1011 lines
39 KiB
Python
1011 lines
39 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
from __future__ import annotations
|
|
|
|
import functools
|
|
import gc
|
|
import math
|
|
import os
|
|
import random
|
|
import time
|
|
from contextlib import contextmanager
|
|
from copy import deepcopy
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from ultralytics import __version__
|
|
from ultralytics.utils import (
|
|
DEFAULT_CFG_DICT,
|
|
DEFAULT_CFG_KEYS,
|
|
LOGGER,
|
|
NUM_THREADS,
|
|
PYTHON_VERSION,
|
|
TORCH_VERSION,
|
|
TORCHVISION_VERSION,
|
|
WINDOWS,
|
|
colorstr,
|
|
)
|
|
from ultralytics.utils.checks import check_version
|
|
from ultralytics.utils.cpu import CPUInfo
|
|
from ultralytics.utils.patches import torch_load
|
|
|
|
# Version checks (all default to version>=min_version)
|
|
TORCH_1_9 = check_version(TORCH_VERSION, "1.9.0")
|
|
TORCH_1_10 = check_version(TORCH_VERSION, "1.10.0")
|
|
TORCH_1_11 = check_version(TORCH_VERSION, "1.11.0")
|
|
TORCH_1_13 = check_version(TORCH_VERSION, "1.13.0")
|
|
TORCH_2_0 = check_version(TORCH_VERSION, "2.0.0")
|
|
TORCH_2_1 = check_version(TORCH_VERSION, "2.1.0")
|
|
TORCH_2_4 = check_version(TORCH_VERSION, "2.4.0")
|
|
TORCHVISION_0_10 = check_version(TORCHVISION_VERSION, "0.10.0")
|
|
TORCHVISION_0_11 = check_version(TORCHVISION_VERSION, "0.11.0")
|
|
TORCHVISION_0_13 = check_version(TORCHVISION_VERSION, "0.13.0")
|
|
TORCHVISION_0_18 = check_version(TORCHVISION_VERSION, "0.18.0")
|
|
if WINDOWS and check_version(TORCH_VERSION, "==2.4.0"): # reject version 2.4.0 on Windows
|
|
LOGGER.warning(
|
|
"Known issue with torch==2.4.0 on Windows with CPU, recommend upgrading to torch>=2.4.1 to resolve "
|
|
"https://github.com/ultralytics/ultralytics/issues/15049"
|
|
)
|
|
|
|
|
|
@contextmanager
|
|
def torch_distributed_zero_first(local_rank: int):
|
|
"""Ensure all processes in distributed training wait for the local master (rank 0) to complete a task first."""
|
|
initialized = dist.is_available() and dist.is_initialized()
|
|
use_ids = initialized and dist.get_backend() == "nccl"
|
|
|
|
if initialized and local_rank not in {-1, 0}:
|
|
dist.barrier(device_ids=[local_rank]) if use_ids else dist.barrier()
|
|
yield
|
|
if initialized and local_rank == 0:
|
|
dist.barrier(device_ids=[local_rank]) if use_ids else dist.barrier()
|
|
|
|
|
|
def smart_inference_mode():
|
|
"""Apply torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
|
|
|
|
def decorate(fn):
|
|
"""Apply appropriate torch decorator for inference mode based on torch version."""
|
|
if TORCH_1_9 and torch.is_inference_mode_enabled():
|
|
return fn # already in inference_mode, act as a pass-through
|
|
else:
|
|
return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
|
|
|
|
return decorate
|
|
|
|
|
|
def autocast(enabled: bool, device: str = "cuda"):
|
|
"""
|
|
Get the appropriate autocast context manager based on PyTorch version and AMP setting.
|
|
|
|
This function returns a context manager for automatic mixed precision (AMP) training that is compatible with both
|
|
older and newer versions of PyTorch. It handles the differences in the autocast API between PyTorch versions.
|
|
|
|
Args:
|
|
enabled (bool): Whether to enable automatic mixed precision.
|
|
device (str, optional): The device to use for autocast.
|
|
|
|
Returns:
|
|
(torch.amp.autocast): The appropriate autocast context manager.
|
|
|
|
Notes:
|
|
- For PyTorch versions 1.13 and newer, it uses `torch.amp.autocast`.
|
|
- For older versions, it uses `torch.cuda.autocast`.
|
|
|
|
Examples:
|
|
>>> with autocast(enabled=True):
|
|
... # Your mixed precision operations here
|
|
... pass
|
|
"""
|
|
if TORCH_1_13:
|
|
return torch.amp.autocast(device, enabled=enabled)
|
|
else:
|
|
return torch.cuda.amp.autocast(enabled)
|
|
|
|
|
|
@functools.lru_cache
|
|
def get_cpu_info():
|
|
"""Return a string with system CPU information, i.e. 'Apple M2'."""
|
|
from ultralytics.utils import PERSISTENT_CACHE # avoid circular import error
|
|
|
|
if "cpu_info" not in PERSISTENT_CACHE:
|
|
try:
|
|
PERSISTENT_CACHE["cpu_info"] = CPUInfo.name()
|
|
except Exception:
|
|
pass
|
|
return PERSISTENT_CACHE.get("cpu_info", "unknown")
|
|
|
|
|
|
@functools.lru_cache
|
|
def get_gpu_info(index):
|
|
"""Return a string with system GPU information, i.e. 'Tesla T4, 15102MiB'."""
