editing readme.md

This commit is contained in:
2025-12-01 00:10:33 +01:00
parent 1a2e9cfb95
commit f6a86cfbe9
9 changed files with 1789 additions and 237 deletions

View File

@@ -88,12 +88,24 @@ We are dealing with an exteremly imbalance dataset related to electrocardiogram
#### Costly: Healthy → predicted sick : high precision score or low FP
## STEP 5:
Current results taken:
| model | stage | accuracy | f1_macro | f2_macro | recall_macro | precision_macro | f1_class0 | f1_class1 | f2_class0 | f2_class1 | recall_class0 | recall_class1 | precision_class0 | precision_class1 | TP | TN | FP | FN |
|-----------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----|-------|----|----|
| CatBoost_balanced | train | 0.9843784049402589 | 0.8696686267343388 | 0.8824472728294012 | 0.8916952848998795 | 0.8508242781484853 | 0.9919396338322237 | 0.7473976196364541 | 0.9908276010500254 | 0.7740669446087769 | 0.9900881006639566 | 0.7933024691358025 | 0.9938004847319636 | 0.7078480715650071 | 789 | 26898 | 140 | 19 |
| CatBoost_balanced | test | 0.9802604802604803 | 0.8348421298822796 | 0.8461546793313885 | 0.8541662696976049 | 0.8176680164072361 | 0.9898162729658793 | 0.6798679867986799 | 0.988757446094471 | 0.703551912568306 | 0.9880528191154894 | 0.7202797202797203 | 0.991586032814472 | 0.64375 | 103 | 4714 | 57 | 40 |
| LGBM_KMEANS_SMOTE | train | 0.9883286128479746 | 0.8784419356817057 | 0.8436008106620193 | 0.8240767336379762 | 0.9582821430574249 | 0.9940169232360254 | 0.7628669481273861 | 0.9966698960611392 | 0.6905317252628993 | 0.9984466771524954 | 0.6497067901234568 | 0.9896275269971563 | 0.9269367591176938 | 775 | 27036 | 2 | 33 |
| LGBM_KMEANS_SMOTE | test | 0.9865689865689866 | 0.8543196878009516 | 0.8121616449258658 | 0.7895809912158687 | 0.9600745182511498 | 0.9931221342225928 | 0.7155172413793104 | 0.9964866786565728 | 0.6278366111951589 | 0.9987424020121568 | 0.5804195804195804 | 0.9875647668393782 | 0.9325842696629213 | 83 | 4765 | 6 | 60 |
## next steps:
```
✅ 1. Stratified K-fold only apply on train.
🗹 2. train LGBM model using KMEANS_SMOTE with k_neighbors=10
🗹 3. train Cat_boost using KMEANS_SMOTE with k_neighbors=10
🗹 2. train LGBM model using KMEANS_SMOTE with k_neighbors=10 (fine-tune remained)
🗹 3. train Cat_boost using KMEANS_SMOTE with k_neighbors=10 (fine-tune remained)
🗹 4. implement proposed methods of this article : https://1drv.ms/b/c/ab2a38fe5c318317/IQBEDsSFcYj6R6AMtOnh0X6DAZUlFqAYq19WT8nTeXomFwg
🗹 5. compare proposed model with SMOTE vs oversampling balancing method
```

Binary file not shown.

View File

@@ -0,0 +1,504 @@
{
"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"Logloss"}],"launch_mode":"Train","parameters":"","iteration_count":500,"learn_sets":["learn"],"name":"experiment"},
"iterations":[
{"learn":[0.6505594592],"iteration":0,"passed_time":0.03105403676,"remaining_time":15.49596434},
{"learn":[0.6199570308],"iteration":1,"passed_time":0.05615028788,"remaining_time":13.98142168},
{"learn":[0.5883839207],"iteration":2,"passed_time":0.07864994549,"remaining_time":13.0296743},
{"learn":[0.5581651741],"iteration":3,"passed_time":0.1024556292,"remaining_time":12.70449802},
{"learn":[0.5343091005],"iteration":4,"passed_time":0.1254755472,"remaining_time":12.42207917},
{"learn":[0.5070162395],"iteration":5,"passed_time":0.1492401884,"remaining_time":12.28744218},
{"learn":[0.4927200876],"iteration":6,"passed_time":0.1737518445,"remaining_time":12.23709419},
{"learn":[0.4682830337],"iteration":7,"passed_time":0.1985714651,"remaining_time":12.2121451},
{"learn":[0.4539977069],"iteration":8,"passed_time":0.22143513,"remaining_time":12.08051653},
{"learn":[0.4430063307],"iteration":9,"passed_time":0.2448470975,"remaining_time":11.99750778},
{"learn":[0.4260619942],"iteration":10,"passed_time":0.26909804,"remaining_time":11.96263105},
{"learn":[0.4123586166],"iteration":11,"passed_time":0.2945448815,"remaining_time":11.97815851},
{"learn":[0.3986592355],"iteration":12,"passed_time":0.3204721075,"remaining_time":12.00537818},
{"learn":[0.3898627233],"iteration":13,"passed_time":0.3453221871,"remaining_time":11.98761307},
{"learn":[0.3805898091],"iteration":14,"passed_time":0.3702246843,"remaining_time":11.97059813},
{"learn":[0.3714802352],"iteration":15,"passed_time":0.3938229889,"remaining_time":11.91314541},
{"learn":[0.3635447217],"iteration":16,"passed_time":0.4161642267,"remaining_time":11.82396009},
{"learn":[0.3579714002],"iteration":17,"passed_time":0.4397888234,"remaining_time":11.77656738},
{"learn":[0.3518505418],"iteration":18,"passed_time":0.4639988485,"remaining_time":11.74649716},
{"learn":[0.3469646375],"iteration":19,"passed_time":0.4877384475,"remaining_time":11.70572274},
{"learn":[0.342350397],"iteration":20,"passed_time":0.5123099798,"remaining_time":11.68554668},
{"learn":[0.3380417078],"iteration":21,"passed_time":0.5373129791,"remaining_time":11.67434564},
{"learn":[0.3336186075],"iteration":22,"passed_time":0.5607558639,"remaining_time":11.629589},
{"learn":[0.3298240945],"iteration":23,"passed_time":0.5846985086,"remaining_time":11.59652042},
{"learn":[0.3257224063],"iteration":24,"passed_time":0.6079887237,"remaining_time":11.55178575},
