editing readme.md
This commit is contained in:
16
README.md
16
README.md
@@ -88,12 +88,24 @@ We are dealing with an exteremly imbalance dataset related to electrocardiogram
|
||||
#### Costly: Healthy → predicted sick : high precision score or low FP
|
||||
|
||||
|
||||
## STEP 5:
|
||||
|
||||
|
||||
Current results taken:
|
||||
|
||||
| model | stage | accuracy | f1_macro | f2_macro | recall_macro | precision_macro | f1_class0 | f1_class1 | f2_class0 | f2_class1 | recall_class0 | recall_class1 | precision_class0 | precision_class1 | TP | TN | FP | FN |
|
||||
|-----------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----|-------|----|----|
|
||||
| CatBoost_balanced | train | 0.9843784049402589 | 0.8696686267343388 | 0.8824472728294012 | 0.8916952848998795 | 0.8508242781484853 | 0.9919396338322237 | 0.7473976196364541 | 0.9908276010500254 | 0.7740669446087769 | 0.9900881006639566 | 0.7933024691358025 | 0.9938004847319636 | 0.7078480715650071 | 789 | 26898 | 140 | 19 |
|
||||
| CatBoost_balanced | test | 0.9802604802604803 | 0.8348421298822796 | 0.8461546793313885 | 0.8541662696976049 | 0.8176680164072361 | 0.9898162729658793 | 0.6798679867986799 | 0.988757446094471 | 0.703551912568306 | 0.9880528191154894 | 0.7202797202797203 | 0.991586032814472 | 0.64375 | 103 | 4714 | 57 | 40 |
|
||||
| LGBM_KMEANS_SMOTE | train | 0.9883286128479746 | 0.8784419356817057 | 0.8436008106620193 | 0.8240767336379762 | 0.9582821430574249 | 0.9940169232360254 | 0.7628669481273861 | 0.9966698960611392 | 0.6905317252628993 | 0.9984466771524954 | 0.6497067901234568 | 0.9896275269971563 | 0.9269367591176938 | 775 | 27036 | 2 | 33 |
|
||||
| LGBM_KMEANS_SMOTE | test | 0.9865689865689866 | 0.8543196878009516 | 0.8121616449258658 | 0.7895809912158687 | 0.9600745182511498 | 0.9931221342225928 | 0.7155172413793104 | 0.9964866786565728 | 0.6278366111951589 | 0.9987424020121568 | 0.5804195804195804 | 0.9875647668393782 | 0.9325842696629213 | 83 | 4765 | 6 | 60 |
|
||||
|
||||
|
||||
## next steps:
|
||||
```
|
||||
✅ 1. Stratified K-fold only apply on train.
|
||||
🗹 2. train LGBM model using KMEANS_SMOTE with k_neighbors=10
|
||||
🗹 3. train Cat_boost using KMEANS_SMOTE with k_neighbors=10
|
||||
🗹 2. train LGBM model using KMEANS_SMOTE with k_neighbors=10 (fine-tune remained)
|
||||
🗹 3. train Cat_boost using KMEANS_SMOTE with k_neighbors=10 (fine-tune remained)
|
||||
🗹 4. implement proposed methods of this article : https://1drv.ms/b/c/ab2a38fe5c318317/IQBEDsSFcYj6R6AMtOnh0X6DAZUlFqAYq19WT8nTeXomFwg
|
||||
🗹 5. compare proposed model with SMOTE vs oversampling balancing method
|
||||
```
|
||||
BIN
__pycache__/train.cpython-312.pyc
Normal file
BIN
__pycache__/train.cpython-312.pyc
Normal file
Binary file not shown.
504
catboost_info/catboost_training.json
Normal file
504
catboost_info/catboost_training.json
Normal file
@@ -0,0 +1,504 @@
|
||||
{
|
||||
"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"Logloss"}],"launch_mode":"Train","parameters":"","iteration_count":500,"learn_sets":["learn"],"name":"experiment"},
|
||||
"iterations":[
|
||||
{"learn":[0.6505594592],"iteration":0,"passed_time":0.03105403676,"remaining_time":15.49596434},
|
||||
{"learn":[0.6199570308],"iteration":1,"passed_time":0.05615028788,"remaining_time":13.98142168},
|
||||
{"learn":[0.5883839207],"iteration":2,"passed_time":0.07864994549,"remaining_time":13.0296743},
|
||||
{"learn":[0.5581651741],"iteration":3,"passed_time":0.1024556292,"remaining_time":12.70449802},
|
||||
{"learn":[0.5343091005],"iteration":4,"passed_time":0.1254755472,"remaining_time":12.42207917},
|
||||
{"learn":[0.5070162395],"iteration":5,"passed_time":0.1492401884,"remaining_time":12.28744218},
|
||||
{"learn":[0.4927200876],"iteration":6,"passed_time":0.1737518445,"remaining_time":12.23709419},
|
||||
{"learn":[0.4682830337],"iteration":7,"passed_time":0.1985714651,"remaining_time":12.2121451},
|
||||
{"learn":[0.4539977069],"iteration":8,"passed_time":0.22143513,"remaining_time":12.08051653},
|
||||
{"learn":[0.4430063307],"iteration":9,"passed_time":0.2448470975,"remaining_time":11.99750778},
|
||||
{"learn":[0.4260619942],"iteration":10,"passed_time":0.26909804,"remaining_time":11.96263105},
|
||||
{"learn":[0.4123586166],"iteration":11,"passed_time":0.2945448815,"remaining_time":11.97815851},
|
||||
{"learn":[0.3986592355],"iteration":12,"passed_time":0.3204721075,"remaining_time":12.00537818},
|
||||
{"learn":[0.3898627233],"iteration":13,"passed_time":0.3453221871,"remaining_time":11.98761307},
|
||||
{"learn":[0.3805898091],"iteration":14,"passed_time":0.3702246843,"remaining_time":11.97059813},
|
||||
{"learn":[0.3714802352],"iteration":15,"passed_time":0.3938229889,"remaining_time":11.91314541},
|
||||
{"learn":[0.3635447217],"iteration":16,"passed_time":0.4161642267,"remaining_time":11.82396009},
|
||||
{"learn":[0.3579714002],"iteration":17,"passed_time":0.4397888234,"remaining_time":11.77656738},
|
||||
{"learn":[0.3518505418],"iteration":18,"passed_time":0.4639988485,"remaining_time":11.74649716},
|
||||
{"learn":[0.3469646375],"iteration":19,"passed_time":0.4877384475,"remaining_time":11.70572274},
|
||||
{"learn":[0.342350397],"iteration":20,"passed_time":0.5123099798,"remaining_time":11.68554668},
|
||||
{"learn":[0.3380417078],"iteration":21,"passed_time":0.5373129791,"remaining_time":11.67434564},
|
||||
{"learn":[0.3336186075],"iteration":22,"passed_time":0.5607558639,"remaining_time":11.629589},
|
||||
{"learn":[0.3298240945],"iteration":23,"passed_time":0.5846985086,"remaining_time":11.59652042},
|
||||
{"learn":[0.3257224063],"iteration":24,"passed_time":0.6079887237,"remaining_time":11.55178575},
|
||||
{"learn":[0.320477237],"iteration":25,"passed_time":0.6313950661,"remaining_time":11.51081774},
|
||||
{"learn":[0.3169914291],"iteration":26,"passed_time":0.6559140557,"remaining_time":11.49064253},
|
||||
{"learn":[0.3120681587],"iteration":27,"passed_time":0.6803675439,"remaining_time":11.46905288},
|
||||
{"learn":[0.3094016032],"iteration":28,"passed_time":0.7053136254,"remaining_time":11.45526612},
|
||||
{"learn":[0.304723249],"iteration":29,"passed_time":0.7290930169,"remaining_time":11.42245726},
|
||||
{"learn":[0.3011723022],"iteration":30,"passed_time":0.7546858196,"remaining_time":11.41766611},
|
||||
{"learn":[0.2987501309],"iteration":31,"passed_time":0.7790562646,"remaining_time":11.39369787},
|
||||
{"learn":[0.2972378553],"iteration":32,"passed_time":0.8033529164,"remaining_time":11.36866097},
|
||||
{"learn":[0.2949280448],"iteration":33,"passed_time":0.8292874343,"remaining_time":11.36611601},
|
||||
{"learn":[0.2922181334],"iteration":34,"passed_time":0.8548019437,"remaining_time":11.3566544},
|
||||
{"learn":[0.2902886884],"iteration":35,"passed_time":0.8790401361,"remaining_time":11.32985064},
|
||||
{"learn":[0.2868615526],"iteration":36,"passed_time":0.9020597207,"remaining_time":11.28793651},
|
||||
{"learn":[0.2855207315],"iteration":37,"passed_time":0.9252963514,"remaining_time":11.24965564},
|
||||
{"learn":[0.2829764561],"iteration":38,"passed_time":0.9488582802,"remaining_time":11.21599147},
|
||||
{"learn":[0.2790864362],"iteration":39,"passed_time":0.9725538367,"remaining_time":11.18436912},
|
||||
{"learn":[0.2771876663],"iteration":40,"passed_time":0.9956992988,"remaining_time":11.14697508},
|
||||
{"learn":[0.274396297],"iteration":41,"passed_time":1.020353624,"remaining_time":11.12671333},
|
||||
{"learn":[0.269695974],"iteration":42,"passed_time":1.045984095,"remaining_time":11.11662166},
|
||||
{"learn":[0.2674762223],"iteration":43,"passed_time":1.068509211,"remaining_time":11.07364091},
|
||||
{"learn":[0.266351576],"iteration":44,"passed_time":1.091556296,"remaining_time":11.036847},
|
||||
{"learn":[0.2645715787],"iteration":45,"passed_time":1.113948243,"remaining_time":10.99418484},
|
||||
{"learn":[0.2629624082],"iteration":46,"passed_time":1.137601257,"remaining_time":10.96453978},
|
||||
{"learn":[0.2622682603],"iteration":47,"passed_time":1.160066498,"remaining_time":10.92395952},
|
||||
{"learn":[0.2610050288],"iteration":48,"passed_time":1.185722802,"remaining_time":10.91348946},
|
||||
{"learn":[0.2591143021],"iteration":49,"passed_time":1.209731531,"remaining_time":10.88758378},
|
||||
{"learn":[0.2572681325],"iteration":50,"passed_time":1.233362378,"remaining_time":10.85842564},
|
||||
{"learn":[0.2562124872],"iteration":51,"passed_time":1.258443962,"remaining_time":10.84197875},
|
||||
{"learn":[0.2551455095],"iteration":52,"passed_time":1.280135895,"remaining_time":10.79661783},
|
||||
{"learn":[0.254392464],"iteration":53,"passed_time":1.305388733,"remaining_time":10.78154398},
|
||||
{"learn":[0.2528077948],"iteration":54,"passed_time":1.329479755,"remaining_time":10.75669984},
|
||||
{"learn":[0.2513889396],"iteration":55,"passed_time":1.353478943,"remaining_time":10.73115448},
|
||||
{"learn":[0.2506161354],"iteration":56,"passed_time":1.377812096,"remaining_time":10.70825892},
|
||||
{"learn":[0.2494460772],"iteration":57,"passed_time":1.398895142,"remaining_time":10.66054573},
|
||||
{"learn":[0.2485459323],"iteration":58,"passed_time":1.422329859,"remaining_time":10.63131302},
|
||||
{"learn":[0.2469745034],"iteration":59,"passed_time":1.446372548,"remaining_time":10.60673202},
|
||||
{"learn":[0.2459537181],"iteration":60,"passed_time":1.468595408,"remaining_time":10.56907187},
|
||||
{"learn":[0.2453627957],"iteration":61,"passed_time":1.490412886,"remaining_time":10.52904587},
|
||||
{"learn":[0.2433912548],"iteration":62,"passed_time":1.513328343,"remaining_time":10.49721406},
|
||||
{"learn":[0.2422951861],"iteration":63,"passed_time":1.537322947,"remaining_time":10.47301258},
|
||||
{"learn":[0.2400155969],"iteration":64,"passed_time":1.561566473,"remaining_time":10.45048332},
|
||||
{"learn":[0.2390895846],"iteration":65,"passed_time":1.585986169,"remaining_time":10.42906057},
|
||||
{"learn":[0.2375225747],"iteration":66,"passed_time":1.610181194,"remaining_time":10.40609637},
|
||||
{"learn":[0.2362798202],"iteration":67,"passed_time":1.636099003,"remaining_time":10.39404073},
|
||||
{"learn":[0.2348801591],"iteration":68,"passed_time":1.659691516,"remaining_time":10.3670586},
|
||||
{"learn":[0.234274226],"iteration":69,"passed_time":1.683029898,"remaining_time":10.33861223},
|
||||
{"learn":[0.2331038168],"iteration":70,"passed_time":1.706093401,"remaining_time":10.30864886},
|
||||
{"learn":[0.2323492401],"iteration":71,"passed_time":1.730072838,"remaining_time":10.28432187},
|
||||
{"learn":[0.2316465084],"iteration":72,"passed_time":1.754562494,"remaining_time":10.26298883},
|
||||
{"learn":[0.2299897258],"iteration":73,"passed_time":1.778226924,"remaining_time":10.23681986},
|
||||
{"learn":[0.2292043653],"iteration":74,"passed_time":1.801190591,"remaining_time":10.20674668},
|
||||
{"learn":[0.2281960167],"iteration":75,"passed_time":1.825801874,"remaining_time":10.18605256},
|
||||
{"learn":[0.2271872251],"iteration":76,"passed_time":1.850385615,"remaining_time":10.16510539},
|
||||