|
|
properties = torch.cuda.get_device_properties(index)
|
|
return f"{properties.name}, {properties.total_memory / (1 << 20):.0f}MiB"
|
|
|
|
|
|
def select_device(device="", newline=False, verbose=True):
|
|
"""
|
|
Select the appropriate PyTorch device based on the provided arguments.
|
|
|
|
The function takes a string specifying the device or a torch.device object and returns a torch.device object
|
|
representing the selected device. The function also validates the number of available devices and raises an
|
|
exception if the requested device(s) are not available.
|
|
|
|
Args:
|
|
device (str | torch.device, optional): Device string or torch.device object. Options are 'None', 'cpu', or
|
|
'cuda', or '0' or '0,1,2,3'. Auto-selects the first available GPU, or CPU if no GPU is available.
|
|
newline (bool, optional): If True, adds a newline at the end of the log string.
|
|
verbose (bool, optional): If True, logs the device information.
|
|
|
|
Returns:
|
|
(torch.device): Selected device.
|
|
|
|
Examples:
|
|
>>> select_device("cuda:0")
|
|
device(type='cuda', index=0)
|
|
|
|
>>> select_device("cpu")
|
|
device(type='cpu')
|
|
|
|
Notes:
|
|
Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use.
|
|
"""
|
|
if isinstance(device, torch.device) or str(device).startswith(("tpu", "intel")):
|
|
return device
|
|
|
|
s = f"Ultralytics {__version__} 🚀 Python-{PYTHON_VERSION} torch-{TORCH_VERSION} "
|
|
device = str(device).lower()
|
|
for remove in "cuda:", "none", "(", ")", "[", "]", "'", " ":
|
|
device = device.replace(remove, "") # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
|
|
|
|
# Auto-select GPUs
|
|
if "-1" in device:
|
|
from ultralytics.utils.autodevice import GPUInfo
|
|
|
|
# Replace each -1 with a selected GPU or remove it
|
|
parts = device.split(",")
|
|
selected = GPUInfo().select_idle_gpu(count=parts.count("-1"), min_memory_fraction=0.2)
|
|
for i in range(len(parts)):
|
|
if parts[i] == "-1":
|
|
parts[i] = str(selected.pop(0)) if selected else ""
|
|
device = ",".join(p for p in parts if p)
|
|
|
|
cpu = device == "cpu"
|
|
mps = device in {"mps", "mps:0"} # Apple Metal Performance Shaders (MPS)
|
|
if cpu or mps:
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # force torch.cuda.is_available() = False
|
|
elif device: # non-cpu device requested
|
|
if device == "cuda":
|
|
device = "0"
|
|
if "," in device:
|
|
device = ",".join([x for x in device.split(",") if x]) # remove sequential commas, i.e. "0,,1" -> "0,1"
|
|
visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = device # set environment variable - must be before assert is_available()
|
|
if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.split(","))):
|
|
LOGGER.info(s)
|
|
install = (
|
|
"See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no "
|
|
"CUDA devices are seen by torch.\n"
|
|
if torch.cuda.device_count() == 0
|
|
else ""
|
|
)
|
|
raise ValueError(
|
|
f"Invalid CUDA 'device={device}' requested."
|
|
f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
|
|
f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
|
|
f"\ntorch.cuda.is_available(): {torch.cuda.is_available()}"
|
|
f"\ntorch.cuda.device_count(): {torch.cuda.device_count()}"
|
|
f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
|
|
f"{install}"
|
|
)
|
|
|
|
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
|
devices = device.split(",") if device else "0" # i.e. "0,1" -> ["0", "1"]
|
|
space = " " * len(s)
|
|
for i, d in enumerate(devices):
|
|
s += f"{'' if i == 0 else space}CUDA:{d} ({get_gpu_info(i)})\n" # bytes to MB
|
|
arg = "cuda:0"
|
|
elif mps and TORCH_2_0 and torch.backends.mps.is_available():
|
|
# Prefer MPS if available
|
|
s += f"MPS ({get_cpu_info()})\n"
|
|
arg = "mps"
|
|
else: # revert to CPU
|
|
s += f"CPU ({get_cpu_info()})\n"
|
|
arg = "cpu"
|
|
|
|
if arg in {"cpu", "mps"}:
|
|
torch.set_num_threads(NUM_THREADS) # reset OMP_NUM_THREADS for cpu training
|
|
if verbose:
|
|
LOGGER.info(s if newline else s.rstrip())
|
|
return torch.device(arg)
|
|
|
|
|
|
def time_sync():
|
|
"""Return PyTorch-accurate time."""