{"learn":[0.320477237],"iteration":25,"passed_time":0.6313950661,"remaining_time":11.51081774},
{"learn":[0.3169914291],"iteration":26,"passed_time":0.6559140557,"remaining_time":11.49064253},
{"learn":[0.3120681587],"iteration":27,"passed_time":0.6803675439,"remaining_time":11.46905288},
{"learn":[0.3094016032],"iteration":28,"passed_time":0.7053136254,"remaining_time":11.45526612},
{"learn":[0.304723249],"iteration":29,"passed_time":0.7290930169,"remaining_time":11.42245726},
{"learn":[0.3011723022],"iteration":30,"passed_time":0.7546858196,"remaining_time":11.41766611},
{"learn":[0.2987501309],"iteration":31,"passed_time":0.7790562646,"remaining_time":11.39369787},
{"learn":[0.2972378553],"iteration":32,"passed_time":0.8033529164,"remaining_time":11.36866097},
{"learn":[0.2949280448],"iteration":33,"passed_time":0.8292874343,"remaining_time":11.36611601},
{"learn":[0.2922181334],"iteration":34,"passed_time":0.8548019437,"remaining_time":11.3566544},
{"learn":[0.2902886884],"iteration":35,"passed_time":0.8790401361,"remaining_time":11.32985064},
{"learn":[0.2868615526],"iteration":36,"passed_time":0.9020597207,"remaining_time":11.28793651},
{"learn":[0.2855207315],"iteration":37,"passed_time":0.9252963514,"remaining_time":11.24965564},
{"learn":[0.2829764561],"iteration":38,"passed_time":0.9488582802,"remaining_time":11.21599147},
{"learn":[0.2790864362],"iteration":39,"passed_time":0.9725538367,"remaining_time":11.18436912},
{"learn":[0.2771876663],"iteration":40,"passed_time":0.9956992988,"remaining_time":11.14697508},
{"learn":[0.274396297],"iteration":41,"passed_time":1.020353624,"remaining_time":11.12671333},
{"learn":[0.269695974],"iteration":42,"passed_time":1.045984095,"remaining_time":11.11662166},
{"learn":[0.2674762223],"iteration":43,"passed_time":1.068509211,"remaining_time":11.07364091},
{"learn":[0.266351576],"iteration":44,"passed_time":1.091556296,"remaining_time":11.036847},
{"learn":[0.2645715787],"iteration":45,"passed_time":1.113948243,"remaining_time":10.99418484},
{"learn":[0.2629624082],"iteration":46,"passed_time":1.137601257,"remaining_time":10.96453978},
{"learn":[0.2622682603],"iteration":47,"passed_time":1.160066498,"remaining_time":10.92395952},
{"learn":[0.2610050288],"iteration":48,"passed_time":1.185722802,"remaining_time":10.91348946},
{"learn":[0.2591143021],"iteration":49,"passed_time":1.209731531,"remaining_time":10.88758378},
{"learn":[0.2572681325],"iteration":50,"passed_time":1.233362378,"remaining_time":10.85842564},
{"learn":[0.2562124872],"iteration":51,"passed_time":1.258443962,"remaining_time":10.84197875},
{"learn":[0.2551455095],"iteration":52,"passed_time":1.280135895,"remaining_time":10.79661783},
{"learn":[0.254392464],"iteration":53,"passed_time":1.305388733,"remaining_time":10.78154398},
{"learn":[0.2528077948],"iteration":54,"passed_time":1.329479755,"remaining_time":10.75669984},
{"learn":[0.2513889396],"iteration":55,"passed_time":1.353478943,"remaining_time":10.73115448},
{"learn":[0.2506161354],"iteration":56,"passed_time":1.377812096,"remaining_time":10.70825892},
{"learn":[0.2494460772],"iteration":57,"passed_time":1.398895142,"remaining_time":10.66054573},
{"learn":[0.2485459323],"iteration":58,"passed_time":1.422329859,"remaining_time":10.63131302},
{"learn":[0.2469745034],"iteration":59,"passed_time":1.446372548,"remaining_time":10.60673202},
{"learn":[0.2459537181],"iteration":60,"passed_time":1.468595408,"remaining_time":10.56907187},
{"learn":[0.2453627957],"iteration":61,"passed_time":1.490412886,"remaining_time":10.52904587},
{"learn":[0.2433912548],"iteration":62,"passed_time":1.513328343,"remaining_time":10.49721406},
{"learn":[0.2422951861],"iteration":63,"passed_time":1.537322947,"remaining_time":10.47301258},
{"learn":[0.2400155969],"iteration":64,"passed_time":1.561566473,"remaining_time":10.45048332},
{"learn":[0.2390895846],"iteration":65,"passed_time":1.585986169,"remaining_time":10.42906057},
{"learn":[0.2375225747],"iteration":66,"passed_time":1.610181194,"remaining_time":10.40609637},
{"learn":[0.2362798202],"iteration":67,"passed_time":1.636099003,"remaining_time":10.39404073},
{"learn":[0.2348801591],"iteration":68,"passed_time":1.659691516,"remaining_time":10.3670586},
{"learn":[0.234274226],"iteration":69,"passed_time":1.683029898,"remaining_time":10.33861223},
{"learn":[0.2331038168],"iteration":70,"passed_time":1.706093401,"remaining_time":10.30864886},
{"learn":[0.2323492401],"iteration":71,"passed_time":1.730072838,"remaining_time":10.28432187},
{"learn":[0.2316465084],"iteration":72,"passed_time":1.754562494,"remaining_time":10.26298883},
{"learn":[0.2299897258],"iteration":73,"passed_time":1.778226924,"remaining_time":10.23681986},
{"learn":[0.2292043653],"iteration":74,"passed_time":1.801190591,"remaining_time":10.20674668},
{"learn":[0.2281960167],"iteration":75,"passed_time":1.825801874,"remaining_time":10.18605256},
{"learn":[0.2271872251],"iteration":76,"passed_time":1.850385615,"remaining_time":10.16510539},
{"learn":[0.2266875911],"iteration":77,"passed_time":1.875686287,"remaining_time":10.14794376},
{"learn":[0.2256819597],"iteration":78,"passed_time":1.899642849,"remaining_time":10.12341316},