{"learn":[0.2266875911],"iteration":77,"passed_time":1.875686287,"remaining_time":10.14794376},
|
||||
{"learn":[0.2256819597],"iteration":78,"passed_time":1.899642849,"remaining_time":10.12341316},
|
||||
{"learn":[0.2248734679],"iteration":79,"passed_time":1.924752267,"remaining_time":10.1049494},
|
||||
{"learn":[0.2235711296],"iteration":80,"passed_time":1.94802419,"remaining_time":10.07681649},
|
||||
{"learn":[0.2225638016],"iteration":81,"passed_time":1.971505867,"remaining_time":10.04987137},
|
||||
{"learn":[0.2216924707],"iteration":82,"passed_time":1.994628121,"remaining_time":10.02120393},
|
||||
{"learn":[0.2206671726],"iteration":83,"passed_time":2.016718978,"remaining_time":9.987560654},
|
||||
{"learn":[0.2198053434],"iteration":84,"passed_time":2.041628101,"remaining_time":9.967948962},
|
||||
{"learn":[0.2180945036],"iteration":85,"passed_time":2.065207905,"remaining_time":9.941814798},
|
||||
{"learn":[0.2174988086],"iteration":86,"passed_time":2.089190717,"remaining_time":9.917652484},
|
||||
{"learn":[0.2167547953],"iteration":87,"passed_time":2.113248156,"remaining_time":9.893843638},
|
||||
{"learn":[0.2146076599],"iteration":88,"passed_time":2.139377261,"remaining_time":9.879596115},
|
||||
{"learn":[0.21355014],"iteration":89,"passed_time":2.162607891,"remaining_time":9.851880394},
|
||||
{"learn":[0.2120397433],"iteration":90,"passed_time":2.186820333,"remaining_time":9.828676003},
|
||||
{"learn":[0.2113293421],"iteration":91,"passed_time":2.211540868,"remaining_time":9.807702982},
|
||||
{"learn":[0.2106641679],"iteration":92,"passed_time":2.2348375,"remaining_time":9.780417878},
|
||||
{"learn":[0.2103582924],"iteration":93,"passed_time":2.258997524,"remaining_time":9.756946755},
|
||||
{"learn":[0.2100276146],"iteration":94,"passed_time":2.283395637,"remaining_time":9.734476135},
|
||||
{"learn":[0.2094603169],"iteration":95,"passed_time":2.307091443,"remaining_time":9.709009823},
|
||||
{"learn":[0.208520409],"iteration":96,"passed_time":2.332533326,"remaining_time":9.690834334},
|
||||
{"learn":[0.2081060903],"iteration":97,"passed_time":2.35668535,"remaining_time":9.667219497},
|
||||
{"learn":[0.2075147098],"iteration":98,"passed_time":2.380415491,"remaining_time":9.641884967},
|
||||
{"learn":[0.2063558526],"iteration":99,"passed_time":2.404065671,"remaining_time":9.616262685},
|
||||
{"learn":[0.2055862444],"iteration":100,"passed_time":2.428021233,"remaining_time":9.59188586},
|
||||
{"learn":[0.204938244],"iteration":101,"passed_time":2.450523349,"remaining_time":9.561846008},
|
||||
{"learn":[0.2041199746],"iteration":102,"passed_time":2.474099945,"remaining_time":9.536093961},
|
||||
{"learn":[0.20357568],"iteration":103,"passed_time":2.497499162,"remaining_time":9.509708347},
|
||||
{"learn":[0.2029479812],"iteration":104,"passed_time":2.518867297,"remaining_time":9.475738879},
|
||||
{"learn":[0.2024233181],"iteration":105,"passed_time":2.542382266,"remaining_time":9.449986915},
|
||||
{"learn":[0.2018709313],"iteration":106,"passed_time":2.567375765,"remaining_time":9.429707251},
|
||||
{"learn":[0.2007005578],"iteration":107,"passed_time":2.590388183,"remaining_time":9.402149702},
|
||||
{"learn":[0.1995046398],"iteration":108,"passed_time":2.613561688,"remaining_time":9.375253394},
|
||||
{"learn":[0.1988329196],"iteration":109,"passed_time":2.638674064,"remaining_time":9.355298955},
|
||||
{"learn":[0.1980569761],"iteration":110,"passed_time":2.661896361,"remaining_time":9.328627788},
|
||||
{"learn":[0.197332958],"iteration":111,"passed_time":2.685906882,"remaining_time":9.304748842},
|
||||
{"learn":[0.1968751476],"iteration":112,"passed_time":2.711071926,"remaining_time":9.284821554},
|
||||
{"learn":[0.196281669],"iteration":113,"passed_time":2.73628168,"remaining_time":9.264953758},
|
||||
{"learn":[0.1954746084],"iteration":114,"passed_time":2.764253363,"remaining_time":9.254239521},
|
||||
{"learn":[0.195100344],"iteration":115,"passed_time":2.788790562,"remaining_time":9.231858411},
|
||||
{"learn":[0.1947434834],"iteration":116,"passed_time":2.81466212,"remaining_time":9.213808478},
|
||||
{"learn":[0.1940842572],"iteration":117,"passed_time":2.840468552,"remaining_time":9.195415143},
|
||||
{"learn":[0.193016598],"iteration":118,"passed_time":2.865915977,"remaining_time":9.175747791},
|
||||
{"learn":[0.192326827],"iteration":119,"passed_time":2.892278503,"remaining_time":9.158881927},
|
||||
{"learn":[0.1919624319],"iteration":120,"passed_time":2.916626073,"remaining_time":9.135547781},
|
||||
{"learn":[0.1913875196],"iteration":121,"passed_time":2.941569321,"remaining_time":9.11404265},
|
||||
{"learn":[0.190963803],"iteration":122,"passed_time":2.965608759,"remaining_time":9.0897114},
|
||||
{"learn":[0.1906330299],"iteration":123,"passed_time":2.990774553,"remaining_time":9.068800258},
|
||||
{"learn":[0.1902243409],"iteration":124,"passed_time":3.014306065,"remaining_time":9.042918194},
|
||||
{"learn":[0.1896069044],"iteration":125,"passed_time":3.038773387,"remaining_time":9.019851164},
|
||||
{"learn":[0.1890660639],"iteration":126,"passed_time":3.062043601,"remaining_time":8.993246168},
|
||||
{"learn":[0.1882835195],"iteration":127,"passed_time":3.087900243,"remaining_time":8.97421008},
|
||||
{"learn":[0.1875493514],"iteration":128,"passed_time":3.113845219,"remaining_time":8.955322297},
|
||||
{"learn":[0.1869075794],"iteration":129,"passed_time":3.137285562,"remaining_time":8.929197369},
|
||||
{"learn":[0.1864064876],"iteration":130,"passed_time":3.16263411,"remaining_time":8.908488447},
|
||||
{"learn":[0.1861340119],"iteration":131,"passed_time":3.185744155,"remaining_time":8.881468553},
|
||||
{"learn":[0.1856804614],"iteration":132,"passed_time":3.208130727,"remaining_time":8.852511103},
|
||||
{"learn":[0.1851377629],"iteration":133,"passed_time":3.232801094,"remaining_time":8.829889556},
|
||||
{"learn":[0.1843016898],"iteration":134,"passed_time":3.256082726,"remaining_time":8.803482926},
|
||||
{"learn":[0.1835527038],"iteration":135,"passed_time":3.278891223,"remaining_time":8.775855921},
|
||||
{"learn":[0.1830184334],"iteration":136,"passed_time":3.302763366,"remaining_time":8.751117533},
|
||||
{"learn":[0.1823413379],"iteration":137,"passed_time":3.327347232,"remaining_time":8.728258682},
|
||||
{"learn":[0.1818241981],"iteration":138,"passed_time":3.352467526,"remaining_time":8.706768178},
|
||||
{"learn":[0.1810634762],"iteration":139,"passed_time":3.378940304,"remaining_time":8.688703639},
|
||||
{"learn":[0.1804669956],"iteration":140,"passed_time":3.402716196,"remaining_time":8.663653292},
|
||||
{"learn":[0.1800037734],"iteration":141,"passed_time":3.426736425,"remaining_time":8.639236903},
|
||||
{"learn":[0.179229966],"iteration":142,"passed_time":3.452764778,"remaining_time":8.619839342},
|
||||
{"learn":[0.1784811687],"iteration":143,"passed_time":3.476910969,"remaining_time":8.595696562},
|
||||
{"learn":[0.1776685278],"iteration":144,"passed_time":3.501042451,"remaining_time":8.571517724},
|
||||
{"learn":[0.1770219582],"iteration":145,"passed_time":3.524742882,"remaining_time":8.546294386},
|
||||
{"learn":[0.1766783294],"iteration":146,"passed_time":3.547484211,"remaining_time":8.518788616},
|
||||
{"learn":[0.1762438721],"iteration":147,"passed_time":3.57135048,"remaining_time":8.494022762},
|
||||
{"learn":[0.1758425501],"iteration":148,"passed_time":3.59339267,"remaining_time":8.464971994},
|
||||
{"learn":[0.1749885611],"iteration":149,"passed_time":3.616867722,"remaining_time":8.439358018},
|
||||
{"learn":[0.1738557684],"iteration":150,"passed_time":3.64147013,"remaining_time":8.416377982},
|
||||
{"learn":[0.1732595564],"iteration":151,"passed_time":3.665010475,"remaining_time":8.390945034},
|
||||
{"learn":[0.1727113418],"iteration":152,"passed_time":3.688104561,"remaining_time":8.364524723},
|
||||
{"learn":[0.1719918768],"iteration":153,"passed_time":3.71185641,"remaining_time":8.339625441},
|
||||
{"learn":[0.1714453538],"iteration":154,"passed_time":3.737889555,"remaining_time":8.319818687},
|
||||
{"learn":[0.1709170131],"iteration":155,"passed_time":3.761972786,"remaining_time":8.295632297},
|
||||
{"learn":[0.1700539884],"iteration":156,"passed_time":3.78548638,"remaining_time":8.270202729},
|
||||
{"learn":[0.1696775312],"iteration":157,"passed_time":3.809217854,"remaining_time":8.245269026},
|
||||
{"learn":[0.169185393],"iteration":158,"passed_time":3.832797158,"remaining_time":8.220024095},
|
||||
{"learn":[0.1684625546],"iteration":159,"passed_time":3.856642093,"remaining_time":8.195364448},
|
||||
{"learn":[0.1678449693],"iteration":160,"passed_time":3.881884639,"remaining_time":8.173657717},
|
||||
{"learn":[0.1674127808],"iteration":161,"passed_time":3.907000432,"remaining_time":8.151642876},
|
||||
{"learn":[0.1669160497],"iteration":162,"passed_time":3.931548214,"remaining_time":8.128415632},
|
||||
{"learn":[0.1666650109],"iteration":163,"passed_time":3.954377045,"remaining_time":8.10165053},
|
||||
{"learn":[0.1661196582],"iteration":164,"passed_time":3.980562901,"remaining_time":8.08174892},
|
||||
{"learn":[0.1656309243],"iteration":165,"passed_time":4.004673966,"remaining_time":8.057597015},
|
||||
{"learn":[0.1650005575],"iteration":166,"passed_time":4.031946343,"remaining_time":8.039749296},
|
||||
{"learn":[0.1630925189],"iteration":167,"passed_time":4.056403165,"remaining_time":8.016225303},
|
||||
{"learn":[0.1627982599],"iteration":168,"passed_time":4.080694317,"remaining_time":7.992365792},
|
||||
{"learn":[0.1622984813],"iteration":169,"passed_time":4.103059305,"remaining_time":7.96476218},
|
||||
{"learn":[0.1617063039],"iteration":170,"passed_time":4.127242621,"remaining_time":7.94071826},
|
||||
{"learn":[0.161085537],"iteration":171,"passed_time":4.15240079,"remaining_time":7.91853174},
|
||||
{"learn":[0.1605654299],"iteration":172,"passed_time":4.177543792,"remaining_time":7.896282197},
|
||||
{"learn":[0.1600969242],"iteration":173,"passed_time":4.201120555,"remaining_time":7.871064948},
|
||||
{"learn":[0.1595581484],"iteration":174,"passed_time":4.224817861,"remaining_time":7.846090314},
|
||||
{"learn":[0.1591783098],"iteration":175,"passed_time":4.247270893,"remaining_time":7.818839599},
|
||||
{"learn":[0.1586366754],"iteration":176,"passed_time":4.274704149,"remaining_time":7.8007313},
|
||||
{"learn":[0.1581714089],"iteration":177,"passed_time":4.299976404,"remaining_time":7.778609},
|
||||
{"learn":[0.1575630275],"iteration":178,"passed_time":4.329490118,"remaining_time":7.764057698},
|
||||
{"learn":[0.1568621859],"iteration":179,"passed_time":4.35938259,"remaining_time":7.750013493},
|
||||
{"learn":[0.1563319754],"iteration":180,"passed_time":4.386468548,"remaining_time":7.730847882},
|
||||
{"learn":[0.1557732651],"iteration":181,"passed_time":4.424954691,"remaining_time":7.73151424},
|
||||
{"learn":[0.15493488],"iteration":182,"passed_time":4.465823049,"remaining_time":7.73587927},
|
||||
{"learn":[0.1542286414],"iteration":183,"passed_time":4.500220611,"remaining_time":7.728639744},
|
||||