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
return time.time()
|
|
|
|
|
|
def fuse_conv_and_bn(conv, bn):
|
|
"""
|
|
Fuse Conv2d and BatchNorm2d layers for inference optimization.
|
|
|
|
Args:
|
|
conv (nn.Conv2d): Convolutional layer to fuse.
|
|
bn (nn.BatchNorm2d): Batch normalization layer to fuse.
|
|
|
|
Returns:
|
|
(nn.Conv2d): The fused convolutional layer with gradients disabled.
|
|
|
|
Example:
|
|
>>> conv = nn.Conv2d(3, 16, 3)
|
|
>>> bn = nn.BatchNorm2d(16)
|
|
>>> fused_conv = fuse_conv_and_bn(conv, bn)
|
|
"""
|
|
# Compute fused weights
|
|
w_conv = conv.weight.view(conv.out_channels, -1)
|
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
|
conv.weight.data = torch.mm(w_bn, w_conv).view(conv.weight.shape)
|
|
|
|
# Compute fused bias
|
|
b_conv = torch.zeros(conv.out_channels, device=conv.weight.device) if conv.bias is None else conv.bias
|
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
|
fused_bias = torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn
|
|
|
|
if conv.bias is None:
|
|
conv.register_parameter("bias", nn.Parameter(fused_bias))
|
|
else:
|
|
conv.bias.data = fused_bias
|
|
|
|
return conv.requires_grad_(False)
|
|
|
|
|
|
def fuse_deconv_and_bn(deconv, bn):
|
|
"""
|
|
Fuse ConvTranspose2d and BatchNorm2d layers for inference optimization.
|
|
|
|
Args:
|
|
deconv (nn.ConvTranspose2d): Transposed convolutional layer to fuse.
|
|
bn (nn.BatchNorm2d): Batch normalization layer to fuse.
|
|
|
|
Returns:
|
|
(nn.ConvTranspose2d): The fused transposed convolutional layer with gradients disabled.
|
|
|
|
Example:
|
|
>>> deconv = nn.ConvTranspose2d(16, 3, 3)
|
|
>>> bn = nn.BatchNorm2d(3)
|
|
>>> fused_deconv = fuse_deconv_and_bn(deconv, bn)
|
|
"""
|
|
# Compute fused weights
|
|
w_deconv = deconv.weight.view(deconv.out_channels, -1)
|
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
|
deconv.weight.data = torch.mm(w_bn, w_deconv).view(deconv.weight.shape)
|
|
|
|
# Compute fused bias
|
|
b_conv = torch.zeros(deconv.out_channels, device=deconv.weight.device) if deconv.bias is None else deconv.bias
|
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
|
fused_bias = torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn
|
|
|
|
if deconv.bias is None:
|
|
deconv.register_parameter("bias", nn.Parameter(fused_bias))
|
|
else:
|
|
deconv.bias.data = fused_bias
|
|
|
|
return deconv.requires_grad_(False)
|
|
|
|
|
|
def model_info(model, detailed=False, verbose=True, imgsz=640):
|
|
"""
|
|
Print and return detailed model information layer by layer.
|
|
|
|
Args:
|
|
model (nn.Module): Model to analyze.
|
|
detailed (bool, optional): Whether to print detailed layer information.
|
|
verbose (bool, optional): Whether to print model information.
|
|
imgsz (int | list, optional): Input image size.
|
|
|
|
Returns:
|
|
n_l (int): Number of layers.
|
|
n_p (int): Number of parameters.
|
|
n_g (int): Number of gradients.
|
|
flops (float): GFLOPs.
|
|
"""
|
|
if not verbose:
|
|
return
|
|
n_p = get_num_params(model) # number of parameters
|
|
n_g = get_num_gradients(model) # number of gradients
|
|
layers = __import__("collections").OrderedDict((n, m) for n, m in model.named_modules() if len(m._modules) == 0)
|
|
n_l = len(layers) # number of layers
|
|
if detailed:
|
|
h = f"{'layer':>5}{'name':>40}{'type':>20}{'gradient':>10}{'parameters':>12}{'shape':>20}{'mu':>10}{'sigma':>10}"
|
|
LOGGER.info(h)
|
|
for i, (mn, m) in enumerate(layers.items()):
|
|
mn = mn.replace("module_list.", "")
|
|
mt = m.__class__.__name__
|
|
if len(m._parameters):
|
|
for pn, p in m.named_parameters():
|
|
LOGGER.info(
|
|
f"{i:>5g}{f'{mn}.{pn}':>40}{mt:>20}{p.requires_grad!r:>10}{p.numel():>12g}{str(list(p.shape)):>20}{p.mean():>10.3g}{p.std():>10.3g}{str(p.dtype).replace('torch.', ''):>15}"
|
|
)
|
|
else: # layers with no learnable params
|
|
LOGGER.info(f"{i:>5g}{mn:>40}{mt:>20}{False!r:>10}{0:>12g}{str([]):>20}{'-':>10}{'-':>10}{'-':>15}")
|
|
|
|
flops = get_flops(model, imgsz) # imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
|
|
fused = " (fused)" if getattr(model, "is_fused", lambda: False)() else ""
|
|
fs = f", {flops:.1f} GFLOPs" if flops else ""
|
|
yaml_file = getattr(model, "yaml_file", "") or getattr(model, "yaml", {}).get("yaml_file", "")
|
|
model_name = Path(yaml_file).stem.replace("yolo", "YOLO") or "Model"
|
|
LOGGER.info(f"{model_name} summary{fused}: {n_l:,} layers, {n_p:,} parameters, {n_g:,} gradients{fs}")
|
|
return n_l, n_p, n_g, flops
|
|
|
|
|
|
def get_num_params(model):
|
|
"""Return the total number of parameters in a YOLO model."""