{"learn":[0.2248734679],"iteration":79,"passed_time":1.924752267,"remaining_time":10.1049494},
{"learn":[0.2235711296],"iteration":80,"passed_time":1.94802419,"remaining_time":10.07681649},
{"learn":[0.2225638016],"iteration":81,"passed_time":1.971505867,"remaining_time":10.04987137},
{"learn":[0.2216924707],"iteration":82,"passed_time":1.994628121,"remaining_time":10.02120393},
{"learn":[0.2206671726],"iteration":83,"passed_time":2.016718978,"remaining_time":9.987560654},
{"learn":[0.2198053434],"iteration":84,"passed_time":2.041628101,"remaining_time":9.967948962},
{"learn":[0.2180945036],"iteration":85,"passed_time":2.065207905,"remaining_time":9.941814798},
{"learn":[0.2174988086],"iteration":86,"passed_time":2.089190717,"remaining_time":9.917652484},
{"learn":[0.2167547953],"iteration":87,"passed_time":2.113248156,"remaining_time":9.893843638},
{"learn":[0.2146076599],"iteration":88,"passed_time":2.139377261,"remaining_time":9.879596115},
{"learn":[0.21355014],"iteration":89,"passed_time":2.162607891,"remaining_time":9.851880394},
{"learn":[0.2120397433],"iteration":90,"passed_time":2.186820333,"remaining_time":9.828676003},
{"learn":[0.2113293421],"iteration":91,"passed_time":2.211540868,"remaining_time":9.807702982},
{"learn":[0.2106641679],"iteration":92,"passed_time":2.2348375,"remaining_time":9.780417878},
{"learn":[0.2103582924],"iteration":93,"passed_time":2.258997524,"remaining_time":9.756946755},
{"learn":[0.2100276146],"iteration":94,"passed_time":2.283395637,"remaining_time":9.734476135},
{"learn":[0.2094603169],"iteration":95,"passed_time":2.307091443,"remaining_time":9.709009823},
{"learn":[0.208520409],"iteration":96,"passed_time":2.332533326,"remaining_time":9.690834334},
{"learn":[0.2081060903],"iteration":97,"passed_time":2.35668535,"remaining_time":9.667219497},
{"learn":[0.2075147098],"iteration":98,"passed_time":2.380415491,"remaining_time":9.641884967},
{"learn":[0.2063558526],"iteration":99,"passed_time":2.404065671,"remaining_time":9.616262685},
{"learn":[0.2055862444],"iteration":100,"passed_time":2.428021233,"remaining_time":9.59188586},
{"learn":[0.204938244],"iteration":101,"passed_time":2.450523349,"remaining_time":9.561846008},
{"learn":[0.2041199746],"iteration":102,"passed_time":2.474099945,"remaining_time":9.536093961},
{"learn":[0.20357568],"iteration":103,"passed_time":2.497499162,"remaining_time":9.509708347},
{"learn":[0.2029479812],"iteration":104,"passed_time":2.518867297,"remaining_time":9.475738879},
{"learn":[0.2024233181],"iteration":105,"passed_time":2.542382266,"remaining_time":9.449986915},
{"learn":[0.2018709313],"iteration":106,"passed_time":2.567375765,"remaining_time":9.429707251},
{"learn":[0.2007005578],"iteration":107,"passed_time":2.590388183,"remaining_time":9.402149702},
{"learn":[0.1995046398],"iteration":108,"passed_time":2.613561688,"remaining_time":9.375253394},
{"learn":[0.1988329196],"iteration":109,"passed_time":2.638674064,"remaining_time":9.355298955},
{"learn":[0.1980569761],"iteration":110,"passed_time":2.661896361,"remaining_time":9.328627788},
{"learn":[0.197332958],"iteration":111,"passed_time":2.685906882,"remaining_time":9.304748842},
{"learn":[0.1968751476],"iteration":112,"passed_time":2.711071926,"remaining_time":9.284821554},
{"learn":[0.196281669],"iteration":113,"passed_time":2.73628168,"remaining_time":9.264953758},
{"learn":[0.1954746084],"iteration":114,"passed_time":2.764253363,"remaining_time":9.254239521},
{"learn":[0.195100344],"iteration":115,"passed_time":2.788790562,"remaining_time":9.231858411},
{"learn":[0.1947434834],"iteration":116,"passed_time":2.81466212,"remaining_time":9.213808478},
{"learn":[0.1940842572],"iteration":117,"passed_time":2.840468552,"remaining_time":9.195415143},
{"learn":[0.193016598],"iteration":118,"passed_time":2.865915977,"remaining_time":9.175747791},
{"learn":[0.192326827],"iteration":119,"passed_time":2.892278503,"remaining_time":9.158881927},
{"learn":[0.1919624319],"iteration":120,"passed_time":2.916626073,"remaining_time":9.135547781},
{"learn":[0.1913875196],"iteration":121,"passed_time":2.941569321,"remaining_time":9.11404265},
{"learn":[0.190963803],"iteration":122,"passed_time":2.965608759,"remaining_time":9.0897114},
{"learn":[0.1906330299],"iteration":123,"passed_time":2.990774553,"remaining_time":9.068800258},
{"learn":[0.1902243409],"iteration":124,"passed_time":3.014306065,"remaining_time":9.042918194},
{"learn":[0.1896069044],"iteration":125,"passed_time":3.038773387,"remaining_time":9.019851164},
{"learn":[0.1890660639],"iteration":126,"passed_time":3.062043601,"remaining_time":8.993246168},
{"learn":[0.1882835195],"iteration":127,"passed_time":3.087900243,"remaining_time":8.97421008},
{"learn":[0.1875493514],"iteration":128,"passed_time":3.113845219,"remaining_time":8.955322297},
{"learn":[0.1869075794],"iteration":129,"passed_time":3.137285562,"remaining_time":8.929197369},
{"learn":[0.1864064876],"iteration":130,"passed_time":3.16263411,"remaining_time":8.908488447},
{"learn":[0.1861340119],"iteration":131,"passed_time":3.185744155,"remaining_time":8.881468553},
