np.concatenate((c*e1,np.zeros_like(e1)), axis=0), tc = 'd')
qp_sol = solvers.qp(_P, _q, _G, _h, kktsolver='ldl', options={'kktreg':1e-9, 'show_progress':False})
qp_sol = np.array(qp_sol['x'])
z = -np.dot(np.dot(np.linalg.inv(GTG), H.T), qp_sol)
w = z[:z.shape[0]-1]
b = z[z.shape[0]-1]
return w, b[0]
def get_params(self):
return self.w1, self.b1, self.w2, self.b2
def get_preds(self):
return self.preds
def score(self, y_test):
accuracy = np.sum(self.preds == y_test)/y_test.shape[0]
return accuracy