|
|
return sum(x.numel() for x in model.parameters())
|
|
|
|
|
|
def get_num_gradients(model):
|
|
"""Return the total number of parameters with gradients in a YOLO model."""
|
|
return sum(x.numel() for x in model.parameters() if x.requires_grad)
|
|
|
|
|
|
def model_info_for_loggers(trainer):
|
|
"""
|
|
Return model info dict with useful model information.
|
|
|
|
Args:
|
|
trainer (ultralytics.engine.trainer.BaseTrainer): The trainer object containing model and validation data.
|
|
|
|
Returns:
|
|
(dict): Dictionary containing model parameters, GFLOPs, and inference speeds.
|
|
|
|
Examples:
|
|
YOLOv8n info for loggers
|
|
>>> results = {
|
|
... "model/parameters": 3151904,
|
|
... "model/GFLOPs": 8.746,
|
|
... "model/speed_ONNX(ms)": 41.244,
|
|
... "model/speed_TensorRT(ms)": 3.211,
|
|
... "model/speed_PyTorch(ms)": 18.755,
|
|
...}
|
|
"""
|
|
if trainer.args.profile: # profile ONNX and TensorRT times
|
|
from ultralytics.utils.benchmarks import ProfileModels
|
|
|
|
results = ProfileModels([trainer.last], device=trainer.device).run()[0]
|
|
results.pop("model/name")
|
|
else: # only return PyTorch times from most recent validation
|
|
results = {
|
|
"model/parameters": get_num_params(trainer.model),
|
|
"model/GFLOPs": round(get_flops(trainer.model), 3),
|
|
}
|
|
results["model/speed_PyTorch(ms)"] = round(trainer.validator.speed["inference"], 3)
|
|
return results
|
|
|
|
|
|
def get_flops(model, imgsz=640):
|
|
"""
|
|
Calculate FLOPs (floating point operations) for a model in billions.
|
|
|
|
Attempts two calculation methods: first with a stride-based tensor for efficiency,
|
|
then falls back to full image size if needed (e.g., for RTDETR models). Returns 0.0
|
|
if thop library is unavailable or calculation fails.
|
|
|
|
Args:
|
|
model (nn.Module): The model to calculate FLOPs for.
|
|
imgsz (int | list, optional): Input image size.
|
|
|
|
Returns:
|
|
(float): The model FLOPs in billions.
|
|
"""
|
|
try:
|
|
import thop
|
|
except ImportError:
|
|
thop = None # conda support without 'ultralytics-thop' installed
|
|
|
|
if not thop:
|
|
return 0.0 # if not installed return 0.0 GFLOPs
|
|
|
|
try:
|
|
model = unwrap_model(model)
|
|
p = next(model.parameters())
|
|
if not isinstance(imgsz, list):
|
|
imgsz = [imgsz, imgsz] # expand if int/float
|
|
try:
|
|
# Method 1: Use stride-based input tensor
|
|
stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32 # max stride
|
|
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
|
|
flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # stride GFLOPs
|
|
return flops * imgsz[0] / stride * imgsz[1] / stride # imgsz GFLOPs
|
|
except Exception:
|
|
# Method 2: Use actual image size (required for RTDETR models)
|
|
im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format
|
|
return thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # imgsz GFLOPs
|
|
except Exception:
|
|
return 0.0
|
|
|
|
|
|
def get_flops_with_torch_profiler(model, imgsz=640):
|
|
"""
|
|
Compute model FLOPs using torch profiler (alternative to thop package, but 2-10x slower).
|
|
|
|
Args:
|
|
model (nn.Module): The model to calculate FLOPs for.
|
|
imgsz (int | list, optional): Input image size.
|
|
|
|
Returns:
|
|
(float): The model's FLOPs in billions.
|
|
"""
|
|
if not TORCH_2_0: # torch profiler implemented in torch>=2.0
|
|
return 0.0
|
|
model = unwrap_model(model)
|
|
p = next(model.parameters())
|
|
if not isinstance(imgsz, list):
|
|
imgsz = [imgsz, imgsz] # expand if int/float
|
|
try:
|
|
# Use stride size for input tensor
|
|
stride = (max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32) * 2 # max stride
|
|
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
|
|
with torch.profiler.profile(with_flops=True) as prof:
|
|
model(im)
|
|
flops = sum(x.flops for x in prof.key_averages()) / 1e9
|
|
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
|
|
except Exception:
|
|
# Use actual image size for input tensor (i.e. required for RTDETR models)
|
|
im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format
|
|
with torch.profiler.profile(with_flops=True) as prof:
|
|
model(im)
|
|
flops = sum(x.flops for x in prof.key_averages()) / 1e9
|
|
return flops
|
|
|
|
|
|
def initialize_weights(model):
|
|
"""Initialize model weights to random values."""
|
|
for m in model.modules():
|
|
t = type(m)
|
|
if t is nn.Conv2d:
|
|
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif t is nn.BatchNorm2d:
|
|
m.eps = 1e-3
|
|
m.momentum = 0.03
|
|
elif t in {nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU}:
|
|
m.inplace = True
|
|
|
|
|
|
def scale_img(img, ratio=1.0, same_shape=False, gs=32):
|
|
"""
|
|
Scale and pad an image tensor, optionally maintaining aspect ratio and padding to gs multiple.