{"learn":[0.1856804614],"iteration":132,"passed_time":3.208130727,"remaining_time":8.852511103},
{"learn":[0.1851377629],"iteration":133,"passed_time":3.232801094,"remaining_time":8.829889556},
{"learn":[0.1843016898],"iteration":134,"passed_time":3.256082726,"remaining_time":8.803482926},
{"learn":[0.1835527038],"iteration":135,"passed_time":3.278891223,"remaining_time":8.775855921},
{"learn":[0.1830184334],"iteration":136,"passed_time":3.302763366,"remaining_time":8.751117533},
{"learn":[0.1823413379],"iteration":137,"passed_time":3.327347232,"remaining_time":8.728258682},
{"learn":[0.1818241981],"iteration":138,"passed_time":3.352467526,"remaining_time":8.706768178},
{"learn":[0.1810634762],"iteration":139,"passed_time":3.378940304,"remaining_time":8.688703639},
{"learn":[0.1804669956],"iteration":140,"passed_time":3.402716196,"remaining_time":8.663653292},
{"learn":[0.1800037734],"iteration":141,"passed_time":3.426736425,"remaining_time":8.639236903},
{"learn":[0.179229966],"iteration":142,"passed_time":3.452764778,"remaining_time":8.619839342},
{"learn":[0.1784811687],"iteration":143,"passed_time":3.476910969,"remaining_time":8.595696562},
{"learn":[0.1776685278],"iteration":144,"passed_time":3.501042451,"remaining_time":8.571517724},
{"learn":[0.1770219582],"iteration":145,"passed_time":3.524742882,"remaining_time":8.546294386},
{"learn":[0.1766783294],"iteration":146,"passed_time":3.547484211,"remaining_time":8.518788616},
{"learn":[0.1762438721],"iteration":147,"passed_time":3.57135048,"remaining_time":8.494022762},
{"learn":[0.1758425501],"iteration":148,"passed_time":3.59339267,"remaining_time":8.464971994},
{"learn":[0.1749885611],"iteration":149,"passed_time":3.616867722,"remaining_time":8.439358018},
{"learn":[0.1738557684],"iteration":150,"passed_time":3.64147013,"remaining_time":8.416377982},
{"learn":[0.1732595564],"iteration":151,"passed_time":3.665010475,"remaining_time":8.390945034},
{"learn":[0.1727113418],"iteration":152,"passed_time":3.688104561,"remaining_time":8.364524723},
{"learn":[0.1719918768],"iteration":153,"passed_time":3.71185641,"remaining_time":8.339625441},
{"learn":[0.1714453538],"iteration":154,"passed_time":3.737889555,"remaining_time":8.319818687},
{"learn":[0.1709170131],"iteration":155,"passed_time":3.761972786,"remaining_time":8.295632297},
{"learn":[0.1700539884],"iteration":156,"passed_time":3.78548638,"remaining_time":8.270202729},
{"learn":[0.1696775312],"iteration":157,"passed_time":3.809217854,"remaining_time":8.245269026},
{"learn":[0.169185393],"iteration":158,"passed_time":3.832797158,"remaining_time":8.220024095},
{"learn":[0.1684625546],"iteration":159,"passed_time":3.856642093,"remaining_time":8.195364448},
{"learn":[0.1678449693],"iteration":160,"passed_time":3.881884639,"remaining_time":8.173657717},
{"learn":[0.1674127808],"iteration":161,"passed_time":3.907000432,"remaining_time":8.151642876},
{"learn":[0.1669160497],"iteration":162,"passed_time":3.931548214,"remaining_time":8.128415632},
{"learn":[0.1666650109],"iteration":163,"passed_time":3.954377045,"remaining_time":8.10165053},
{"learn":[0.1661196582],"iteration":164,"passed_time":3.980562901,"remaining_time":8.08174892},
{"learn":[0.1656309243],"iteration":165,"passed_time":4.004673966,"remaining_time":8.057597015},
{"learn":[0.1650005575],"iteration":166,"passed_time":4.031946343,"remaining_time":8.039749296},
{"learn":[0.1630925189],"iteration":167,"passed_time":4.056403165,"remaining_time":8.016225303},
{"learn":[0.1627982599],"iteration":168,"passed_time":4.080694317,"remaining_time":7.992365792},
{"learn":[0.1622984813],"iteration":169,"passed_time":4.103059305,"remaining_time":7.96476218},
{"learn":[0.1617063039],"iteration":170,"passed_time":4.127242621,"remaining_time":7.94071826},
{"learn":[0.161085537],"iteration":171,"passed_time":4.15240079,"remaining_time":7.91853174},
{"learn":[0.1605654299],"iteration":172,"passed_time":4.177543792,"remaining_time":7.896282197},
{"learn":[0.1600969242],"iteration":173,"passed_time":4.201120555,"remaining_time":7.871064948},
{"learn":[0.1595581484],"iteration":174,"passed_time":4.224817861,"remaining_time":7.846090314},
{"learn":[0.1591783098],"iteration":175,"passed_time":4.247270893,"remaining_time":7.818839599},
{"learn":[0.1586366754],"iteration":176,"passed_time":4.274704149,"remaining_time":7.8007313},
{"learn":[0.1581714089],"iteration":177,"passed_time":4.299976404,"remaining_time":7.778609},
{"learn":[0.1575630275],"iteration":178,"passed_time":4.329490118,"remaining_time":7.764057698},
{"learn":[0.1568621859],"iteration":179,"passed_time":4.35938259,"remaining_time":7.750013493},
{"learn":[0.1563319754],"iteration":180,"passed_time":4.386468548,"remaining_time":7.730847882},
{"learn":[0.1557732651],"iteration":181,"passed_time":4.424954691,"remaining_time":7.73151424},
{"learn":[0.15493488],"iteration":182,"passed_time":4.465823049,"remaining_time":7.73587927},
{"learn":[0.1542286414],"iteration":183,"passed_time":4.500220611,"remaining_time":7.728639744},
{"learn":[0.1534099833],"iteration":184,"passed_time":4.527682992,"remaining_time":7.709298068},
{"learn":[0.1522403016],"iteration":185,"passed_time":4.559108703,"remaining_time":7.696559854},