{"learn":[0.1534099833],"iteration":184,"passed_time":4.527682992,"remaining_time":7.709298068},
|
||||
{"learn":[0.1522403016],"iteration":185,"passed_time":4.559108703,"remaining_time":7.696559854},
|
||||
{"learn":[0.1517637469],"iteration":186,"passed_time":4.586250537,"remaining_time":7.676451433},
|
||||
{"learn":[0.1514181606],"iteration":187,"passed_time":4.617491244,"remaining_time":7.663070575},
|
||||
{"learn":[0.1511232407],"iteration":188,"passed_time":4.642788374,"remaining_time":7.639720552},
|
||||
{"learn":[0.1505915384],"iteration":189,"passed_time":4.667452033,"remaining_time":7.615316475},
|
||||
{"learn":[0.1501060085],"iteration":190,"passed_time":4.690511869,"remaining_time":7.588315013},
|
||||
{"learn":[0.1493588672],"iteration":191,"passed_time":4.715714164,"remaining_time":7.564791471},
|
||||
{"learn":[0.1485757524],"iteration":192,"passed_time":4.73898017,"remaining_time":7.538170529},
|
||||
{"learn":[0.1479396924],"iteration":193,"passed_time":4.762746353,"remaining_time":7.512373113},
|
||||
{"learn":[0.1476450754],"iteration":194,"passed_time":4.786778958,"remaining_time":7.487013241},
|
||||
{"learn":[0.1472334844],"iteration":195,"passed_time":4.809902503,"remaining_time":7.460256943},
|
||||
{"learn":[0.1466508463],"iteration":196,"passed_time":4.834416951,"remaining_time":7.435676833},
|
||||
{"learn":[0.1459767298],"iteration":197,"passed_time":4.861952084,"remaining_time":7.415704693},
|
||||
{"learn":[0.1449640915],"iteration":198,"passed_time":4.888074439,"remaining_time":7.393519628},
|
||||
{"learn":[0.1442547887],"iteration":199,"passed_time":4.913456779,"remaining_time":7.370185168},
|
||||
{"learn":[0.1435485115],"iteration":200,"passed_time":4.937169961,"remaining_time":7.344347354},
|
||||
{"learn":[0.142877376],"iteration":201,"passed_time":4.959637826,"remaining_time":7.316693426},
|
||||
{"learn":[0.1424560809],"iteration":202,"passed_time":4.981872478,"remaining_time":7.288749389},
|
||||
{"learn":[0.1418883293],"iteration":203,"passed_time":5.007844497,"remaining_time":7.266284172},
|
||||
{"learn":[0.1412903231],"iteration":204,"passed_time":5.030112108,"remaining_time":7.238454009},
|
||||
{"learn":[0.1403055475],"iteration":205,"passed_time":5.052978648,"remaining_time":7.211532634},
|
||||
{"learn":[0.1394721343],"iteration":206,"passed_time":5.075945815,"remaining_time":7.184792869},
|
||||
{"learn":[0.1390547172],"iteration":207,"passed_time":5.100007962,"remaining_time":7.159626562},
|
||||
{"learn":[0.1386442713],"iteration":208,"passed_time":5.12446045,"remaining_time":7.135014311},
|
||||
{"learn":[0.1376316573],"iteration":209,"passed_time":5.148769603,"remaining_time":7.110205642},
|
||||
{"learn":[0.136783024],"iteration":210,"passed_time":5.17443199,"remaining_time":7.08725519},
|
||||
{"learn":[0.1353549217],"iteration":211,"passed_time":5.19723982,"remaining_time":7.060401265},
|
||||
{"learn":[0.1349160868],"iteration":212,"passed_time":5.219840605,"remaining_time":7.033306355},
|
||||
{"learn":[0.1338548394],"iteration":213,"passed_time":5.245297572,"remaining_time":7.010070586},
|
||||
{"learn":[0.1331950161],"iteration":214,"passed_time":5.268794208,"remaining_time":6.984215577},
|
||||
{"learn":[0.1325567202],"iteration":215,"passed_time":5.293958168,"remaining_time":6.960574629},
|
||||
{"learn":[0.1315897372],"iteration":216,"passed_time":5.319155755,"remaining_time":6.936963496},
|
||||
{"learn":[0.130948128],"iteration":217,"passed_time":5.342938188,"remaining_time":6.911507197},
|
||||
{"learn":[0.1305183499],"iteration":218,"passed_time":5.368048564,"remaining_time":6.887770076},
|
||||
{"learn":[0.1296405854],"iteration":219,"passed_time":5.392814892,"remaining_time":6.86358259},
|
||||
{"learn":[0.1288357946],"iteration":220,"passed_time":5.418255067,"remaining_time":6.84024056},
|
||||
{"learn":[0.1279353696],"iteration":221,"passed_time":5.443410653,"remaining_time":6.81652325},
|
||||
{"learn":[0.1265519823],"iteration":222,"passed_time":5.46906979,"remaining_time":6.793418528},
|
||||
{"learn":[0.1260898397],"iteration":223,"passed_time":5.493449527,"remaining_time":6.768714596},
|
||||
{"learn":[0.1252943222],"iteration":224,"passed_time":5.518333274,"remaining_time":6.744629557},
|
||||
{"learn":[0.1248322461],"iteration":225,"passed_time":5.542836305,"remaining_time":6.720075874},
|
||||
{"learn":[0.1241281529],"iteration":226,"passed_time":5.568137435,"remaining_time":6.696482466},
|
||||
{"learn":[0.1232154663],"iteration":227,"passed_time":5.594682673,"remaining_time":6.674358277},
|
||||
{"learn":[0.1225610856],"iteration":228,"passed_time":5.618332187,"remaining_time":6.648768658},
|
||||
{"learn":[0.1217825847],"iteration":229,"passed_time":5.642942679,"remaining_time":6.624324014},
|
||||
{"learn":[0.12119544],"iteration":230,"passed_time":5.665603423,"remaining_time":6.597607449},
|
||||
{"learn":[0.1201025465],"iteration":231,"passed_time":5.692312873,"remaining_time":6.575602801},
|
||||
{"learn":[0.1193795277],"iteration":232,"passed_time":5.716253059,"remaining_time":6.550384407},
|
||||
{"learn":[0.1188654429],"iteration":233,"passed_time":5.738083495,"remaining_time":6.522778674},
|
||||
{"learn":[0.1178438479],"iteration":234,"passed_time":5.762168059,"remaining_time":6.497763982},
|
||||
{"learn":[0.1173572605],"iteration":235,"passed_time":5.784092539,"remaining_time":6.470340806},
|
||||
{"learn":[0.1164264053],"iteration":236,"passed_time":5.808362273,"remaining_time":6.445566573},
|
||||
{"learn":[0.1159977674],"iteration":237,"passed_time":5.830803263,"remaining_time":6.418783424},
|
||||
{"learn":[0.1154646969],"iteration":238,"passed_time":5.854558279,"remaining_time":6.393471594},
|
||||
{"learn":[0.1148100226],"iteration":239,"passed_time":5.880790595,"remaining_time":6.370856477},
|
||||
{"learn":[0.1138558555],"iteration":240,"passed_time":5.905832803,"remaining_time":6.346932348},
|
||||
{"learn":[0.1130261467],"iteration":241,"passed_time":5.932641838,"remaining_time":6.324882621},
|
||||
{"learn":[0.1116842639],"iteration":242,"passed_time":5.958386227,"remaining_time":6.301667738},
|
||||
{"learn":[0.1105644217],"iteration":243,"passed_time":5.983179681,"remaining_time":6.277434419},
|
||||
{"learn":[0.1097393073],"iteration":244,"passed_time":6.006970781,"remaining_time":6.252153262},
|
||||
{"learn":[0.1088130653],"iteration":245,"passed_time":6.031075929,"remaining_time":6.227208479},
|
||||
{"learn":[0.1082146647],"iteration":246,"passed_time":6.05573538,"remaining_time":6.202838263},
|
||||
{"learn":[0.1076318341],"iteration":247,"passed_time":6.079839694,"remaining_time":6.177901625},
|
||||
{"learn":[0.1069338009],"iteration":248,"passed_time":6.105178242,"remaining_time":6.154215818},
|
||||
{"learn":[0.1061728523],"iteration":249,"passed_time":6.130897005,"remaining_time":6.130897005},
|
||||
{"learn":[0.1057125099],"iteration":250,"passed_time":6.156366347,"remaining_time":6.107311635},
|
||||
{"learn":[0.105263911],"iteration":251,"passed_time":6.180644665,"remaining_time":6.082539195},
|
||||
{"learn":[0.104622054],"iteration":252,"passed_time":6.206252677,"remaining_time":6.059068819},
|
||||
{"learn":[0.1040334688],"iteration":253,"passed_time":6.231044588,"remaining_time":6.034791216},
|
||||
{"learn":[0.1034978632],"iteration":254,"passed_time":6.255672205,"remaining_time":6.010351727},
|
||||
{"learn":[0.1022838523],"iteration":255,"passed_time":6.280818957,"remaining_time":5.986405569},
|
||||
{"learn":[0.1017358698],"iteration":256,"passed_time":6.305317822,"remaining_time":5.961837473},
|
||||
{"learn":[0.1009628412],"iteration":257,"passed_time":6.330371114,"remaining_time":5.937789959},
|
||||
{"learn":[0.1003992689],"iteration":258,"passed_time":6.354081004,"remaining_time":5.91248464},
|
||||
{"learn":[0.0997164366],"iteration":259,"passed_time":6.378524908,"remaining_time":5.887869146},
|
||||
{"learn":[0.09903368875],"iteration":260,"passed_time":6.404176671,"remaining_time":5.864361013},
|
||||
{"learn":[0.09854662155],"iteration":261,"passed_time":6.429238338,"remaining_time":5.840300475},
|
||||
{"learn":[0.09805747523],"iteration":262,"passed_time":6.451193318,"remaining_time":5.813432762},
|
||||
{"learn":[0.09741884443],"iteration":263,"passed_time":6.476889623,"remaining_time":5.789946784},
|
||||
{"learn":[0.09610540779],"iteration":264,"passed_time":6.503024811,"remaining_time":5.766833323},
|
||||
{"learn":[0.09565119136],"iteration":265,"passed_time":6.529094415,"remaining_time":5.743639448},
|
||||
{"learn":[0.09510746696],"iteration":266,"passed_time":6.552466423,"remaining_time":5.71806995},
|
||||
{"learn":[0.09465424408],"iteration":267,"passed_time":6.576626739,"remaining_time":5.693199267},
|
||||
{"learn":[0.09394914967],"iteration":268,"passed_time":6.601929619,"remaining_time":5.669315026},
|
||||
{"learn":[0.09341616081],"iteration":269,"passed_time":6.626500568,"remaining_time":5.64479678},
|
||||
{"learn":[0.09285369188],"iteration":270,"passed_time":6.650069914,"remaining_time":5.619431772},
|
||||
{"learn":[0.09232671453],"iteration":271,"passed_time":6.673907015,"remaining_time":5.59430441},
|
||||
{"learn":[0.09171540397],"iteration":272,"passed_time":6.697626072,"remaining_time":5.569088345},
|
||||
{"learn":[0.09092693429],"iteration":273,"passed_time":6.723696551,"remaining_time":5.545822702},
|
||||
{"learn":[0.09032530539],"iteration":274,"passed_time":6.748984181,"remaining_time":5.521896148},
|
||||
{"learn":[0.08961859073],"iteration":275,"passed_time":6.773474045,"remaining_time":5.497312268},
|
||||
{"learn":[0.0889928576],"iteration":276,"passed_time":6.797473357,"remaining_time":5.472334147},
|
||||
{"learn":[0.08843924734],"iteration":277,"passed_time":6.821897053,"remaining_time":5.447701963},
|
||||
{"learn":[0.08792722887],"iteration":278,"passed_time":6.84618433,"remaining_time":5.422963215},
|
||||
{"learn":[0.08737190418],"iteration":279,"passed_time":6.870468773,"remaining_time":5.398225465},
|
||||
{"learn":[0.08682846822],"iteration":280,"passed_time":6.895059473,"remaining_time":5.373729625},
|
||||
{"learn":[0.08609147931],"iteration":281,"passed_time":6.918379022,"remaining_time":5.348250449},
|
||||
{"learn":[0.0855848848],"iteration":282,"passed_time":6.943729361,"remaining_time":5.324343715},
|
||||
{"learn":[0.0849478236],"iteration":283,"passed_time":6.968742736,"remaining_time":5.300170531},
|
||||
{"learn":[0.08443710276],"iteration":284,"passed_time":6.994168285,"remaining_time":5.27630239},
|
||||
{"learn":[0.08352754909],"iteration":285,"passed_time":7.01814843,"remaining_time":5.251341833},
|
||||
{"learn":[0.08305956533],"iteration":286,"passed_time":7.040939427,"remaining_time":5.225505568},
|
||||
{"learn":[0.0823083313],"iteration":287,"passed_time":7.066037303,"remaining_time":5.201388571},
|
||||
{"learn":[0.08184267631],"iteration":288,"passed_time":7.089837904,"remaining_time":5.176317639},
|
||||
{"learn":[0.08124107118],"iteration":289,"passed_time":7.114132764,"remaining_time":5.151613381},
|
||||
{"learn":[0.08074769811],"iteration":290,"passed_time":7.139030136,"remaining_time":5.127344668},