|
|
|
|
Args:
|
|
img (torch.Tensor): Input image tensor.
|
|
ratio (float, optional): Scaling ratio.
|
|
same_shape (bool, optional): Whether to maintain the same shape.
|
|
gs (int, optional): Grid size for padding.
|
|
|
|
Returns:
|
|
(torch.Tensor): Scaled and padded image tensor.
|
|
"""
|
|
if ratio == 1.0:
|
|
return img
|
|
h, w = img.shape[2:]
|
|
s = (int(h * ratio), int(w * ratio)) # new size
|
|
img = F.interpolate(img, size=s, mode="bilinear", align_corners=False) # resize
|
|
if not same_shape: # pad/crop img
|
|
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
|
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
|
|
|
|
|
def copy_attr(a, b, include=(), exclude=()):
|
|
"""
|
|
Copy attributes from object 'b' to object 'a', with options to include/exclude certain attributes.
|
|
|
|
Args:
|
|
a (Any): Destination object to copy attributes to.
|
|
b (Any): Source object to copy attributes from.
|
|
include (tuple, optional): Attributes to include. If empty, all attributes are included.
|
|
exclude (tuple, optional): Attributes to exclude.
|
|
"""
|
|
for k, v in b.__dict__.items():
|
|
if (len(include) and k not in include) or k.startswith("_") or k in exclude:
|
|
continue
|
|
else:
|
|
setattr(a, k, v)
|
|
|
|
|
|
def intersect_dicts(da, db, exclude=()):
|
|
"""
|
|
Return a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.
|
|
|
|
Args:
|
|
da (dict): First dictionary.
|
|
db (dict): Second dictionary.
|
|
exclude (tuple, optional): Keys to exclude.
|
|
|
|
Returns:
|
|
(dict): Dictionary of intersecting keys with matching shapes.
|
|
"""
|
|
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
|
|
|
|
|
def is_parallel(model):
|
|
"""
|
|
Return True if model is of type DP or DDP.
|
|
|
|
Args:
|
|
model (nn.Module): Model to check.
|
|
|
|
Returns:
|
|
(bool): True if model is DataParallel or DistributedDataParallel.
|
|
"""
|
|
return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
|
|
|
|
|
|
def unwrap_model(m: nn.Module) -> nn.Module:
|
|
"""
|
|
Unwrap compiled and parallel models to get the base model.
|
|
|
|
Args:
|
|
m (nn.Module): A model that may be wrapped by torch.compile (._orig_mod) or parallel wrappers such as
|
|
DataParallel/DistributedDataParallel (.module).
|
|
|
|
Returns:
|
|
m (nn.Module): The unwrapped base model without compile or parallel wrappers.
|
|
"""
|
|
while True:
|
|
if hasattr(m, "_orig_mod") and isinstance(m._orig_mod, nn.Module):
|
|
m = m._orig_mod
|
|
elif hasattr(m, "module") and isinstance(m.module, nn.Module):
|
|
m = m.module
|
|
else:
|
|
return m
|
|
|
|
|
|
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
|
"""
|
|
Return a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.
|
|
|
|
Args:
|
|
y1 (float, optional): Initial value.
|
|
y2 (float, optional): Final value.
|
|
steps (int, optional): Number of steps.
|
|
|
|
Returns:
|
|
(function): Lambda function for computing the sinusoidal ramp.
|
|
"""
|
|
return lambda x: max((1 - math.cos(x * math.pi / steps)) / 2, 0) * (y2 - y1) + y1
|
|
|
|
|
|
def init_seeds(seed=0, deterministic=False):
|
|
"""
|
|
Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html.
|
|
|
|
Args:
|
|
seed (int, optional): Random seed.
|
|
deterministic (bool, optional): Whether to set deterministic algorithms.
|
|
"""
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
|
|
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
|
|
if deterministic:
|
|
if TORCH_2_0:
|
|
torch.use_deterministic_algorithms(True, warn_only=True) # warn if deterministic is not possible
|
|
torch.backends.cudnn.deterministic = True
|
|
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
|
os.environ["PYTHONHASHSEED"] = str(seed)
|
|
else:
|
|
LOGGER.warning("Upgrade to torch>=2.0.0 for deterministic training.")
|
|
else:
|
|
unset_deterministic()
|
|
|
|
|
|
def unset_deterministic():
|
|
"""Unset all the configurations applied for deterministic training."""
|
|
torch.use_deterministic_algorithms(False)
|
|
torch.backends.cudnn.deterministic = False
|
|
os.environ.pop("CUBLAS_WORKSPACE_CONFIG", None)
|
|
os.environ.pop("PYTHONHASHSEED", None)
|
|
|
|
|
|
class ModelEMA:
|
|
"""
|
|
Updated Exponential Moving Average (EMA) implementation.
|
|
|
|
Keeps a moving average of everything in the model state_dict (parameters and buffers).
|
|
For EMA details see References.
|
|
|
|
To disable EMA set the `enabled` attribute to `False`.
|
|
|
|
Attributes:
|
|
ema (nn.Module): Copy of the model in evaluation mode.
|
|
updates (int): Number of EMA updates.
|
|
decay (function): Decay function that determines the EMA weight.
|
|
enabled (bool): Whether EMA is enabled.