{"learn":[0.1517637469],"iteration":186,"passed_time":4.586250537,"remaining_time":7.676451433},
{"learn":[0.1514181606],"iteration":187,"passed_time":4.617491244,"remaining_time":7.663070575},
{"learn":[0.1511232407],"iteration":188,"passed_time":4.642788374,"remaining_time":7.639720552},
{"learn":[0.1505915384],"iteration":189,"passed_time":4.667452033,"remaining_time":7.615316475},
{"learn":[0.1501060085],"iteration":190,"passed_time":4.690511869,"remaining_time":7.588315013},
{"learn":[0.1493588672],"iteration":191,"passed_time":4.715714164,"remaining_time":7.564791471},
{"learn":[0.1485757524],"iteration":192,"passed_time":4.73898017,"remaining_time":7.538170529},
{"learn":[0.1479396924],"iteration":193,"passed_time":4.762746353,"remaining_time":7.512373113},
{"learn":[0.1476450754],"iteration":194,"passed_time":4.786778958,"remaining_time":7.487013241},
{"learn":[0.1472334844],"iteration":195,"passed_time":4.809902503,"remaining_time":7.460256943},
{"learn":[0.1466508463],"iteration":196,"passed_time":4.834416951,"remaining_time":7.435676833},
{"learn":[0.1459767298],"iteration":197,"passed_time":4.861952084,"remaining_time":7.415704693},
{"learn":[0.1449640915],"iteration":198,"passed_time":4.888074439,"remaining_time":7.393519628},
{"learn":[0.1442547887],"iteration":199,"passed_time":4.913456779,"remaining_time":7.370185168},
{"learn":[0.1435485115],"iteration":200,"passed_time":4.937169961,"remaining_time":7.344347354},
{"learn":[0.142877376],"iteration":201,"passed_time":4.959637826,"remaining_time":7.316693426},
{"learn":[0.1424560809],"iteration":202,"passed_time":4.981872478,"remaining_time":7.288749389},
{"learn":[0.1418883293],"iteration":203,"passed_time":5.007844497,"remaining_time":7.266284172},
{"learn":[0.1412903231],"iteration":204,"passed_time":5.030112108,"remaining_time":7.238454009},
{"learn":[0.1403055475],"iteration":205,"passed_time":5.052978648,"remaining_time":7.211532634},
{"learn":[0.1394721343],"iteration":206,"passed_time":5.075945815,"remaining_time":7.184792869},
{"learn":[0.1390547172],"iteration":207,"passed_time":5.100007962,"remaining_time":7.159626562},
{"learn":[0.1386442713],"iteration":208,"passed_time":5.12446045,"remaining_time":7.135014311},
{"learn":[0.1376316573],"iteration":209,"passed_time":5.148769603,"remaining_time":7.110205642},
{"learn":[0.136783024],"iteration":210,"passed_time":5.17443199,"remaining_time":7.08725519},
{"learn":[0.1353549217],"iteration":211,"passed_time":5.19723982,"remaining_time":7.060401265},
{"learn":[0.1349160868],"iteration":212,"passed_time":5.219840605,"remaining_time":7.033306355},
{"learn":[0.1338548394],"iteration":213,"passed_time":5.245297572,"remaining_time":7.010070586},
{"learn":[0.1331950161],"iteration":214,"passed_time":5.268794208,"remaining_time":6.984215577},
{"learn":[0.1325567202],"iteration":215,"passed_time":5.293958168,"remaining_time":6.960574629},
{"learn":[0.1315897372],"iteration":216,"passed_time":5.319155755,"remaining_time":6.936963496},
{"learn":[0.130948128],"iteration":217,"passed_time":5.342938188,"remaining_time":6.911507197},
{"learn":[0.1305183499],"iteration":218,"passed_time":5.368048564,"remaining_time":6.887770076},
{"learn":[0.1296405854],"iteration":219,"passed_time":5.392814892,"remaining_time":6.86358259},
{"learn":[0.1288357946],"iteration":220,"passed_time":5.418255067,"remaining_time":6.84024056},
{"learn":[0.1279353696],"iteration":221,"passed_time":5.443410653,"remaining_time":6.81652325},
{"learn":[0.1265519823],"iteration":222,"passed_time":5.46906979,"remaining_time":6.793418528},
{"learn":[0.1260898397],"iteration":223,"passed_time":5.493449527,"remaining_time":6.768714596},
{"learn":[0.1252943222],"iteration":224,"passed_time":5.518333274,"remaining_time":6.744629557},
{"learn":[0.1248322461],"iteration":225,"passed_time":5.542836305,"remaining_time":6.720075874},
{"learn":[0.1241281529],"iteration":226,"passed_time":5.568137435,"remaining_time":6.696482466},
{"learn":[0.1232154663],"iteration":227,"passed_time":5.594682673,"remaining_time":6.674358277},
{"learn":[0.1225610856],"iteration":228,"passed_time":5.618332187,"remaining_time":6.648768658},
{"learn":[0.1217825847],"iteration":229,"passed_time":5.642942679,"remaining_time":6.624324014},
{"learn":[0.12119544],"iteration":230,"passed_time":5.665603423,"remaining_time":6.597607449},
{"learn":[0.1201025465],"iteration":231,"passed_time":5.692312873,"remaining_time":6.575602801},
{"learn":[0.1193795277],"iteration":232,"passed_time":5.716253059,"remaining_time":6.550384407},
{"learn":[0.1188654429],"iteration":233,"passed_time":5.738083495,"remaining_time":6.522778674},
{"learn":[0.1178438479],"iteration":234,"passed_time":5.762168059,"remaining_time":6.497763982},
{"learn":[0.1173572605],"iteration":235,"passed_time":5.784092539,"remaining_time":6.470340806},
{"learn":[0.1164264053],"iteration":236,"passed_time":5.808362273,"remaining_time":6.445566573},
{"learn":[0.1159977674],"iteration":237,"passed_time":5.830803263,"remaining_time":6.418783424},
{"learn":[0.1154646969],"iteration":238,"passed_time":5.854558279,"remaining_time":6.393471594},