|
||||
{"learn":[0.08021947918],"iteration":291,"passed_time":7.162731984,"remaining_time":5.102220043},
|
||||
{"learn":[0.0795478537],"iteration":292,"passed_time":7.186983177,"remaining_time":5.077493234},
|
||||
{"learn":[0.07916246376],"iteration":293,"passed_time":7.209541169,"remaining_time":5.051583268},
|
||||
{"learn":[0.07867604825],"iteration":294,"passed_time":7.232862134,"remaining_time":5.026226229},
|
||||
{"learn":[0.07823144468],"iteration":295,"passed_time":7.255230248,"remaining_time":5.000226252},
|
||||
{"learn":[0.0778000497],"iteration":296,"passed_time":7.279124058,"remaining_time":4.975293548},
|
||||
{"learn":[0.07743135104],"iteration":297,"passed_time":7.302617527,"remaining_time":4.950096445},
|
||||
{"learn":[0.07687188002],"iteration":298,"passed_time":7.325879534,"remaining_time":4.924755138},
|
||||
{"learn":[0.07654323388],"iteration":299,"passed_time":7.34999689,"remaining_time":4.899997927},
|
||||
{"learn":[0.07612356047],"iteration":300,"passed_time":7.372068914,"remaining_time":4.873892737},
|
||||
{"learn":[0.07578569588],"iteration":301,"passed_time":7.397275168,"remaining_time":4.84986915},
|
||||
{"learn":[0.07528439413],"iteration":302,"passed_time":7.422076413,"remaining_time":4.825574433},
|
||||
{"learn":[0.07491501857],"iteration":303,"passed_time":7.445517631,"remaining_time":4.800399525},
|
||||
{"learn":[0.07459938027],"iteration":304,"passed_time":7.468580633,"remaining_time":4.774994175},
|
||||
{"learn":[0.07434000126],"iteration":305,"passed_time":7.490690199,"remaining_time":4.748999669},
|
||||
{"learn":[0.07405502385],"iteration":306,"passed_time":7.512408466,"remaining_time":4.722784476},
|
||||
{"learn":[0.07359936025],"iteration":307,"passed_time":7.534048065,"remaining_time":4.696549443},
|
||||
{"learn":[0.07321257176],"iteration":308,"passed_time":7.557631661,"remaining_time":4.671545784},
|
||||
{"learn":[0.07281411801],"iteration":309,"passed_time":7.580658371,"remaining_time":4.646209969},
|
||||
{"learn":[0.0723927812],"iteration":310,"passed_time":7.604700851,"remaining_time":4.621506305},
|
||||
{"learn":[0.07195828953],"iteration":311,"passed_time":7.628316531,"remaining_time":4.596549705},
|
||||
{"learn":[0.07162083385],"iteration":312,"passed_time":7.650410514,"remaining_time":4.570692543},
|
||||
{"learn":[0.07091211511],"iteration":313,"passed_time":7.674291574,"remaining_time":4.545917939},
|
||||
{"learn":[0.07035546389],"iteration":314,"passed_time":7.700929689,"remaining_time":4.52276823},
|
||||
{"learn":[0.06998280407],"iteration":315,"passed_time":7.72398715,"remaining_time":4.497511505},
|
||||
{"learn":[0.06967070096],"iteration":316,"passed_time":7.747017651,"remaining_time":4.472253092},
|
||||
{"learn":[0.06930882148],"iteration":317,"passed_time":7.7707525,"remaining_time":4.447411808},
|
||||
{"learn":[0.06897063076],"iteration":318,"passed_time":7.795024443,"remaining_time":4.422882208},
|
||||
{"learn":[0.06859761419],"iteration":319,"passed_time":7.820585662,"remaining_time":4.399079435},
|
||||
{"learn":[0.06823762036],"iteration":320,"passed_time":7.844623642,"remaining_time":4.374416299},
|
||||
{"learn":[0.06793421641],"iteration":321,"passed_time":7.867563183,"remaining_time":4.349149834},
|
||||
{"learn":[0.06750300536],"iteration":322,"passed_time":7.892254926,"remaining_time":4.324857963},
|
||||
{"learn":[0.06715951494],"iteration":323,"passed_time":7.914888878,"remaining_time":4.29944581},
|
||||
{"learn":[0.06685166117],"iteration":324,"passed_time":7.937601623,"remaining_time":4.274093182},
|
||||
{"learn":[0.06656581837],"iteration":325,"passed_time":7.961838316,"remaining_time":4.249570144},
|
||||
{"learn":[0.06596331136],"iteration":326,"passed_time":7.984908443,"remaining_time":4.224431684},
|
||||
{"learn":[0.06557079132],"iteration":327,"passed_time":8.008651584,"remaining_time":4.199658757},
|
||||
{"learn":[0.06514273361],"iteration":328,"passed_time":8.033376369,"remaining_time":4.175402307},
|
||||
{"learn":[0.0648161061],"iteration":329,"passed_time":8.056064947,"remaining_time":4.150094064},
|
||||
{"learn":[0.06429278866],"iteration":330,"passed_time":8.080953069,"remaining_time":4.125924679},
|
||||
{"learn":[0.06388688686],"iteration":331,"passed_time":8.105029258,"remaining_time":4.101340107},
|
||||
{"learn":[0.06356263701],"iteration":332,"passed_time":8.126972821,"remaining_time":4.075689073},
|
||||
{"learn":[0.06327858563],"iteration":333,"passed_time":8.149405353,"remaining_time":4.050303259},
|
||||
{"learn":[0.06299176056],"iteration":334,"passed_time":8.172558982,"remaining_time":4.025290245},
|
||||
{"learn":[0.06268236565],"iteration":335,"passed_time":8.196346832,"remaining_time":4.000597858},
|
||||
{"learn":[0.0624306551],"iteration":336,"passed_time":8.218442148,"remaining_time":3.975092196},
|
||||
{"learn":[0.06208009921],"iteration":337,"passed_time":8.242736758,"remaining_time":3.950660813},
|
||||
{"learn":[0.06180855918],"iteration":338,"passed_time":8.267183163,"remaining_time":3.926302328},
|
||||
{"learn":[0.06162921724],"iteration":339,"passed_time":8.288522756,"remaining_time":3.900481297},
|
||||
{"learn":[0.06115204937],"iteration":340,"passed_time":8.311136957,"remaining_time":3.875280869},
|
||||
{"learn":[0.06057626473],"iteration":341,"passed_time":8.335185312,"remaining_time":3.850758127},
|
||||
{"learn":[0.06030054307],"iteration":342,"passed_time":8.356700617,"remaining_time":3.825078708},
|
||||
{"learn":[0.05995592477],"iteration":343,"passed_time":8.380787681,"remaining_time":3.800589762},
|
||||
{"learn":[0.05966810366],"iteration":344,"passed_time":8.403365632,"remaining_time":3.775425139},
|
||||
{"learn":[0.05913088628],"iteration":345,"passed_time":8.427123857,"remaining_time":3.750800792},
|
||||
{"learn":[0.05885383971],"iteration":346,"passed_time":8.450990666,"remaining_time":3.726229314},
|
||||
{"learn":[0.0586178066],"iteration":347,"passed_time":8.474472052,"remaining_time":3.70149354},
|
||||
{"learn":[0.0581001034],"iteration":348,"passed_time":8.498085649,"remaining_time":3.676822157},
|
||||
{"learn":[0.05783949145],"iteration":349,"passed_time":8.519921751,"remaining_time":3.651395036},
|
||||
{"learn":[0.05741847465],"iteration":350,"passed_time":8.542184946,"remaining_time":3.626169678},
|
||||
{"learn":[0.05711831445],"iteration":351,"passed_time":8.565647248,"remaining_time":3.60146532},
|
||||
{"learn":[0.05679720458],"iteration":352,"passed_time":8.588951671,"remaining_time":3.576702254},
|
||||
{"learn":[0.05657943319],"iteration":353,"passed_time":8.613224281,"remaining_time":3.552346737},
|
||||
{"learn":[0.05636778384],"iteration":354,"passed_time":8.636055404,"remaining_time":3.527402911},
|
||||
{"learn":[0.05607497286],"iteration":355,"passed_time":8.65967575,"remaining_time":3.502790191},
|
||||
{"learn":[0.05587282454],"iteration":356,"passed_time":8.682130782,"remaining_time":3.477716252},
|
||||
{"learn":[0.05559949705],"iteration":357,"passed_time":8.705118783,"remaining_time":3.452868344},
|
||||
{"learn":[0.05524366884],"iteration":358,"passed_time":8.728642336,"remaining_time":3.42824114},
|
||||
{"learn":[0.05488789301],"iteration":359,"passed_time":8.750906405,"remaining_time":3.403130269},
|
||||
{"learn":[0.05445960317],"iteration":360,"passed_time":8.776331496,"remaining_time":3.379252294},
|
||||
{"learn":[0.05417052086],"iteration":361,"passed_time":8.799956843,"remaining_time":3.35467968},
|
||||
{"learn":[0.05393397186],"iteration":362,"passed_time":8.822983761,"remaining_time":3.329886433},
|
||||
{"learn":[0.05357891611],"iteration":363,"passed_time":8.846812654,"remaining_time":3.30540253},
|
||||
{"learn":[0.05335249446],"iteration":364,"passed_time":8.86857613,"remaining_time":3.280158295},
|
||||
{"learn":[0.05317320492],"iteration":365,"passed_time":8.890601153,"remaining_time":3.255028837},
|
||||
{"learn":[0.05301985043],"iteration":366,"passed_time":8.913022226,"remaining_time":3.230059826},
|
||||
{"learn":[0.05270775281],"iteration":367,"passed_time":8.935795139,"remaining_time":3.205230865},
|
||||
{"learn":[0.05243844604],"iteration":368,"passed_time":8.958194669,"remaining_time":3.180280492},
|
||||
{"learn":[0.05218227737],"iteration":369,"passed_time":8.982394903,"remaining_time":3.155976587},
|
||||
{"learn":[0.05202597967],"iteration":370,"passed_time":9.003933791,"remaining_time":3.130747868},
|
||||
{"learn":[0.05168457597],"iteration":371,"passed_time":9.028771995,"remaining_time":3.106674235},
|
||||
{"learn":[0.0513787649],"iteration":372,"passed_time":9.0515192,"remaining_time":3.081884553},
|
||||
{"learn":[0.05116703418],"iteration":373,"passed_time":9.073754977,"remaining_time":3.056933495},
|
||||
{"learn":[0.05093101511],"iteration":374,"passed_time":9.095141029,"remaining_time":3.031713676},
|
||||
{"learn":[0.0507589405],"iteration":375,"passed_time":9.117408265,"remaining_time":3.006804853},
|
||||
{"learn":[0.05053112856],"iteration":376,"passed_time":9.14141262,"remaining_time":2.982476796},
|
||||
{"learn":[0.05033706654],"iteration":377,"passed_time":9.164087822,"remaining_time":2.957721466},
|
||||
{"learn":[0.05020300153],"iteration":378,"passed_time":9.186253515,"remaining_time":2.932814447},
|
||||
{"learn":[0.05001435435],"iteration":379,"passed_time":9.208657962,"remaining_time":2.907997251},
|
||||
{"learn":[0.04975525929],"iteration":380,"passed_time":9.230626984,"remaining_time":2.883056722},
|
||||
{"learn":[0.04948290657],"iteration":381,"passed_time":9.25602245,"remaining_time":2.859190181},
|
||||
{"learn":[0.04929070362],"iteration":382,"passed_time":9.278065015,"remaining_time":2.834291401},
|
||||
{"learn":[0.04910496235],"iteration":383,"passed_time":9.300303501,"remaining_time":2.809466682},
|
||||
{"learn":[0.04881316411],"iteration":384,"passed_time":9.324029016,"remaining_time":2.785099576},
|
||||
{"learn":[0.04858449122],"iteration":385,"passed_time":9.34674072,"remaining_time":2.760436378},
|
||||
{"learn":[0.04830036156],"iteration":386,"passed_time":9.372360523,"remaining_time":2.736632401},
|
||||
{"learn":[0.04799888759],"iteration":387,"passed_time":9.394939182,"remaining_time":2.711941207},
|
||||
{"learn":[0.04764501811],"iteration":388,"passed_time":9.420174019,"remaining_time":2.688018808},
|
||||
{"learn":[0.04735869133],"iteration":389,"passed_time":9.445368564,"remaining_time":2.664078313},
|
||||
{"learn":[0.04717676982],"iteration":390,"passed_time":9.467458672,"remaining_time":2.639265972},
|
||||
{"learn":[0.04702198439],"iteration":391,"passed_time":9.491415983,"remaining_time":2.614981955},
|
||||
{"learn":[0.04680681448],"iteration":392,"passed_time":9.515370837,"remaining_time":2.59069893},
|
||||
{"learn":[0.04651695718],"iteration":393,"passed_time":9.539620988,"remaining_time":2.566497017},
|
||||
{"learn":[0.04627615035],"iteration":394,"passed_time":9.564574986,"remaining_time":2.542481958},
|
||||
{"learn":[0.04606321813],"iteration":395,"passed_time":9.590745592,"remaining_time":2.518781671},
|
||||