|
|
|
|
References:
|
|
- https://github.com/rwightman/pytorch-image-models
|
|
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
|
"""
|
|
|
|
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
|
"""
|
|
Initialize EMA for 'model' with given arguments.
|
|
|
|
Args:
|
|
model (nn.Module): Model to create EMA for.
|
|
decay (float, optional): Maximum EMA decay rate.
|
|
tau (int, optional): EMA decay time constant.
|
|
updates (int, optional): Initial number of updates.
|
|
"""
|
|
self.ema = deepcopy(unwrap_model(model)).eval() # FP32 EMA
|
|
self.updates = updates # number of EMA updates
|
|
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
|
|
for p in self.ema.parameters():
|
|
p.requires_grad_(False)
|
|
self.enabled = True
|
|
|
|
def update(self, model):
|
|
"""
|
|
Update EMA parameters.
|
|
|
|
Args:
|
|
model (nn.Module): Model to update EMA from.
|
|
"""
|
|
if self.enabled:
|
|
self.updates += 1
|
|
d = self.decay(self.updates)
|
|
|
|
msd = unwrap_model(model).state_dict() # model state_dict
|
|
for k, v in self.ema.state_dict().items():
|
|
if v.dtype.is_floating_point: # true for FP16 and FP32
|
|
v *= d
|
|
v += (1 - d) * msd[k].detach()
|
|
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}'
|
|
|
|
def update_attr(self, model, include=(), exclude=("process_group", "reducer")):
|
|
"""
|
|
Update attributes and save stripped model with optimizer removed.
|
|
|
|
Args:
|
|
model (nn.Module): Model to update attributes from.
|
|
include (tuple, optional): Attributes to include.
|
|
exclude (tuple, optional): Attributes to exclude.
|
|
"""
|
|
if self.enabled:
|
|
copy_attr(self.ema, model, include, exclude)
|
|
|
|
|
|
def strip_optimizer(f: str | Path = "best.pt", s: str = "", updates: dict[str, Any] = None) -> dict[str, Any]:
|
|
"""
|
|
Strip optimizer from 'f' to finalize training, optionally save as 's'.
|
|
|
|
Args:
|
|
f (str | Path): File path to model to strip the optimizer from.
|
|
s (str, optional): File path to save the model with stripped optimizer to. If not provided, 'f' will be
|
|
overwritten.
|
|
updates (dict, optional): A dictionary of updates to overlay onto the checkpoint before saving.
|
|
|
|
Returns:
|
|
(dict): The combined checkpoint dictionary.
|
|
|
|
Examples:
|
|
>>> from pathlib import Path
|
|
>>> from ultralytics.utils.torch_utils import strip_optimizer
|
|
>>> for f in Path("path/to/model/checkpoints").rglob("*.pt"):
|
|
>>> strip_optimizer(f)
|
|
"""
|
|
try:
|
|
x = torch_load(f, map_location=torch.device("cpu"))
|
|
assert isinstance(x, dict), "checkpoint is not a Python dictionary"
|
|
assert "model" in x, "'model' missing from checkpoint"
|
|
except Exception as e:
|
|
LOGGER.warning(f"Skipping {f}, not a valid Ultralytics model: {e}")
|
|
return {}
|
|
|
|
metadata = {
|
|
"date": datetime.now().isoformat(),
|
|
"version": __version__,
|
|
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
|
|
"docs": "https://docs.ultralytics.com",
|
|
}
|
|
|
|
# Update model
|
|
if x.get("ema"):
|
|
x["model"] = x["ema"] # replace model with EMA
|
|
if hasattr(x["model"], "args"):
|
|
x["model"].args = dict(x["model"].args) # convert from IterableSimpleNamespace to dict
|
|
if hasattr(x["model"], "criterion"):
|
|
x["model"].criterion = None # strip loss criterion
|
|
x["model"].half() # to FP16
|
|
for p in x["model"].parameters():
|
|
p.requires_grad = False
|
|
|
|
# Update other keys
|
|
args = {**DEFAULT_CFG_DICT, **x.get("train_args", {})} # combine args
|
|
for k in "optimizer", "best_fitness", "ema", "updates", "scaler": # keys
|
|
x[k] = None
|
|
x["epoch"] = -1
|
|
x["train_args"] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys
|
|
# x['model'].args = x['train_args']
|
|
|
|
# Save
|
|
combined = {**metadata, **x, **(updates or {})}
|
|
torch.save(combined, s or f) # combine dicts (prefer to the right)
|
|
mb = os.path.getsize(s or f) / 1e6 # file size
|
|
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
|
return combined
|
|
|
|
|
|
def convert_optimizer_state_dict_to_fp16(state_dict):
|
|
"""
|
|
Convert the state_dict of a given optimizer to FP16, focusing on the 'state' key for tensor conversions.
|
|
|
|
Args:
|
|
state_dict (dict): Optimizer state dictionary.
|
|
|
|
Returns:
|
|
(dict): Converted optimizer state dictionary with FP16 tensors.
|
|
"""
|
|
for state in state_dict["state"].values():
|
|
for k, v in state.items():
|
|
if k != "step" and isinstance(v, torch.Tensor) and v.dtype is torch.float32:
|
|
state[k] = v.half()
|
|
|
|
return state_dict
|
|
|
|
|
|
@contextmanager
|
|
def cuda_memory_usage(device=None):
|
|
"""
|
|
Monitor and manage CUDA memory usage.