{"learn":[0.1148100226],"iteration":239,"passed_time":5.880790595,"remaining_time":6.370856477},
{"learn":[0.1138558555],"iteration":240,"passed_time":5.905832803,"remaining_time":6.346932348},
{"learn":[0.1130261467],"iteration":241,"passed_time":5.932641838,"remaining_time":6.324882621},
{"learn":[0.1116842639],"iteration":242,"passed_time":5.958386227,"remaining_time":6.301667738},
{"learn":[0.1105644217],"iteration":243,"passed_time":5.983179681,"remaining_time":6.277434419},
{"learn":[0.1097393073],"iteration":244,"passed_time":6.006970781,"remaining_time":6.252153262},
{"learn":[0.1088130653],"iteration":245,"passed_time":6.031075929,"remaining_time":6.227208479},
{"learn":[0.1082146647],"iteration":246,"passed_time":6.05573538,"remaining_time":6.202838263},
{"learn":[0.1076318341],"iteration":247,"passed_time":6.079839694,"remaining_time":6.177901625},
{"learn":[0.1069338009],"iteration":248,"passed_time":6.105178242,"remaining_time":6.154215818},
{"learn":[0.1061728523],"iteration":249,"passed_time":6.130897005,"remaining_time":6.130897005},
{"learn":[0.1057125099],"iteration":250,"passed_time":6.156366347,"remaining_time":6.107311635},
{"learn":[0.105263911],"iteration":251,"passed_time":6.180644665,"remaining_time":6.082539195},
{"learn":[0.104622054],"iteration":252,"passed_time":6.206252677,"remaining_time":6.059068819},
{"learn":[0.1040334688],"iteration":253,"passed_time":6.231044588,"remaining_time":6.034791216},
{"learn":[0.1034978632],"iteration":254,"passed_time":6.255672205,"remaining_time":6.010351727},
{"learn":[0.1022838523],"iteration":255,"passed_time":6.280818957,"remaining_time":5.986405569},
{"learn":[0.1017358698],"iteration":256,"passed_time":6.305317822,"remaining_time":5.961837473},
{"learn":[0.1009628412],"iteration":257,"passed_time":6.330371114,"remaining_time":5.937789959},
{"learn":[0.1003992689],"iteration":258,"passed_time":6.354081004,"remaining_time":5.91248464},
{"learn":[0.0997164366],"iteration":259,"passed_time":6.378524908,"remaining_time":5.887869146},
{"learn":[0.09903368875],"iteration":260,"passed_time":6.404176671,"remaining_time":5.864361013},
{"learn":[0.09854662155],"iteration":261,"passed_time":6.429238338,"remaining_time":5.840300475},
{"learn":[0.09805747523],"iteration":262,"passed_time":6.451193318,"remaining_time":5.813432762},
{"learn":[0.09741884443],"iteration":263,"passed_time":6.476889623,"remaining_time":5.789946784},
{"learn":[0.09610540779],"iteration":264,"passed_time":6.503024811,"remaining_time":5.766833323},
{"learn":[0.09565119136],"iteration":265,"passed_time":6.529094415,"remaining_time":5.743639448},
{"learn":[0.09510746696],"iteration":266,"passed_time":6.552466423,"remaining_time":5.71806995},
{"learn":[0.09465424408],"iteration":267,"passed_time":6.576626739,"remaining_time":5.693199267},
{"learn":[0.09394914967],"iteration":268,"passed_time":6.601929619,"remaining_time":5.669315026},
{"learn":[0.09341616081],"iteration":269,"passed_time":6.626500568,"remaining_time":5.64479678},
{"learn":[0.09285369188],"iteration":270,"passed_time":6.650069914,"remaining_time":5.619431772},
{"learn":[0.09232671453],"iteration":271,"passed_time":6.673907015,"remaining_time":5.59430441},
{"learn":[0.09171540397],"iteration":272,"passed_time":6.697626072,"remaining_time":5.569088345},
{"learn":[0.09092693429],"iteration":273,"passed_time":6.723696551,"remaining_time":5.545822702},
{"learn":[0.09032530539],"iteration":274,"passed_time":6.748984181,"remaining_time":5.521896148},
{"learn":[0.08961859073],"iteration":275,"passed_time":6.773474045,"remaining_time":5.497312268},
{"learn":[0.0889928576],"iteration":276,"passed_time":6.797473357,"remaining_time":5.472334147},
{"learn":[0.08843924734],"iteration":277,"passed_time":6.821897053,"remaining_time":5.447701963},
{"learn":[0.08792722887],"iteration":278,"passed_time":6.84618433,"remaining_time":5.422963215},
{"learn":[0.08737190418],"iteration":279,"passed_time":6.870468773,"remaining_time":5.398225465},
{"learn":[0.08682846822],"iteration":280,"passed_time":6.895059473,"remaining_time":5.373729625},
{"learn":[0.08609147931],"iteration":281,"passed_time":6.918379022,"remaining_time":5.348250449},
{"learn":[0.0855848848],"iteration":282,"passed_time":6.943729361,"remaining_time":5.324343715},
{"learn":[0.0849478236],"iteration":283,"passed_time":6.968742736,"remaining_time":5.300170531},
{"learn":[0.08443710276],"iteration":284,"passed_time":6.994168285,"remaining_time":5.27630239},
{"learn":[0.08352754909],"iteration":285,"passed_time":7.01814843,"remaining_time":5.251341833},
{"learn":[0.08305956533],"iteration":286,"passed_time":7.040939427,"remaining_time":5.225505568},
{"learn":[0.0823083313],"iteration":287,"passed_time":7.066037303,"remaining_time":5.201388571},
{"learn":[0.08184267631],"iteration":288,"passed_time":7.089837904,"remaining_time":5.176317639},
{"learn":[0.08124107118],"iteration":289,"passed_time":7.114132764,"remaining_time":5.151613381},
{"learn":[0.08074769811],"iteration":290,"passed_time":7.139030136,"remaining_time":5.127344668},
{"learn":[0.08021947918],"iteration":291,"passed_time":7.162731984,"remaining_time":5.102220043},