{"learn":[0.04589309758],"iteration":396,"passed_time":9.614750404,"remaining_time":2.494507032},
|
||||
{"learn":[0.04556006451],"iteration":397,"passed_time":9.640125578,"remaining_time":2.470584947},
|
||||
{"learn":[0.0453589455],"iteration":398,"passed_time":9.665230704,"remaining_time":2.446587221},
|
||||
{"learn":[0.04514104221],"iteration":399,"passed_time":9.689814403,"remaining_time":2.422453601},
|
||||
{"learn":[0.04478819136],"iteration":400,"passed_time":9.716095345,"remaining_time":2.398736756},
|
||||
{"learn":[0.04443821936],"iteration":401,"passed_time":9.73906397,"remaining_time":2.374199674},
|
||||
{"learn":[0.04430866417],"iteration":402,"passed_time":9.761612004,"remaining_time":2.349569142},
|
||||
{"learn":[0.0442286461],"iteration":403,"passed_time":9.784576629,"remaining_time":2.325047912},
|
||||
{"learn":[0.0441045591],"iteration":404,"passed_time":9.807797468,"remaining_time":2.300594468},
|
||||
{"learn":[0.04396148169],"iteration":405,"passed_time":9.830501963,"remaining_time":2.276027548},
|
||||
{"learn":[0.04383991606],"iteration":406,"passed_time":9.853293043,"remaining_time":2.251489565},
|
||||
{"learn":[0.04369433117],"iteration":407,"passed_time":9.876191375,"remaining_time":2.22698433},
|
||||
{"learn":[0.04359398001],"iteration":408,"passed_time":9.900105352,"remaining_time":2.202712927},
|
||||
{"learn":[0.04335115657],"iteration":409,"passed_time":9.921932205,"remaining_time":2.177985118},
|
||||
{"learn":[0.0432504709],"iteration":410,"passed_time":9.943676473,"remaining_time":2.153253543},
|
||||
{"learn":[0.04312499215],"iteration":411,"passed_time":9.965261154,"remaining_time":2.128502382},
|
||||
{"learn":[0.0430111312],"iteration":412,"passed_time":9.987106548,"remaining_time":2.103821476},
|
||||
{"learn":[0.04290906293],"iteration":413,"passed_time":10.00847627,"remaining_time":2.079055456},
|
||||
{"learn":[0.04276421934],"iteration":414,"passed_time":10.03028929,"remaining_time":2.054396601},
|
||||
{"learn":[0.04243290185],"iteration":415,"passed_time":10.05547683,"remaining_time":2.030432821},
|
||||
{"learn":[0.04207124094],"iteration":416,"passed_time":10.08181365,"remaining_time":2.006691925},
|
||||
{"learn":[0.04190756042],"iteration":417,"passed_time":10.10569317,"remaining_time":1.982456554},
|
||||
{"learn":[0.04169658039],"iteration":418,"passed_time":10.12932701,"remaining_time":1.958175389},
|
||||
{"learn":[0.04139810429],"iteration":419,"passed_time":10.15671773,"remaining_time":1.9346129},
|
||||
{"learn":[0.04116312391],"iteration":420,"passed_time":10.18063383,"remaining_time":1.91038022},
|
||||
{"learn":[0.0409318057],"iteration":421,"passed_time":10.206051,"remaining_time":1.886426489},
|
||||
{"learn":[0.04070910759],"iteration":422,"passed_time":10.22978806,"remaining_time":1.862160002},
|
||||
{"learn":[0.04058466131],"iteration":423,"passed_time":10.25200434,"remaining_time":1.837623419},
|
||||
{"learn":[0.04045016676],"iteration":424,"passed_time":10.27407965,"remaining_time":1.81307288},
|
||||
{"learn":[0.04033295089],"iteration":425,"passed_time":10.29598217,"remaining_time":1.788503946},
|
||||
{"learn":[0.04012984965],"iteration":426,"passed_time":10.31875555,"remaining_time":1.764096381},
|
||||
{"learn":[0.03995289728],"iteration":427,"passed_time":10.34082299,"remaining_time":1.739577699},
|
||||
{"learn":[0.03970746465],"iteration":428,"passed_time":10.36400745,"remaining_time":1.715255312},
|
||||
{"learn":[0.03949775163],"iteration":429,"passed_time":10.38808739,"remaining_time":1.691083993},
|
||||
{"learn":[0.03932209138],"iteration":430,"passed_time":10.41095259,"remaining_time":1.666718629},
|
||||
{"learn":[0.03910362134],"iteration":431,"passed_time":10.43412156,"remaining_time":1.642408023},
|
||||
{"learn":[0.03886318619],"iteration":432,"passed_time":10.45846792,"remaining_time":1.618284874},
|
||||
{"learn":[0.03869829193],"iteration":433,"passed_time":10.48182288,"remaining_time":1.594009932},
|
||||
{"learn":[0.03846231914],"iteration":434,"passed_time":10.50794099,"remaining_time":1.570152102},
|
||||
{"learn":[0.03826711438],"iteration":435,"passed_time":10.53190868,"remaining_time":1.545968246},
|
||||
{"learn":[0.03807202579],"iteration":436,"passed_time":10.55517422,"remaining_time":1.521684156},
|
||||
{"learn":[0.03786720622],"iteration":437,"passed_time":10.579381,"remaining_time":1.49753795},
|
||||
{"learn":[0.0377457012],"iteration":438,"passed_time":10.60138736,"remaining_time":1.473085715},
|
||||
{"learn":[0.03764523055],"iteration":439,"passed_time":10.62328529,"remaining_time":1.448629813},
|
||||
{"learn":[0.0375267263],"iteration":440,"passed_time":10.64579999,"remaining_time":1.424268026},
|
||||
{"learn":[0.03739077589],"iteration":441,"passed_time":10.66908854,"remaining_time":1.400016143},
|
||||
{"learn":[0.03720490686],"iteration":442,"passed_time":10.69258734,"remaining_time":1.375795663},
|
||||
{"learn":[0.03707441914],"iteration":443,"passed_time":10.71474358,"remaining_time":1.3514091},
|
||||
{"learn":[0.0369518746],"iteration":444,"passed_time":10.73673589,"remaining_time":1.327012301},
|
||||
{"learn":[0.03679965145],"iteration":445,"passed_time":10.75968647,"remaining_time":1.302742309},
|
||||
{"learn":[0.03665723969],"iteration":446,"passed_time":10.78333295,"remaining_time":1.27856073},
|
||||
{"learn":[0.03647330679],"iteration":447,"passed_time":10.80867049,"remaining_time":1.254577825},
|
||||
{"learn":[0.03637255373],"iteration":448,"passed_time":10.82990171,"remaining_time":1.230122466},
|
||||
{"learn":[0.03622583483],"iteration":449,"passed_time":10.85228003,"remaining_time":1.205808892},
|
||||
{"learn":[0.03607239533],"iteration":450,"passed_time":10.87496749,"remaining_time":1.181537487},
|
||||
{"learn":[0.03601574616],"iteration":451,"passed_time":10.89771261,"remaining_time":1.157279215},
|
||||
{"learn":[0.03584618827],"iteration":452,"passed_time":10.92194863,"remaining_time":1.133182308},
|
||||
{"learn":[0.03574008044],"iteration":453,"passed_time":10.94376603,"remaining_time":1.108839729},
|
||||
{"learn":[0.03569749187],"iteration":454,"passed_time":10.96549146,"remaining_time":1.084499155},
|
||||
{"learn":[0.03557336502],"iteration":455,"passed_time":10.98880576,"remaining_time":1.060323363},
|
||||
{"learn":[0.03539082977],"iteration":456,"passed_time":11.01338067,"remaining_time":1.036269953},
|
||||
{"learn":[0.0352789402],"iteration":457,"passed_time":11.03566028,"remaining_time":1.012003781},
|
||||
{"learn":[0.03505536388],"iteration":458,"passed_time":11.05856328,"remaining_time":0.9878019484},
|
||||
{"learn":[0.03495206755],"iteration":459,"passed_time":11.08111735,"remaining_time":0.9635754219},
|
||||
{"learn":[0.03478190743],"iteration":460,"passed_time":11.10508112,"remaining_time":0.9394754094},
|
||||
{"learn":[0.03465723213],"iteration":461,"passed_time":11.12815812,"remaining_time":0.9153030492},
|
||||
{"learn":[0.03453161153],"iteration":462,"passed_time":11.15050611,"remaining_time":0.8910771623},
|
||||
{"learn":[0.034334941],"iteration":463,"passed_time":11.17327344,"remaining_time":0.866891905},
|
||||
{"learn":[0.03416935733],"iteration":464,"passed_time":11.19764405,"remaining_time":0.8428334234},
|
||||
{"learn":[0.03405767511],"iteration":465,"passed_time":11.22081306,"remaining_time":0.8186859313},
|
||||
{"learn":[0.03394943303],"iteration":466,"passed_time":11.24345459,"remaining_time":0.7945053567},
|
||||
{"learn":[0.03374958171],"iteration":467,"passed_time":11.26703627,"remaining_time":0.7703956426},
|
||||
{"learn":[0.03363658898],"iteration":468,"passed_time":11.28955126,"remaining_time":0.7462176741},
|
||||
{"learn":[0.03341608014],"iteration":469,"passed_time":11.31481723,"remaining_time":0.7222223762},
|
||||
{"learn":[0.03332221514],"iteration":470,"passed_time":11.33944193,"remaining_time":0.6981821993},
|
||||
{"learn":[0.03326545376],"iteration":471,"passed_time":11.36179187,"remaining_time":0.6740046026},
|
||||
{"learn":[0.0331200389],"iteration":472,"passed_time":11.38850836,"remaining_time":0.650083987},
|
||||
{"learn":[0.03302212556],"iteration":473,"passed_time":11.41176383,"remaining_time":0.625961729},
|
||||
{"learn":[0.03287398575],"iteration":474,"passed_time":11.43655516,"remaining_time":0.6019239557},
|
||||
{"learn":[0.03278840054],"iteration":475,"passed_time":11.46011271,"remaining_time":0.577820809},
|
||||
{"learn":[0.03265757698],"iteration":476,"passed_time":11.48284467,"remaining_time":0.5536801411},
|
||||
{"learn":[0.03252871663],"iteration":477,"passed_time":11.50658214,"remaining_time":0.5295916466},
|
||||
{"learn":[0.03236889905],"iteration":478,"passed_time":11.5305887,"remaining_time":0.5055164149},
|
||||
{"learn":[0.03224167231],"iteration":479,"passed_time":11.55399534,"remaining_time":0.4814164723},
|
||||
{"learn":[0.03216011999],"iteration":480,"passed_time":11.57584315,"remaining_time":0.4572578374},
|
||||
{"learn":[0.03192498158],"iteration":481,"passed_time":11.59976646,"remaining_time":0.4331862993},
|
||||
{"learn":[0.03183675149],"iteration":482,"passed_time":11.62260133,"remaining_time":0.4090770655},
|
||||
{"learn":[0.03171906574],"iteration":483,"passed_time":11.64573888,"remaining_time":0.3849831033},
|
||||
{"learn":[0.03156880496],"iteration":484,"passed_time":11.67016736,"remaining_time":0.3609330113},
|
||||
{"learn":[0.03145563437],"iteration":485,"passed_time":11.69324895,"remaining_time":0.3368425623},
|
||||
{"learn":[0.03136115044],"iteration":486,"passed_time":11.71487592,"remaining_time":0.3127174271},
|
||||
{"learn":[0.03122164061],"iteration":487,"passed_time":11.73913228,"remaining_time":0.2886671873},
|
||||
{"learn":[0.03109933328],"iteration":488,"passed_time":11.76249975,"remaining_time":0.2645961089},
|
||||
{"learn":[0.03102429087],"iteration":489,"passed_time":11.78385305,"remaining_time":0.240486797},
|
||||
{"learn":[0.03095523906],"iteration":490,"passed_time":11.80655921,"remaining_time":0.216413509},
|
||||
{"learn":[0.03085009531],"iteration":491,"passed_time":11.82931033,"remaining_time":0.1923465095},
|
||||
{"learn":[0.03071320709],"iteration":492,"passed_time":11.85312218,"remaining_time":0.1682999093},
|
||||
{"learn":[0.03055708091],"iteration":493,"passed_time":11.87753088,"remaining_time":0.1442615087},
|
||||
{"learn":[0.03041588169],"iteration":494,"passed_time":11.90089939,"remaining_time":0.1202111049},
|
||||
{"learn":[0.03027938644],"iteration":495,"passed_time":11.92492595,"remaining_time":0.09616875767},
|
||||
{"learn":[0.0301679957],"iteration":496,"passed_time":11.94755094,"remaining_time":0.07211801375},
|
||||
{"learn":[0.03003869429],"iteration":497,"passed_time":11.97044565,"remaining_time":0.04807407892},
|
||||
{"learn":[0.02994175927],"iteration":498,"passed_time":11.99279918,"remaining_time":0.02403366569},
|
||||
{"learn":[0.02983188626],"iteration":499,"passed_time":12.01560647,"remaining_time":0}
|
||||
]}
|
||||
BIN
catboost_info/learn/events.out.tfevents
Normal file
BIN
catboost_info/learn/events.out.tfevents
Normal file
Binary file not shown.
