Files
Resume/ultralytics/models/yolo/segment/train.py
2025-11-08 19:15:39 +01:00

73 lines
3.0 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from __future__ import annotations
from copy import copy
from pathlib import Path
from ultralytics.models import yolo
from ultralytics.nn.tasks import SegmentationModel
from ultralytics.utils import DEFAULT_CFG, RANK
class SegmentationTrainer(yolo.detect.DetectionTrainer):
"""
A class extending the DetectionTrainer class for training based on a segmentation model.
This trainer specializes in handling segmentation tasks, extending the detection trainer with segmentation-specific
functionality including model initialization, validation, and visualization.
Attributes:
loss_names (tuple[str]): Names of the loss components used during training.
Examples:
>>> from ultralytics.models.yolo.segment import SegmentationTrainer
>>> args = dict(model="yolo11n-seg.pt", data="coco8-seg.yaml", epochs=3)
>>> trainer = SegmentationTrainer(overrides=args)
>>> trainer.train()
"""
def __init__(self, cfg=DEFAULT_CFG, overrides: dict | None = None, _callbacks=None):
"""
Initialize a SegmentationTrainer object.
Args:
cfg (dict): Configuration dictionary with default training settings.
overrides (dict, optional): Dictionary of parameter overrides for the default configuration.
_callbacks (list, optional): List of callback functions to be executed during training.
"""
if overrides is None:
overrides = {}
overrides["task"] = "segment"
super().__init__(cfg, overrides, _callbacks)
def get_model(self, cfg: dict | str | None = None, weights: str | Path | None = None, verbose: bool = True):
"""
Initialize and return a SegmentationModel with specified configuration and weights.
Args:
cfg (dict | str, optional): Model configuration. Can be a dictionary, a path to a YAML file, or None.
weights (str | Path, optional): Path to pretrained weights file.
verbose (bool): Whether to display model information during initialization.
Returns:
(SegmentationModel): Initialized segmentation model with loaded weights if specified.
Examples:
>>> trainer = SegmentationTrainer()
>>> model = trainer.get_model(cfg="yolo11n-seg.yaml")
>>> model = trainer.get_model(weights="yolo11n-seg.pt", verbose=False)
"""
model = SegmentationModel(cfg, nc=self.data["nc"], ch=self.data["channels"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Return an instance of SegmentationValidator for validation of YOLO model."""
self.loss_names = "box_loss", "seg_loss", "cls_loss", "dfl_loss"
return yolo.segment.SegmentationValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)