Files
Electrocardiogram/README.md
2025-12-01 00:34:33 +01:00

111 lines
5.7 KiB
Markdown

# Electrocardiogram
We are dealing with an exteremly imbalance dataset related to electrocardiogram signals that contain binary classes and labeled as good(0) and bad(1) signals.
## STEP 1: Fill missing values
All the columns in our data contain missing values a range from 25 to 70. By using `from sklearn.impute import KNNImputer` we fill all of them using 5 of the nearst neighbors of that missing value.
```
imputer = KNNImputer(n_neighbors=5)
data_imputed = imputer.fit_transform(data_frame)
data_frame_imputed = pandas.DataFrame(data_imputed, columns=columns)
missing_value_counts = data_frame_imputed.isna().sum()
write_textfile(f"{data_directory}/no_missing.txt", missing_value_counts)
return data_frame_imputed
```
## STEP 2: Scaling
We used `from sklearn.preprocessing import RobustScaler` to handle scaling.
```
scaler = RobustScaler()
x = data_frame.drop("label", axis=1)
x_scale = scaler.fit_transform(x)
data_frame_scaled = pandas.DataFrame(x_scale, columns=x.columns)
data_frame_scaled["label"] = labels.values
```
## STEP 3: k-fold cross validation + stratify classes + balancing training data
First of all we split the dataset into 2 parts train (85%) and test (15%). For making sure that majority class and imbalanced class
distributed fairly we passed `stratify=y`
```
x_train, x_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.15,
stratify=y,
random_state=42,
)
```
Then, for train dataset we used `from sklearn.model_selection import StratifiedKFold` to this class distribution also apply for train and
validation data.
```
skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=random_state)
for fold_num, (train_idx, val_idx) in enumerate(
tqdm.tqdm(skf.split(X, y), total=skf.n_splits, desc="Training Folds"), start=1
):
X_train, X_val = X.iloc[train_idx], X.iloc[val_idx]
y_train, y_val = y.iloc[train_idx], y.iloc[val_idx]
```
and finally we use one of these balancing methods `from imblearn.over_sampling import ADASYN, SMOTE, SVMSMOTE, BorderlineSMOTE, KMeansSMOTE` to augment samples for only train data
```
if smote:
if smote_method.lower() == "kmeans":
sampler = KMeansSMOTE(
k_neighbors=5,
cluster_balance_threshold=0.1,
random_state=random_state,
)
elif smote_method.lower() == "smote":
sampler = SMOTE(k_neighbors=5, random_state=random_state)
elif smote_method.lower() == "svmsmote":
sampler = SVMSMOTE(k_neighbors=5, random_state=random_state)
elif smote_method.lower() == "borderline":
sampler = BorderlineSMOTE(k_neighbors=5, random_state=random_state)
elif smote_method.lower() == "adasyn":
sampler = ADASYN(n_neighbors=5, random_state=random_state)
else:
raise ValueError(f"Unknown smote_method: {smote_method}")
X_train, y_train = sampler.fit_resample(X_train, y_train)
model.fit(X_train, y_train)
```
## STEP 4: Train different models to find the best possible approach
#### What we are looking for:
#### Dangerous: Sick → predicted healthy : high recall score or low FN
#### Costly: Healthy → predicted sick : high precision score or low FP
## STEP 5:
Current results taken KMEANS_SMOTE:
| model | stage | accuracy | f1_macro | f2_macro | recall_macro | precision_macro | f1_class0 | f1_class1 | f2_class0 | f2_class1 | recall_class0 | recall_class1 | precision_class0 | precision_class1 | TP | TN | FP | FN |
|-----------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----|-------|----|----|
| CatBoost_balanced_knn10 | train | 0.9843784049402589 | 0.8696686267343388 | 0.8824472728294012 | 0.8916952848998795 | 0.8508242781484853 | 0.9919396338322237 | 0.7473976196364541 | 0.9908276010500254 | 0.7740669446087769 | 0.9900881006639566 | 0.7933024691358025 | 0.9938004847319636 | 0.7078480715650071 | 789 | 26898 | 140 | 19 |
| CatBoost_balanced_knn10 | test | 0.9802604802604803 | 0.8348421298822796 | 0.8461546793313885 | 0.8541662696976049 | 0.8176680164072361 | 0.9898162729658793 | 0.6798679867986799 | 0.988757446094471 | 0.703551912568306 | 0.9880528191154894 | 0.7202797202797203 | 0.991586032814472 | 0.64375 | 103 | 4714 | 57 | 40 |
| LGBM_KMEANS_SMOTE_knn10 | train | 0.9883286128479746 | 0.8784419356817057 | 0.8436008106620193 | 0.8240767336379762 | 0.9582821430574249 | 0.9940169232360254 | 0.7628669481273861 | 0.9966698960611392 | 0.6905317252628993 | 0.9984466771524954 | 0.6497067901234568 | 0.9896275269971563 | 0.9269367591176938 | 775 | 27036 | 2 | 33 |
| LGBM_KMEANS_SMOTE_knn10 | test | 0.9865689865689866 | 0.8543196878009516 | 0.8121616449258658 | 0.7895809912158687 | 0.9600745182511498 | 0.9931221342225928 | 0.7155172413793104 | 0.9964866786565728 | 0.6278366111951589 | 0.9987424020121568 | 0.5804195804195804 | 0.9875647668393782 | 0.9325842696629213 | 83 | 4765 | 6 | 60 |
## next steps:
```
✅ 1. Stratified K-fold only apply on train.
🗹 2. train LGBM model using KMEANS_SMOTE with knn k_neighbors=10 (fine-tune remained)
🗹 3. train Cat_boost using KMEANS_SMOTE with knn k_neighbors=10 (fine-tune remained)
🗹 4. implement proposed methods of this article : https://1drv.ms/b/c/ab2a38fe5c318317/IQBEDsSFcYj6R6AMtOnh0X6DAZUlFqAYq19WT8nTeXomFwg
🗹 5. compare proposed model with SMOTE vs oversampling balancing method
```