501
catboost_info/learn_error.tsv
Normal file
501
catboost_info/learn_error.tsv
Normal file
@@ -0,0 +1,501 @@
|
||||
iter Logloss
|
||||
0 0.6505594592
|
||||
1 0.6199570308
|
||||
2 0.5883839207
|
||||
3 0.5581651741
|
||||
4 0.5343091005
|
||||
5 0.5070162395
|
||||
6 0.4927200876
|
||||
7 0.4682830337
|
||||
8 0.4539977069
|
||||
9 0.4430063307
|
||||
10 0.4260619942
|
||||
11 0.4123586166
|
||||
12 0.3986592355
|
||||
13 0.3898627233
|
||||
14 0.3805898091
|
||||
15 0.3714802352
|
||||
16 0.3635447217
|
||||
17 0.3579714002
|
||||
18 0.3518505418
|
||||
19 0.3469646375
|
||||
20 0.342350397
|
||||
21 0.3380417078
|
||||
22 0.3336186075
|
||||
23 0.3298240945
|
||||
24 0.3257224063
|
||||
25 0.320477237
|
||||
26 0.3169914291
|
||||
27 0.3120681587
|
||||
28 0.3094016032
|
||||
29 0.304723249
|
||||
30 0.3011723022
|
||||
31 0.2987501309
|
||||
32 0.2972378553
|
||||
33 0.2949280448
|
||||
34 0.2922181334
|
||||
35 0.2902886884
|
||||
36 0.2868615526
|
||||
37 0.2855207315
|
||||
38 0.2829764561
|
||||
39 0.2790864362
|
||||
40 0.2771876663
|
||||
41 0.274396297
|
||||
42 0.269695974
|
||||
43 0.2674762223
|
||||
44 0.266351576
|
||||
45 0.2645715787
|
||||
46 0.2629624082
|
||||
47 0.2622682603
|
||||
48 0.2610050288
|
||||
49 0.2591143021
|
||||
50 0.2572681325
|
||||
51 0.2562124872
|
||||
52 0.2551455095
|
||||
53 0.254392464
|
||||
54 0.2528077948
|
||||
55 0.2513889396
|
||||
56 0.2506161354
|
||||
57 0.2494460772
|
||||
58 0.2485459323
|
||||
59 0.2469745034
|
||||
60 0.2459537181
|
||||
61 0.2453627957
|
||||
62 0.2433912548
|
||||
63 0.2422951861
|
||||
64 0.2400155969
|
||||
65 0.2390895846
|
||||
66 0.2375225747
|
||||
67 0.2362798202
|
||||
68 0.2348801591
|
||||
69 0.234274226
|
||||
70 0.2331038168
|
||||
71 0.2323492401
|
||||
72 0.2316465084
|
||||
73 0.2299897258
|
||||
74 0.2292043653
|
||||
75 0.2281960167
|
||||
76 0.2271872251
|
||||
77 0.2266875911
|
||||
78 0.2256819597
|
||||
79 0.2248734679
|
||||
80 0.2235711296
|
||||
81 0.2225638016
|
||||
82 0.2216924707
|
||||
83 0.2206671726
|
||||
84 0.2198053434
|
||||
85 0.2180945036
|
||||
86 0.2174988086
|
||||
87 0.2167547953
|
||||
88 0.2146076599
|
||||
89 0.21355014
|
||||
90 0.2120397433
|
||||
91 0.2113293421
|
||||
92 0.2106641679
|
||||
93 0.2103582924
|
||||
94 0.2100276146
|
||||
95 0.2094603169
|
||||
96 0.208520409
|
||||
97 0.2081060903
|
||||
98 0.2075147098
|
||||
99 0.2063558526
|
||||
100 0.2055862444
|
||||
101 0.204938244
|
||||
102 0.2041199746
|
||||
103 0.20357568
|
||||
104 0.2029479812
|
||||
105 0.2024233181
|
||||
106 0.2018709313
|
||||
107 0.2007005578
|
||||
108 0.1995046398
|
||||
109 0.1988329196
|
||||
110 0.1980569761
|
||||
111 0.197332958
|
||||
112 0.1968751476
|
||||
113 0.196281669
|
||||
114 0.1954746084
|
||||
115 0.195100344
|
||||
116 0.1947434834
|
||||
117 0.1940842572
|
||||
118 0.193016598
|
||||
119 0.192326827
|
||||
120 0.1919624319
|
||||
121 0.1913875196
|
||||
122 0.190963803
|
||||
123 0.1906330299
|
||||
124 0.1902243409
|
||||
125 0.1896069044
|
||||
126 0.1890660639
|
||||
127 0.1882835195
|
||||
128 0.1875493514
|
||||
129 0.1869075794
|
||||
130 0.1864064876
|
||||
131 0.1861340119
|
||||
132 0.1856804614
|
||||
133 0.1851377629
|
||||
134 0.1843016898
|
||||
135 0.1835527038
|
||||
136 0.1830184334
|
||||
137 0.1823413379
|
||||
138 0.1818241981
|
||||
139 0.1810634762
|
||||
140 0.1804669956
|
||||
141 0.1800037734
|
||||
142 0.179229966
|
||||
143 0.1784811687
|
||||
144 0.1776685278
|
||||
145 0.1770219582
|
||||
146 0.1766783294
|
||||
147 0.1762438721
|
||||
148 0.1758425501
|
||||
149 0.1749885611
|
||||
150 0.1738557684
|
||||
151 0.1732595564
|
||||
152 0.1727113418
|
||||
153 0.1719918768
|
||||
154 0.1714453538
|
||||
155 0.1709170131
|
||||
156 0.1700539884
|
||||
157 0.1696775312
|
||||
158 0.169185393
|
||||
159 0.1684625546
|
||||
160 0.1678449693
|
||||
161 0.1674127808
|
||||
162 0.1669160497
|
||||
163 0.1666650109
|
||||
164 0.1661196582
|
||||
165 0.1656309243
|
||||
166 0.1650005575
|
||||
167 0.1630925189
|
||||
168 0.1627982599
|
||||
169 0.1622984813
|
||||
170 0.1617063039
|
||||
171 0.161085537
|
||||
172 0.1605654299
|
||||
173 0.1600969242
|
||||
174 0.1595581484
|
||||
175 0.1591783098
|
||||
176 0.1586366754
|
||||
177 0.1581714089
|
||||
178 0.1575630275
|
||||
179 0.1568621859
|
||||
180 0.1563319754
|
||||
181 0.1557732651
|
||||
182 0.15493488
|
||||
183 0.1542286414
|
||||
184 0.1534099833
|
||||
185 0.1522403016
|
||||
186 0.1517637469
|
||||
187 0.1514181606
|
||||
188 0.1511232407
|
||||
189 0.1505915384
|
||||
190 0.1501060085
|
||||
191 0.1493588672
|
||||
192 0.1485757524
|
||||
193 0.1479396924
|
||||
194 0.1476450754
|
||||
195 0.1472334844
|
||||
196 0.1466508463
|
||||
197 0.1459767298
|
||||
198 0.1449640915
|
||||
199 0.1442547887
|
||||
200 0.1435485115
|
||||
201 0.142877376
|
||||
202 0.1424560809
|
||||
203 0.1418883293
|
||||
204 0.1412903231
|
||||
205 0.1403055475
|
||||
206 0.1394721343
|
||||
207 0.1390547172
|
||||
208 0.1386442713
|
||||
209 0.1376316573
|
||||
210 0.136783024
|
||||
211 0.1353549217
|
||||
212 0.1349160868
|
||||
213 0.1338548394
|
||||
214 0.1331950161
|
||||
215 0.1325567202
|
||||
216 0.1315897372
|
||||
217 0.130948128
|
||||
218 0.1305183499
|
||||
219 0.1296405854
|
||||
220 0.1288357946
|
||||
221 0.1279353696
|
||||
222 0.1265519823
|
||||
223 0.1260898397
|
||||
224 0.1252943222
|
||||
225 0.1248322461
|
||||
226 0.1241281529
|
||||
227 0.1232154663
|
||||
228 0.1225610856
|
||||
229 0.1217825847
|
||||
230 0.12119544
|
||||
231 0.1201025465
|
||||
232 0.1193795277
|
||||
233 0.1188654429
|
||||
234 0.1178438479
|
||||
235 0.1173572605
|
||||
236 0.1164264053
|
||||
237 0.1159977674
|
||||
238 0.1154646969
|
||||
239 0.1148100226
|
||||
240 0.1138558555
|
||||
241 0.1130261467
|
||||
242 0.1116842639
|
||||
243 0.1105644217
|
||||
244 0.1097393073
|
||||
245 0.1088130653
|
||||
246 0.1082146647
|
||||
247 0.1076318341
|
||||
248 0.1069338009
|
||||
249 0.1061728523
|
||||
250 0.1057125099
|
||||
251 0.105263911
|
||||
252 0.104622054
|
||||
253 0.1040334688
|
||||
254 0.1034978632
|
||||
255 0.1022838523
|
||||
256 0.1017358698
|
||||
257 0.1009628412
|
||||
258 0.1003992689
|
||||
259 0.0997164366
|
||||
260 0.09903368875
|
||||
261 0.09854662155
|
||||
262 0.09805747523
|
||||
263 0.09741884443
|
||||
264 0.09610540779
|
||||
265 0.09565119136
|
||||
266 0.09510746696
|
||||
267 0.09465424408
|
||||
268 0.09394914967
|
||||
269 0.09341616081
|
||||
270 0.09285369188
|
||||
271 0.09232671453
|
||||
272 0.09171540397
|
||||
273 0.09092693429
|
||||
274 0.09032530539
|
||||
275 0.08961859073
|
||||
276 0.0889928576
|
||||
277 0.08843924734
|
||||
278 0.08792722887
|
||||
279 0.08737190418
|
||||
280 0.08682846822
|
||||
281 0.08609147931
|
||||
282 0.0855848848
|
||||
283 0.0849478236
|
||||
284 0.08443710276
|
||||
285 0.08352754909
|
||||
286 0.08305956533
|
||||
287 0.0823083313
|
||||
288 0.08184267631
|
||||
289 0.08124107118
|
||||
290 0.08074769811
|
||||
291 0.08021947918
|
||||
292 0.0795478537
|
||||
293 0.07916246376
|
||||
294 0.07867604825
|
||||
295 0.07823144468
|
||||
296 0.0778000497
|
||||
297 0.07743135104
|
||||
298 0.07687188002
|
||||
299 0.07654323388
|
||||
300 0.07612356047
|
||||
301 0.07578569588
|
||||
302 0.07528439413
|
||||
303 0.07491501857
|
||||
304 0.07459938027
|
||||
305 0.07434000126
|
||||
306 0.07405502385
|
||||
307 0.07359936025
|
||||
308 0.07321257176
|
||||
309 0.07281411801
|
||||
310 0.0723927812
|
||||
311 0.07195828953
|
||||
312 0.07162083385
|
||||
313 0.07091211511
|
||||
314 0.07035546389
|
||||
315 0.06998280407
|
||||
316 0.06967070096
|
||||
317 0.06930882148
|
||||
318 0.06897063076
|
||||
319 0.06859761419
|
||||
320 0.06823762036
|
||||
321 0.06793421641
|
||||
322 0.06750300536
|
||||
323 0.06715951494
|
||||
324 0.06685166117
|
||||
325 0.06656581837
|
||||
326 0.06596331136
|
||||
327 0.06557079132
|
||||
328 0.06514273361
|
||||
329 0.0648161061
|
||||
330 0.06429278866
|
||||
331 0.06388688686
|
||||
332 0.06356263701
|
||||
333 0.06327858563
|
||||
334 0.06299176056
|
||||
335 0.06268236565
|
||||
336 0.0624306551
|
||||
337 0.06208009921
|
||||
338 0.06180855918
|
||||
339 0.06162921724
|
||||
340 0.06115204937
|
||||
341 0.06057626473
|
||||
342 0.06030054307
|
||||
343 0.05995592477
|
||||
344 0.05966810366
|
||||
345 0.05913088628
|
||||
346 0.05885383971
|
||||
347 0.0586178066
|
||||
348 0.0581001034
|
||||
349 0.05783949145
|
||||
350 0.05741847465
|
||||
351 0.05711831445
|
||||
352 0.05679720458
|
||||
353 0.05657943319
|
||||
354 0.05636778384
|
||||
355 0.05607497286
|
||||
356 0.05587282454
|
||||
357 0.05559949705
|
||||
358 0.05524366884
|
||||
359 0.05488789301
|
||||
360 0.05445960317
|
||||
361 0.05417052086
|
||||
362 0.05393397186
|
||||
363 0.05357891611
|
||||
364 0.05335249446
|
||||
365 0.05317320492
|
||||
366 0.05301985043
|
||||
367 0.05270775281
|
||||
368 0.05243844604
|
||||
369 0.05218227737
|
||||
370 0.05202597967
|
||||
371 0.05168457597
|
||||
372 0.0513787649
|
||||
373 0.05116703418
|
||||
374 0.05093101511
|
||||
375 0.0507589405
|
||||
376 0.05053112856
|
||||
377 0.05033706654
|
||||
378 0.05020300153
|
||||
379 0.05001435435
|
||||
380 0.04975525929
|
||||
381 0.04948290657
|
||||
382 0.04929070362
|
||||
383 0.04910496235
|
||||
384 0.04881316411
|
||||
385 0.04858449122
|
||||
386 0.04830036156
|
||||
387 0.04799888759
|
||||
388 0.04764501811
|
||||
389 0.04735869133
|
||||
390 0.04717676982
|
||||
391 0.04702198439
|
||||
392 0.04680681448
|
||||
393 0.04651695718
|
||||
394 0.04627615035
|
||||
395 0.04606321813
|
||||
396 0.04589309758
|
||||
397 0.04556006451
|
||||
398 0.0453589455
|
||||
399 0.04514104221
|
||||
400 0.04478819136
|
||||
401 0.04443821936
|
||||
402 0.04430866417
|
||||
403 0.0442286461
|
||||
404 0.0441045591
|
||||
405 0.04396148169
|
||||
406 0.04383991606
|
||||
407 0.04369433117
|
||||
408 0.04359398001
|
||||
409 0.04335115657
|
||||
410 0.0432504709
|
||||
411 0.04312499215
|
||||
412 0.0430111312
|
||||
413 0.04290906293
|
||||
414 0.04276421934
|
||||
415 0.04243290185
|
||||
416 0.04207124094
|
||||
417 0.04190756042
|
||||
418 0.04169658039
|
||||
419 0.04139810429
|
||||
420 0.04116312391
|
||||
421 0.0409318057
|
||||
422 0.04070910759
|
||||
423 0.04058466131
|
||||
424 0.04045016676
|
||||
425 0.04033295089
|
||||
426 0.04012984965
|
||||
427 0.03995289728
|
||||
428 0.03970746465
|
||||
429 0.03949775163
|
||||
430 0.03932209138
|
||||
431 0.03910362134
|
||||
432 0.03886318619
|
||||
433 0.03869829193
|
||||
434 0.03846231914
|
||||
435 0.03826711438
|
||||
436 0.03807202579
|
||||
437 0.03786720622
|
||||
438 0.0377457012
|
||||
439 0.03764523055
|
||||
440 0.0375267263
|
||||
441 0.03739077589
|
||||
442 0.03720490686
|
||||
443 0.03707441914
|
||||
444 0.0369518746
|
||||
445 0.03679965145
|
||||
446 0.03665723969
|
||||
447 0.03647330679
|
||||
448 0.03637255373
|
||||
449 0.03622583483
|
||||
450 0.03607239533
|
||||
451 0.03601574616
|
||||
452 0.03584618827
|
||||