|
|
|
|
This function checks if CUDA is available and, if so, empties the CUDA cache to free up unused memory.
|
|
It then yields a dictionary containing memory usage information, which can be updated by the caller.
|
|
Finally, it updates the dictionary with the amount of memory reserved by CUDA on the specified device.
|
|
|
|
Args:
|
|
device (torch.device, optional): The CUDA device to query memory usage for.
|
|
|
|
Yields:
|
|
(dict): A dictionary with a key 'memory' initialized to 0, which will be updated with the reserved memory.
|
|
"""
|
|
cuda_info = dict(memory=0)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
try:
|
|
yield cuda_info
|
|
finally:
|
|
cuda_info["memory"] = torch.cuda.memory_reserved(device)
|
|
else:
|
|
yield cuda_info
|
|
|
|
|
|
def profile_ops(input, ops, n=10, device=None, max_num_obj=0):
|
|
"""
|
|
Ultralytics speed, memory and FLOPs profiler.
|
|
|
|
Args:
|
|
input (torch.Tensor | list): Input tensor(s) to profile.
|
|
ops (nn.Module | list): Model or list of operations to profile.
|
|
n (int, optional): Number of iterations to average.
|
|
device (str | torch.device, optional): Device to profile on.
|
|
max_num_obj (int, optional): Maximum number of objects for simulation.
|
|
|
|
Returns:
|
|
(list): Profile results for each operation.
|
|
|
|
Examples:
|
|
>>> from ultralytics.utils.torch_utils import profile_ops
|
|
>>> input = torch.randn(16, 3, 640, 640)
|
|
>>> m1 = lambda x: x * torch.sigmoid(x)
|
|
>>> m2 = nn.SiLU()
|
|
>>> profile_ops(input, [m1, m2], n=100) # profile over 100 iterations
|
|
"""
|
|
try:
|
|
import thop
|
|
except ImportError:
|
|
thop = None # conda support without 'ultralytics-thop' installed
|
|
|
|
results = []
|
|
if not isinstance(device, torch.device):
|
|
device = select_device(device)
|
|
LOGGER.info(
|
|
f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
|
|
f"{'input':>24s}{'output':>24s}"
|
|
)
|
|
gc.collect() # attempt to free unused memory
|
|
torch.cuda.empty_cache()
|
|
for x in input if isinstance(input, list) else [input]:
|
|
x = x.to(device)
|
|
x.requires_grad = True
|
|
for m in ops if isinstance(ops, list) else [ops]:
|
|
m = m.to(device) if hasattr(m, "to") else m # device
|
|
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
|
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
|
try:
|
|
flops = thop.profile(deepcopy(m), inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
|
|
except Exception:
|
|
flops = 0
|
|
|
|
try:
|
|
mem = 0
|
|
for _ in range(n):
|
|
with cuda_memory_usage(device) as cuda_info:
|
|
t[0] = time_sync()
|
|
y = m(x)
|
|
t[1] = time_sync()
|
|
try:
|
|
(sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
|
|
t[2] = time_sync()
|
|
except Exception: # no backward method
|
|
# print(e) # for debug
|
|
t[2] = float("nan")
|
|
mem += cuda_info["memory"] / 1e9 # (GB)
|
|
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
|
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
|
if max_num_obj: # simulate training with predictions per image grid (for AutoBatch)
|
|
with cuda_memory_usage(device) as cuda_info:
|
|
torch.randn(
|
|
x.shape[0],
|
|
max_num_obj,
|
|
int(sum((x.shape[-1] / s) * (x.shape[-2] / s) for s in m.stride.tolist())),
|
|
device=device,
|
|
dtype=torch.float32,
|
|
)
|
|
mem += cuda_info["memory"] / 1e9 # (GB)
|
|
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else "list" for x in (x, y)) # shapes
|
|
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
|
|
LOGGER.info(f"{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}")
|
|
results.append([p, flops, mem, tf, tb, s_in, s_out])
|
|
except Exception as e:
|
|
LOGGER.info(e)
|
|
results.append(None)
|
|
finally:
|
|
gc.collect() # attempt to free unused memory
|
|
torch.cuda.empty_cache()
|
|
return results
|
|
|
|
|
|
class EarlyStopping:
|
|
"""
|
|
Early stopping class that stops training when a specified number of epochs have passed without improvement.
|
|
|
|
Attributes:
|
|
best_fitness (float): Best fitness value observed.
|
|
best_epoch (int): Epoch where best fitness was observed.
|
|
patience (int): Number of epochs to wait after fitness stops improving before stopping.
|
|
possible_stop (bool): Flag indicating if stopping may occur next epoch.
|
|
"""
|
|
|
|
def __init__(self, patience=50):
|
|
"""
|
|
Initialize early stopping object.
|
|
|
|
Args:
|
|
patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
|
|
"""
|
|
self.best_fitness = 0.0 # i.e. mAP
|
|
self.best_epoch = 0
|
|
self.patience = patience or float("inf") # epochs to wait after fitness stops improving to stop
|
|
self.possible_stop = False # possible stop may occur next epoch
|
|
|
|
def __call__(self, epoch, fitness):
|
|
"""
|
|
Check whether to stop training.