{"learn":[0.0795478537],"iteration":292,"passed_time":7.186983177,"remaining_time":5.077493234},
{"learn":[0.07916246376],"iteration":293,"passed_time":7.209541169,"remaining_time":5.051583268},
{"learn":[0.07867604825],"iteration":294,"passed_time":7.232862134,"remaining_time":5.026226229},
{"learn":[0.07823144468],"iteration":295,"passed_time":7.255230248,"remaining_time":5.000226252},
{"learn":[0.0778000497],"iteration":296,"passed_time":7.279124058,"remaining_time":4.975293548},
{"learn":[0.07743135104],"iteration":297,"passed_time":7.302617527,"remaining_time":4.950096445},
{"learn":[0.07687188002],"iteration":298,"passed_time":7.325879534,"remaining_time":4.924755138},
{"learn":[0.07654323388],"iteration":299,"passed_time":7.34999689,"remaining_time":4.899997927},
{"learn":[0.07612356047],"iteration":300,"passed_time":7.372068914,"remaining_time":4.873892737},
{"learn":[0.07578569588],"iteration":301,"passed_time":7.397275168,"remaining_time":4.84986915},
{"learn":[0.07528439413],"iteration":302,"passed_time":7.422076413,"remaining_time":4.825574433},
{"learn":[0.07491501857],"iteration":303,"passed_time":7.445517631,"remaining_time":4.800399525},
{"learn":[0.07459938027],"iteration":304,"passed_time":7.468580633,"remaining_time":4.774994175},
{"learn":[0.07434000126],"iteration":305,"passed_time":7.490690199,"remaining_time":4.748999669},
{"learn":[0.07405502385],"iteration":306,"passed_time":7.512408466,"remaining_time":4.722784476},
{"learn":[0.07359936025],"iteration":307,"passed_time":7.534048065,"remaining_time":4.696549443},
{"learn":[0.07321257176],"iteration":308,"passed_time":7.557631661,"remaining_time":4.671545784},
{"learn":[0.07281411801],"iteration":309,"passed_time":7.580658371,"remaining_time":4.646209969},
{"learn":[0.0723927812],"iteration":310,"passed_time":7.604700851,"remaining_time":4.621506305},
{"learn":[0.07195828953],"iteration":311,"passed_time":7.628316531,"remaining_time":4.596549705},
{"learn":[0.07162083385],"iteration":312,"passed_time":7.650410514,"remaining_time":4.570692543},
{"learn":[0.07091211511],"iteration":313,"passed_time":7.674291574,"remaining_time":4.545917939},
{"learn":[0.07035546389],"iteration":314,"passed_time":7.700929689,"remaining_time":4.52276823},
{"learn":[0.06998280407],"iteration":315,"passed_time":7.72398715,"remaining_time":4.497511505},
{"learn":[0.06967070096],"iteration":316,"passed_time":7.747017651,"remaining_time":4.472253092},
{"learn":[0.06930882148],"iteration":317,"passed_time":7.7707525,"remaining_time":4.447411808},
{"learn":[0.06897063076],"iteration":318,"passed_time":7.795024443,"remaining_time":4.422882208},
{"learn":[0.06859761419],"iteration":319,"passed_time":7.820585662,"remaining_time":4.399079435},
{"learn":[0.06823762036],"iteration":320,"passed_time":7.844623642,"remaining_time":4.374416299},
{"learn":[0.06793421641],"iteration":321,"passed_time":7.867563183,"remaining_time":4.349149834},
{"learn":[0.06750300536],"iteration":322,"passed_time":7.892254926,"remaining_time":4.324857963},
{"learn":[0.06715951494],"iteration":323,"passed_time":7.914888878,"remaining_time":4.29944581},
{"learn":[0.06685166117],"iteration":324,"passed_time":7.937601623,"remaining_time":4.274093182},
{"learn":[0.06656581837],"iteration":325,"passed_time":7.961838316,"remaining_time":4.249570144},
{"learn":[0.06596331136],"iteration":326,"passed_time":7.984908443,"remaining_time":4.224431684},
{"learn":[0.06557079132],"iteration":327,"passed_time":8.008651584,"remaining_time":4.199658757},
{"learn":[0.06514273361],"iteration":328,"passed_time":8.033376369,"remaining_time":4.175402307},
{"learn":[0.0648161061],"iteration":329,"passed_time":8.056064947,"remaining_time":4.150094064},
{"learn":[0.06429278866],"iteration":330,"passed_time":8.080953069,"remaining_time":4.125924679},
{"learn":[0.06388688686],"iteration":331,"passed_time":8.105029258,"remaining_time":4.101340107},
{"learn":[0.06356263701],"iteration":332,"passed_time":8.126972821,"remaining_time":4.075689073},
{"learn":[0.06327858563],"iteration":333,"passed_time":8.149405353,"remaining_time":4.050303259},
{"learn":[0.06299176056],"iteration":334,"passed_time":8.172558982,"remaining_time":4.025290245},
{"learn":[0.06268236565],"iteration":335,"passed_time":8.196346832,"remaining_time":4.000597858},
{"learn":[0.0624306551],"iteration":336,"passed_time":8.218442148,"remaining_time":3.975092196},
{"learn":[0.06208009921],"iteration":337,"passed_time":8.242736758,"remaining_time":3.950660813},
{"learn":[0.06180855918],"iteration":338,"passed_time":8.267183163,"remaining_time":3.926302328},
{"learn":[0.06162921724],"iteration":339,"passed_time":8.288522756,"remaining_time":3.900481297},
{"learn":[0.06115204937],"iteration":340,"passed_time":8.311136957,"remaining_time":3.875280869},
{"learn":[0.06057626473],"iteration":341,"passed_time":8.335185312,"remaining_time":3.850758127},
{"learn":[0.06030054307],"iteration":342,"passed_time":8.356700617,"remaining_time":3.825078708},
{"learn":[0.05995592477],"iteration":343,"passed_time":8.380787681,"remaining_time":3.800589762},
{"learn":[0.05966810366],"iteration":344,"passed_time":8.403365632,"remaining_time":3.775425139},