453 0.03574008044
|
||||
454 0.03569749187
|
||||
455 0.03557336502
|
||||
456 0.03539082977
|
||||
457 0.0352789402
|
||||
458 0.03505536388
|
||||
459 0.03495206755
|
||||
460 0.03478190743
|
||||
461 0.03465723213
|
||||
462 0.03453161153
|
||||
463 0.034334941
|
||||
464 0.03416935733
|
||||
465 0.03405767511
|
||||
466 0.03394943303
|
||||
467 0.03374958171
|
||||
468 0.03363658898
|
||||
469 0.03341608014
|
||||
470 0.03332221514
|
||||
471 0.03326545376
|
||||
472 0.0331200389
|
||||
473 0.03302212556
|
||||
474 0.03287398575
|
||||
475 0.03278840054
|
||||
476 0.03265757698
|
||||
477 0.03252871663
|
||||
478 0.03236889905
|
||||
479 0.03224167231
|
||||
480 0.03216011999
|
||||
481 0.03192498158
|
||||
482 0.03183675149
|
||||
483 0.03171906574
|
||||
484 0.03156880496
|
||||
485 0.03145563437
|
||||
486 0.03136115044
|
||||
487 0.03122164061
|
||||
488 0.03109933328
|
||||
489 0.03102429087
|
||||
490 0.03095523906
|
||||
491 0.03085009531
|
||||
492 0.03071320709
|
||||
493 0.03055708091
|
||||
494 0.03041588169
|
||||
495 0.03027938644
|
||||
496 0.0301679957
|
||||
497 0.03003869429
|
||||
498 0.02994175927
|
||||
499 0.02983188626
|
||||
|
501
catboost_info/time_left.tsv
Normal file
501
catboost_info/time_left.tsv
Normal file
@@ -0,0 +1,501 @@
|
||||
iter Passed Remaining
|
||||
0 31 15495
|
||||
1 56 13981
|
||||
2 78 13029
|
||||
3 102 12704
|
||||
4 125 12422
|
||||
5 149 12287
|
||||
6 173 12237
|
||||
7 198 12212
|
||||
8 221 12080
|
||||
9 244 11997
|
||||
10 269 11962
|
||||
11 294 11978
|
||||
12 320 12005
|
||||
13 345 11987
|
||||
14 370 11970
|
||||
15 393 11913
|
||||
16 416 11823
|
||||
17 439 11776
|
||||
18 463 11746
|
||||
19 487 11705
|
||||
20 512 11685
|
||||
21 537 11674
|
||||
22 560 11629
|
||||
23 584 11596
|
||||
24 607 11551
|
||||
25 631 11510
|
||||
26 655 11490
|
||||
27 680 11469
|
||||
28 705 11455
|
||||
29 729 11422
|
||||
30 754 11417
|
||||
31 779 11393
|
||||
32 803 11368
|
||||
33 829 11366
|
||||
34 854 11356
|
||||
35 879 11329
|
||||
36 902 11287
|
||||
37 925 11249
|
||||
38 948 11215
|
||||
39 972 11184
|
||||
40 995 11146
|
||||
41 1020 11126
|
||||
42 1045 11116
|
||||
43 1068 11073
|
||||
44 1091 11036
|
||||
45 1113 10994
|
||||
46 1137 10964
|
||||
47 1160 10923
|
||||
48 1185 10913
|
||||
49 1209 10887
|
||||
50 1233 10858
|
||||
51 1258 10841
|
||||
52 1280 10796
|
||||
53 1305 10781
|
||||
54 1329 10756
|
||||
55 1353 10731
|
||||
56 1377 10708
|
||||
57 1398 10660
|
||||
58 1422 10631
|
||||
59 1446 10606
|
||||
60 1468 10569
|
||||
61 1490 10529
|
||||
62 1513 10497
|
||||
63 1537 10473
|
||||
64 1561 10450
|
||||
65 1585 10429
|
||||
66 1610 10406
|
||||
67 1636 10394
|
||||
68 1659 10367
|
||||
69 1683 10338
|
||||
70 1706 10308
|
||||
71 1730 10284
|
||||
72 1754 10262
|
||||
73 1778 10236
|
||||
74 1801 10206
|
||||
75 1825 10186
|
||||
76 1850 10165
|
||||
77 1875 10147
|
||||
78 1899 10123
|
||||
79 1924 10104
|
||||
80 1948 10076
|
||||
81 1971 10049
|
||||
82 1994 10021
|
||||
83 2016 9987
|
||||
84 2041 9967
|
||||
85 2065 9941
|
||||
86 2089 9917
|
||||
87 2113 9893
|
||||
88 2139 9879
|
||||
89 2162 9851
|
||||
90 2186 9828
|
||||
91 2211 9807
|
||||
92 2234 9780
|
||||
93 2258 9756
|
||||
94 2283 9734
|
||||
95 2307 9709
|
||||
96 2332 9690
|
||||
97 2356 9667
|
||||
98 2380 9641
|
||||
99 2404 9616
|
||||
100 2428 9591
|
||||
101 2450 9561
|
||||
102 2474 9536
|
||||
103 2497 9509
|
||||
104 2518 9475
|
||||
105 2542 9449
|
||||
106 2567 9429
|
||||
107 2590 9402
|
||||
108 2613 9375
|
||||
109 2638 9355
|
||||
110 2661 9328
|
||||
111 2685 9304
|
||||
112 2711 9284
|
||||
113 2736 9264
|
||||
114 2764 9254
|
||||
115 2788 9231
|
||||
116 2814 9213
|
||||
117 2840 9195
|
||||
118 2865 9175
|
||||
119 2892 9158
|
||||
120 2916 9135
|
||||
121 2941 9114
|
||||
122 2965 9089
|
||||
123 2990 9068
|
||||
124 3014 9042
|
||||
125 3038 9019
|
||||
126 3062 8993
|
||||
127 3087 8974
|
||||
128 3113 8955
|
||||
129 3137 8929
|
||||
130 3162 8908
|
||||
131 3185 8881
|
||||
132 3208 8852
|
||||
133 3232 8829
|
||||
134 3256 8803
|
||||
135 3278 8775
|
||||
136 3302 8751
|
||||
137 3327 8728
|
||||
138 3352 8706
|
||||
139 3378 8688
|
||||
140 3402 8663
|
||||
141 3426 8639
|
||||
142 3452 8619
|
||||
143 3476 8595
|
||||
144 3501 8571
|
||||
145 3524 8546
|
||||
146 3547 8518
|
||||
147 3571 8494
|
||||
148 3593 8464
|
||||
149 3616 8439
|
||||
150 3641 8416
|
||||
151 3665 8390
|
||||
152 3688 8364
|
||||
153 3711 8339
|
||||
154 3737 8319
|
||||
155 3761 8295
|
||||
156 3785 8270
|
||||
157 3809 8245
|
||||
158 3832 8220
|
||||
159 3856 8195
|
||||
160 3881 8173
|
||||
161 3907 8151
|
||||
162 3931 8128
|
||||
163 3954 8101
|
||||
164 3980 8081
|
||||
165 4004 8057
|
||||
166 4031 8039
|
||||
167 4056 8016
|
||||
168 4080 7992
|
||||
169 4103 7964
|
||||
170 4127 7940
|
||||
171 4152 7918
|
||||
172 4177 7896
|
||||
173 4201 7871
|
||||
174 4224 7846
|
||||
175 4247 7818
|
||||
176 4274 7800
|
||||
177 4299 7778
|
||||
178 4329 7764
|
||||
179 4359 7750
|
||||
180 4386 7730
|
||||
181 4424 7731
|
||||
182 4465 7735
|
||||
183 4500 7728
|
||||
184 4527 7709
|
||||
185 4559 7696
|
||||
186 4586 7676
|
||||
187 4617 7663
|
||||
188 4642 7639
|
||||
189 4667 7615
|
||||
190 4690 7588
|
||||
191 4715 7564
|
||||
192 4738 7538
|
||||
193 4762 7512
|
||||
194 4786 7487
|
||||
195 4809 7460
|
||||
196 4834 7435
|
||||
197 4861 7415
|
||||
198 4888 7393
|
||||
199 4913 7370
|
||||
200 4937 7344
|
||||
201 4959 7316
|
||||
202 4981 7288
|
||||
203 5007 7266
|
||||
204 5030 7238
|
||||
205 5052 7211
|
||||
206 5075 7184
|
||||
207 5100 7159
|
||||
208 5124 7135
|
||||
209 5148 7110
|
||||
210 5174 7087
|
||||
211 5197 7060
|
||||
212 5219 7033
|
||||
213 5245 7010
|
||||
214 5268 6984
|
||||
215 5293 6960
|
||||
216 5319 6936
|
||||
217 5342 6911
|
||||
218 5368 6887
|
||||
219 5392 6863
|
||||
220 5418 6840
|
||||
221 5443 6816
|
||||
222 5469 6793
|
||||
223 5493 6768
|
||||
224 5518 6744
|
||||
225 5542 6720
|
||||
226 5568 6696
|
||||
227 5594 6674
|
||||
228 5618 6648
|
||||
229 5642 6624
|
||||
230 5665 6597
|
||||
231 5692 6575
|
||||
232 5716 6550
|
||||
233 5738 6522
|
||||
234 5762 6497
|
||||
235 5784 6470
|
||||
236 5808 6445
|
||||
237 5830 6418
|
||||
238 5854 6393
|
||||
239 5880 6370
|
||||
240 5905 6346
|
||||
241 5932 6324
|
||||
242 5958 6301
|
||||
243 5983 6277
|
||||
244 6006 6252
|
||||
245 6031 6227
|
||||
246 6055 6202
|
||||
247 6079 6177
|
||||
248 6105 6154
|
||||
249 6130 6130
|
||||
250 6156 6107
|
||||
251 6180 6082
|
||||
252 6206 6059
|
||||
253 6231 6034
|
||||
254 6255 6010
|
||||
255 6280 5986
|
||||
256 6305 5961
|
||||
257 6330 5937
|
||||
258 6354 5912
|
||||
259 6378 5887
|
||||
260 6404 5864
|
||||
261 6429 5840
|
||||
262 6451 5813
|
||||
263 6476 5789
|
||||
264 6503 5766
|
||||
265 6529 5743
|
||||
266 6552 5718
|
||||
267 6576 5693
|
||||
268 6601 5669
|
||||
269 6626 5644
|
||||
270 6650 5619
|
||||
271 6673 5594
|
||||
272 6697 5569
|
||||
273 6723 5545
|
||||
274 6748 5521
|
||||
275 6773 5497
|
||||
276 6797 5472
|
||||
277 6821 5447
|
||||
278 6846 5422
|
||||
279 6870 5398
|
||||
280 6895 5373
|
||||
281 6918 5348
|
||||
282 6943 5324
|
||||
283 6968 5300
|
||||
284 6994 5276
|
||||
285 7018 5251
|
||||
286 7040 5225
|
||||
287 7066 5201
|
||||
288 7089 5176
|
||||
289 7114 5151
|
||||
290 7139 5127
|
||||
291 7162 5102
|
||||
292 7186 5077
|
||||
293 7209 5051
|
||||
294 7232 5026
|
||||
295 7255 5000
|
||||
296 7279 4975
|
||||
297 7302 4950
|
||||
298 7325 4924
|
||||
299 7349 4899
|
||||
300 7372 4873
|
||||
301 7397 4849
|
||||
302 7422 4825
|
||||
303 7445 4800
|
||||
304 7468 4774
|
||||
305 7490 4748
|
||||
306 7512 4722
|
||||
307 7534 4696
|
||||
308 7557 4671
|
||||
309 7580 4646
|
||||
310 7604 4621
|
||||
311 7628 4596
|
||||
312 7650 4570
|
||||
313 7674 4545
|
||||
314 7700 4522
|
||||
315 7723 4497
|
||||
316 7747 4472
|
||||
317 7770 4447
|
||||
318 7795 4422
|
||||
319 7820 4399
|
||||
320 7844 4374
|
||||
321 7867 4349
|
||||
322 7892 4324
|
||||
323 7914 4299
|
||||
324 7937 4274
|
||||
325 7961 4249
|
||||
326 7984 4224
|
||||
327 8008 4199
|
||||
328 8033 4175
|
||||
329 8056 4150
|
||||
330 8080 4125
|
||||
331 8105 4101
|
||||
332 8126 4075
|
||||
333 8149 4050
|
||||
334 8172 4025
|
||||
335 8196 4000
|
||||
336 8218 3975
|
||||
337 8242 3950
|
||||
338 8267 3926
|
||||
339 8288 3900
|
||||
340 8311 3875
|
||||
341 8335 3850
|
||||
342 8356 3825
|
||||
343 8380 3800
|
||||
344 8403 3775
|
||||
345 8427 3750
|
||||
346 8450 3726
|
||||
347 8474 3701
|
||||
348 8498 3676
|
||||
349 8519 3651
|
||||
350 8542 3626
|
||||
351 8565 3601
|
||||
352 8588 3576
|
||||
353 8613 3552
|
||||
354 8636 3527
|
||||
355 8659 3502
|
||||
356 8682 3477
|
||||
357 8705 3452
|
||||
358 8728 3428
|
||||
359 8750 3403
|
||||
360 8776 3379
|
||||
361 8799 3354
|
||||
362 8822 3329
|
||||
363 8846 3305
|
||||
364 8868 3280
|
||||
365 8890 3255
|
||||
366 8913 3230
|
||||
367 8935 3205
|
||||
368 8958 3180
|
||||
369 8982 3155
|
||||
370 9003 3130
|
||||
371 9028 3106
|
||||
372 9051 3081
|
||||
373 9073 3056
|
||||
374 9095 3031
|
||||
375 9117 3006
|
||||
376 9141 2982
|
||||
377 9164 2957
|
||||
378 9186 2932
|
||||
379 9208 2907
|
||||
380 9230 2883
|
||||
381 9256 2859
|
||||
382 9278 2834
|
||||
383 9300 2809
|
||||
384 9324 2785
|
||||
385 9346 2760
|
||||
386 9372 2736
|
||||
387 9394 2711
|
||||
388 9420 2688
|
||||
389 9445 2664
|
||||
390 9467 2639
|
||||
391 9491 2614
|
||||
392 9515 2590
|
||||
393 9539 2566
|
||||
394 9564 2542
|
||||
395 9590 2518
|
||||
396 9614 2494
|
||||
397 9640 2470
|
||||
398 9665 2446
|
||||
399 9689 2422
|
||||
400 9716 2398
|
||||
401 9739 2374
|
||||
402 9761 2349
|
||||
403 9784 2325
|
||||
404 9807 2300
|
||||
405 9830 2276
|
||||
406 9853 2251
|
||||
407 9876 2226
|
||||
408 9900 2202
|
||||
409 9921 2177
|
||||
410 9943 2153
|
||||
411 9965 2128
|
||||
412 9987 2103
|
||||
413 10008 2079
|
||||
414 10030 2054
|
||||
415 10055 2030
|
||||
416 10081 2006
|
||||
417 10105 1982
|
||||
418 10129 1958
|
||||
419 10156 1934
|
||||
420 10180 1910
|
||||
421 10206 1886
|
||||
422 10229 1862
|
||||
423 10252 1837
|
||||
424 10274 1813
|
||||
425 10295 1788
|
||||
426 10318 1764
|
||||
427 10340 1739
|
||||
428 10364 1715
|
||||
429 10388 1691
|
||||
430 10410 1666
|
||||
431 10434 1642
|
||||
432 10458 1618
|
||||
433 10481 1594
|
||||
434 10507 1570
|
||||
435 10531 1545
|
||||
436 10555 1521
|
||||
437 10579 1497
|
||||
438 10601 1473
|
||||
439 10623 1448
|
||||
440 10645 1424
|
||||
441 10669 1400
|
||||
442 10692 1375
|
||||
443 10714 1351
|
||||
444 10736 1327
|
||||
445 10759 1302
|
||||
446 10783 1278
|
||||
447 10808 1254
|
||||
448 10829 1230
|
||||
449 10852 1205
|
||||
450 10874 1181
|
||||
451 10897 1157
|
||||
452 10921 1133
|
||||
453 10943 1108
|
||||
454 10965 1084
|
||||
455 10988 1060
|
||||
456 11013 1036
|
||||
457 11035 1012
|
||||
458 11058 987
|
||||
459 11081 963
|
||||
460 11105 939
|
||||
461 11128 915
|
||||
462 11150 891
|
||||
463 11173 866
|
||||
464 11197 842