|
|
|
|
Args:
|
|
epoch (int): Current epoch of training
|
|
fitness (float): Fitness value of current epoch
|
|
|
|
Returns:
|
|
(bool): True if training should stop, False otherwise
|
|
"""
|
|
if fitness is None: # check if fitness=None (happens when val=False)
|
|
return False
|
|
|
|
if fitness > self.best_fitness or self.best_fitness == 0: # allow for early zero-fitness stage of training
|
|
self.best_epoch = epoch
|
|
self.best_fitness = fitness
|
|
delta = epoch - self.best_epoch # epochs without improvement
|
|
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
|
|
stop = delta >= self.patience # stop training if patience exceeded
|
|
if stop:
|
|
prefix = colorstr("EarlyStopping: ")
|
|
LOGGER.info(
|
|
f"{prefix}Training stopped early as no improvement observed in last {self.patience} epochs. "
|
|
f"Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n"
|
|
f"To update EarlyStopping(patience={self.patience}) pass a new patience value, "
|
|
f"i.e. `patience=300` or use `patience=0` to disable EarlyStopping."
|
|
)
|
|
return stop
|
|
|
|
|
|
def attempt_compile(
|
|
model: torch.nn.Module,
|
|
device: torch.device,
|
|
imgsz: int = 640,
|
|
use_autocast: bool = False,
|
|
warmup: bool = False,
|
|
mode: bool | str = "default",
|
|
) -> torch.nn.Module:
|
|
"""
|
|
Compile a model with torch.compile and optionally warm up the graph to reduce first-iteration latency.
|
|
|
|
This utility attempts to compile the provided model using the inductor backend with dynamic shapes enabled and an
|
|
autotuning mode. If compilation is unavailable or fails, the original model is returned unchanged. An optional
|
|
warmup performs a single forward pass on a dummy input to prime the compiled graph and measure compile/warmup time.
|
|
|
|
Args:
|
|
model (torch.nn.Module): Model to compile.
|
|
device (torch.device): Inference device used for warmup and autocast decisions.
|
|
imgsz (int, optional): Square input size to create a dummy tensor with shape (1, 3, imgsz, imgsz) for warmup.
|
|
use_autocast (bool, optional): Whether to run warmup under autocast on CUDA or MPS devices.
|
|
warmup (bool, optional): Whether to execute a single dummy forward pass to warm up the compiled model.
|
|
mode (bool | str, optional): torch.compile mode. True → "default", False → no compile, or a string like
|
|
"default", "reduce-overhead", "max-autotune-no-cudagraphs".
|
|
|
|
Returns:
|
|
model (torch.nn.Module): Compiled model if compilation succeeds, otherwise the original unmodified model.
|
|
|
|
Notes:
|
|
- If the current PyTorch build does not provide torch.compile, the function returns the input model immediately.
|
|
- Warmup runs under torch.inference_mode and may use torch.autocast for CUDA/MPS to align compute precision.
|
|
- CUDA devices are synchronized after warmup to account for asynchronous kernel execution.
|
|
|
|
Examples:
|
|
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
>>> # Try to compile and warm up a model with a 640x640 input
|
|
>>> model = attempt_compile(model, device=device, imgsz=640, use_autocast=True, warmup=True)
|
|
"""
|
|
if not hasattr(torch, "compile") or not mode:
|
|
return model
|
|
|
|
if mode is True:
|
|
mode = "default"
|
|
prefix = colorstr("compile:")
|
|
LOGGER.info(f"{prefix} starting torch.compile with '{mode}' mode...")
|
|
if mode == "max-autotune":
|
|
LOGGER.warning(f"{prefix} mode='{mode}' not recommended, using mode='max-autotune-no-cudagraphs' instead")
|
|
mode = "max-autotune-no-cudagraphs"
|
|
t0 = time.perf_counter()
|
|
try:
|
|
model = torch.compile(model, mode=mode, backend="inductor")
|
|
except Exception as e:
|
|
LOGGER.warning(f"{prefix} torch.compile failed, continuing uncompiled: {e}")
|
|
return model
|
|
t_compile = time.perf_counter() - t0
|
|
|
|
t_warm = 0.0
|
|
if warmup:
|
|
# Use a single dummy tensor to build the graph shape state and reduce first-iteration latency
|
|
dummy = torch.zeros(1, 3, imgsz, imgsz, device=device)
|
|
if use_autocast and device.type == "cuda":
|
|
dummy = dummy.half()
|
|
t1 = time.perf_counter()
|
|
with torch.inference_mode():
|
|
if use_autocast and device.type in {"cuda", "mps"}:
|
|
with torch.autocast(device.type):
|
|
_ = model(dummy)
|
|
else:
|
|
_ = model(dummy)
|
|
if device.type == "cuda":
|
|
torch.cuda.synchronize(device)
|
|
t_warm = time.perf_counter() - t1
|
|
|
|
total = t_compile + t_warm
|
|
if warmup:
|
|
LOGGER.info(f"{prefix} complete in {total:.1f}s (compile {t_compile:.1f}s + warmup {t_warm:.1f}s)")
|
|
else:
|
|
LOGGER.info(f"{prefix} compile complete in {t_compile:.1f}s (no warmup)")
|
|
return model
|