|
||||
465 11220 818
|
||||
466 11243 794
|
||||
467 11267 770
|
||||
468 11289 746
|
||||
469 11314 722
|
||||
470 11339 698
|
||||
471 11361 674
|
||||
472 11388 650
|
||||
473 11411 625
|
||||
474 11436 601
|
||||
475 11460 577
|
||||
476 11482 553
|
||||
477 11506 529
|
||||
478 11530 505
|
||||
479 11553 481
|
||||
480 11575 457
|
||||
481 11599 433
|
||||
482 11622 409
|
||||
483 11645 384
|
||||
484 11670 360
|
||||
485 11693 336
|
||||
486 11714 312
|
||||
487 11739 288
|
||||
488 11762 264
|
||||
489 11783 240
|
||||
490 11806 216
|
||||
491 11829 192
|
||||
492 11853 168
|
||||
493 11877 144
|
||||
494 11900 120
|
||||
495 11924 96
|
||||
496 11947 72
|
||||
497 11970 48
|
||||
498 11992 24
|
||||
499 12015 0
|
||||
|
5
lgbm_vs_cat_kmeans_smote_k10_results.csv
Normal file
5
lgbm_vs_cat_kmeans_smote_k10_results.csv
Normal file
@@ -0,0 +1,5 @@
|
||||
model,stage,accuracy,f1_macro,f2_macro,recall_macro,precision_macro,f1_class0,f1_class1,f2_class0,f2_class1,recall_class0,recall_class1,precision_class0,precision_class1,TP,TN,FP,FN
|
||||
CatBoost_balanced,train,0.9843784049402589,0.8696686267343388,0.8824472728294012,0.8916952848998795,0.8508242781484853,0.9919396338322237,0.7473976196364541,0.9908276010500254,0.7740669446087769,0.9900881006639566,0.7933024691358025,0.9938004847319636,0.7078480715650071,789,26898,140,19
|
||||
CatBoost_balanced,test,0.9802604802604803,0.8348421298822796,0.8461546793313885,0.8541662696976049,0.8176680164072361,0.9898162729658793,0.6798679867986799,0.988757446094471,0.703551912568306,0.9880528191154894,0.7202797202797203,0.991586032814472,0.64375,103,4714,57,40
|
||||
LGBM_KMEANS_SMOTE,train,0.9883286128479746,0.8784419356817057,0.8436008106620193,0.8240767336379762,0.9582821430574249,0.9940169232360254,0.7628669481273861,0.9966698960611392,0.6905317252628993,0.9984466771524954,0.6497067901234568,0.9896275269971563,0.9269367591176938,775,27036,2,33
|
||||
LGBM_KMEANS_SMOTE,test,0.9865689865689866,0.8543196878009516,0.8121616449258658,0.7895809912158687,0.9600745182511498,0.9931221342225928,0.7155172413793104,0.9964866786565728,0.6278366111951589,0.9987424020121568,0.5804195804195804,0.9875647668393782,0.9325842696629213,83,4765,6,60
|
||||
|
497
runner.py
497
runner.py
@@ -1,14 +1,14 @@
|
||||
import pandas
|
||||
from catboost import CatBoostClassifier
|
||||
from imblearn.ensemble import BalancedRandomForestClassifier
|
||||
# from imblearn.ensemble import BalancedRandomForestClassifier
|
||||
from lightgbm import LGBMClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
# from sklearn.ensemble import RandomForestClassifier
|
||||
# from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
from xgboost import XGBClassifier
|
||||
# from xgboost import XGBClassifier
|
||||
|
||||
from custom_models.LGBMFocalWrapper import LGBMFocalWrapper
|
||||
# from custom_models.LGBMFocalWrapper import LGBMFocalWrapper
|
||||
from train import test_model, train_model_with_kfold
|
||||
|
||||
data_frame = pandas.read_csv("./data/Ketamin_icp_cleaned.csv")
|
||||
@@ -28,33 +28,266 @@ pos = sum(y_train == 1)
|
||||
scale_pos = neg / pos if pos > 0 else 1.0
|
||||
|
||||
models = [
|
||||
# {
|
||||
# "name": "LGBM_FOCAL_LOSS",
|
||||
# "model": LGBMFocalWrapper(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# random_state=42,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "kmeans",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_SMOTE",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "smote",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_KMEANS_SMOTE",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "kmeans",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_SVM_SMOTE",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "svm",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_BORDERLINE_SMOTE",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "borderline",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_ADASYN_SMOTE",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "adasyn",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_Balanced",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# class_weight="balanced",
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_DART",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# boosting_type="dart",
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "kmeans",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_GOSS",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# boosting_type="goss",
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "kmeans",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_RF",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# boosting_type="rf",
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "kmeans",
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_scale_pos_weight",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# scale_pos_weight=scale_pos,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_is_unbalance",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# is_unbalance=True,
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
# {
|
||||
# "name": "LGBM_DART",
|
||||
# "model": LGBMClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=-1,
|
||||
# subsample=0.8,
|
||||
# colsample_bytree=0.8,
|
||||
# boosting_type="dart",
|
||||
# random_state=42,
|
||||
# verbose=-1,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": True,
|
||||
# "smote_method": "kmeans",
|
||||
# },
|
||||
# {
|
||||
# "name": "XGB_scale_pos_weight",
|
||||
# "model": XGBClassifier(
|
||||
# n_estimators=500,
|
||||
# learning_rate=0.05,
|
||||
# max_depth=6,
|
||||
# scale_pos_weight=scale_pos,
|
||||
# random_state=42,
|
||||
# n_jobs=-1,
|
||||
# use_label_encoder=False,
|
||||
# eval_metric="logloss",
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
# {
|
||||
# "name": "CatBoost_balanced",
|
||||
# "model": CatBoostClassifier(
|
||||
# iterations=500,
|
||||
# learning_rate=0.05,
|
||||
# depth=6,
|
||||
# class_weights=[1, scale_pos],
|
||||
# random_state=42,
|
||||
# verbose=0,
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
# {
|
||||
# "name": "RandomForest_balanced",
|
||||
# "model": RandomForestClassifier(
|
||||
# n_estimators=500,
|
||||
# max_depth=None,
|
||||
# class_weight="balanced",
|
||||
# random_state=42,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
# {
|
||||
# "name": "BalancedRandomForest",
|
||||
# "model": BalancedRandomForestClassifier(
|
||||
# n_estimators=500,
|
||||
# max_depth=None,
|
||||
# random_state=42,
|
||||
# n_jobs=-1,
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
# {
|
||||
# "name": "LogisticRegression_balanced",
|
||||
# "model": LogisticRegression(
|
||||
# max_iter=1000,
|
||||
# class_weight="balanced",
|
||||
# solver="liblinear",
|
||||
# random_state=42,
|
||||
# ),
|
||||
# "smote": False,
|
||||
# },
|
||||
{
|
||||
"name": "LGBM_FOCAL_LOSS",
|
||||
"model": LGBMFocalWrapper(
|
||||
n_estimators=500,
|
||||
"name": "CatBoost_balanced",
|
||||
"model": CatBoostClassifier(
|
||||
iterations=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
depth=6,
|
||||
class_weights=[1, scale_pos],
|
||||
random_state=42,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "kmeans",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_SMOTE",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
verbose=0,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "smote",
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "LGBM_KMEANS_SMOTE",
|
||||
@@ -70,212 +303,8 @@ models = [
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "kmeans",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_SVM_SMOTE",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "svm",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_BORDERLINE_SMOTE",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "borderline",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_ADASYN_SMOTE",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "adasyn",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_Balanced",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
class_weight="balanced",
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "LGBM_DART",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
boosting_type="dart",
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "kmeans",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_GOSS",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
boosting_type="goss",
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "kmeans",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_RF",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
boosting_type="rf",
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "kmeans",
|
||||
},
|
||||
{
|
||||
"name": "LGBM_scale_pos_weight",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
scale_pos_weight=scale_pos,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "LGBM_is_unbalance",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
is_unbalance=True,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "LGBM_DART",
|
||||
"model": LGBMClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=-1,
|
||||
subsample=0.8,
|
||||
colsample_bytree=0.8,
|
||||
boosting_type="dart",
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": True,
|
||||
"smote_method": "kmeans",
|
||||
},
|
||||
{
|
||||
"name": "XGB_scale_pos_weight",
|
||||
"model": XGBClassifier(
|
||||
n_estimators=500,
|
||||
learning_rate=0.05,
|
||||
max_depth=6,
|
||||
scale_pos_weight=scale_pos,
|
||||
random_state=42,
|
||||
n_jobs=-1,
|
||||
use_label_encoder=False,
|
||||
eval_metric="logloss",
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "CatBoost_balanced",
|
||||
"model": CatBoostClassifier(
|
||||
iterations=500,
|
||||
learning_rate=0.05,
|
||||
depth=6,
|
||||
class_weights=[1, scale_pos],
|
||||
random_state=42,
|
||||
verbose=0,
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "RandomForest_balanced",
|
||||
"model": RandomForestClassifier(
|
||||
n_estimators=500,
|
||||
max_depth=None,
|
||||
class_weight="balanced",
|
||||
random_state=42,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "BalancedRandomForest",
|
||||
"model": BalancedRandomForestClassifier(
|
||||
n_estimators=500,
|
||||
max_depth=None,
|
||||
random_state=42,
|
||||
n_jobs=-1,
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
{
|
||||
"name": "LogisticRegression_balanced",
|
||||
"model": LogisticRegression(
|
||||
max_iter=1000,
|
||||
class_weight="balanced",
|
||||
solver="liblinear",
|
||||
random_state=42,
|
||||
),
|
||||
"smote": False,
|
||||
},
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
|
||||
@@ -308,7 +337,7 @@ for m in models:
|
||||
)
|
||||
|
||||
results_df = pandas.DataFrame(results_to_save)
|
||||
csv_file = "lightgbm_results.csv"
|
||||
csv_file = "lgbm_vs_cat_kmeans_smote_k10_results.csv"
|
||||
|
||||
try:
|
||||
results_df.to_csv(csv_file, mode="a", index=False, header=False)
|
||||
|
||||
Reference in New Issue
Block a user