{"learn":[0.05913088628],"iteration":345,"passed_time":8.427123857,"remaining_time":3.750800792},
{"learn":[0.05885383971],"iteration":346,"passed_time":8.450990666,"remaining_time":3.726229314},
{"learn":[0.0586178066],"iteration":347,"passed_time":8.474472052,"remaining_time":3.70149354},
{"learn":[0.0581001034],"iteration":348,"passed_time":8.498085649,"remaining_time":3.676822157},
{"learn":[0.05783949145],"iteration":349,"passed_time":8.519921751,"remaining_time":3.651395036},
{"learn":[0.05741847465],"iteration":350,"passed_time":8.542184946,"remaining_time":3.626169678},
{"learn":[0.05711831445],"iteration":351,"passed_time":8.565647248,"remaining_time":3.60146532},
{"learn":[0.05679720458],"iteration":352,"passed_time":8.588951671,"remaining_time":3.576702254},
{"learn":[0.05657943319],"iteration":353,"passed_time":8.613224281,"remaining_time":3.552346737},
{"learn":[0.05636778384],"iteration":354,"passed_time":8.636055404,"remaining_time":3.527402911},
{"learn":[0.05607497286],"iteration":355,"passed_time":8.65967575,"remaining_time":3.502790191},
{"learn":[0.05587282454],"iteration":356,"passed_time":8.682130782,"remaining_time":3.477716252},
{"learn":[0.05559949705],"iteration":357,"passed_time":8.705118783,"remaining_time":3.452868344},
{"learn":[0.05524366884],"iteration":358,"passed_time":8.728642336,"remaining_time":3.42824114},
{"learn":[0.05488789301],"iteration":359,"passed_time":8.750906405,"remaining_time":3.403130269},
{"learn":[0.05445960317],"iteration":360,"passed_time":8.776331496,"remaining_time":3.379252294},
{"learn":[0.05417052086],"iteration":361,"passed_time":8.799956843,"remaining_time":3.35467968},
{"learn":[0.05393397186],"iteration":362,"passed_time":8.822983761,"remaining_time":3.329886433},
{"learn":[0.05357891611],"iteration":363,"passed_time":8.846812654,"remaining_time":3.30540253},
{"learn":[0.05335249446],"iteration":364,"passed_time":8.86857613,"remaining_time":3.280158295},
{"learn":[0.05317320492],"iteration":365,"passed_time":8.890601153,"remaining_time":3.255028837},
{"learn":[0.05301985043],"iteration":366,"passed_time":8.913022226,"remaining_time":3.230059826},
{"learn":[0.05270775281],"iteration":367,"passed_time":8.935795139,"remaining_time":3.205230865},
{"learn":[0.05243844604],"iteration":368,"passed_time":8.958194669,"remaining_time":3.180280492},
{"learn":[0.05218227737],"iteration":369,"passed_time":8.982394903,"remaining_time":3.155976587},
{"learn":[0.05202597967],"iteration":370,"passed_time":9.003933791,"remaining_time":3.130747868},
{"learn":[0.05168457597],"iteration":371,"passed_time":9.028771995,"remaining_time":3.106674235},
{"learn":[0.0513787649],"iteration":372,"passed_time":9.0515192,"remaining_time":3.081884553},
{"learn":[0.05116703418],"iteration":373,"passed_time":9.073754977,"remaining_time":3.056933495},
{"learn":[0.05093101511],"iteration":374,"passed_time":9.095141029,"remaining_time":3.031713676},
{"learn":[0.0507589405],"iteration":375,"passed_time":9.117408265,"remaining_time":3.006804853},
{"learn":[0.05053112856],"iteration":376,"passed_time":9.14141262,"remaining_time":2.982476796},
{"learn":[0.05033706654],"iteration":377,"passed_time":9.164087822,"remaining_time":2.957721466},
{"learn":[0.05020300153],"iteration":378,"passed_time":9.186253515,"remaining_time":2.932814447},
{"learn":[0.05001435435],"iteration":379,"passed_time":9.208657962,"remaining_time":2.907997251},
{"learn":[0.04975525929],"iteration":380,"passed_time":9.230626984,"remaining_time":2.883056722},
{"learn":[0.04948290657],"iteration":381,"passed_time":9.25602245,"remaining_time":2.859190181},
{"learn":[0.04929070362],"iteration":382,"passed_time":9.278065015,"remaining_time":2.834291401},
{"learn":[0.04910496235],"iteration":383,"passed_time":9.300303501,"remaining_time":2.809466682},
{"learn":[0.04881316411],"iteration":384,"passed_time":9.324029016,"remaining_time":2.785099576},
{"learn":[0.04858449122],"iteration":385,"passed_time":9.34674072,"remaining_time":2.760436378},
{"learn":[0.04830036156],"iteration":386,"passed_time":9.372360523,"remaining_time":2.736632401},
{"learn":[0.04799888759],"iteration":387,"passed_time":9.394939182,"remaining_time":2.711941207},
{"learn":[0.04764501811],"iteration":388,"passed_time":9.420174019,"remaining_time":2.688018808},
{"learn":[0.04735869133],"iteration":389,"passed_time":9.445368564,"remaining_time":2.664078313},
{"learn":[0.04717676982],"iteration":390,"passed_time":9.467458672,"remaining_time":2.639265972},
{"learn":[0.04702198439],"iteration":391,"passed_time":9.491415983,"remaining_time":2.614981955},
{"learn":[0.04680681448],"iteration":392,"passed_time":9.515370837,"remaining_time":2.59069893},
{"learn":[0.04651695718],"iteration":393,"passed_time":9.539620988,"remaining_time":2.566497017},
{"learn":[0.04627615035],"iteration":394,"passed_time":9.564574986,"remaining_time":2.542481958},
{"learn":[0.04606321813],"iteration":395,"passed_time":9.590745592,"remaining_time":2.518781671},
{"learn":[0.04589309758],"iteration":396,"passed_time":9.614750404,"remaining_time":2.494507032},
{"learn":[0.04556006451],"iteration":397,"passed_time":9.640125578,"remaining_time":2.470584947},
{"learn":[0.0453589455],"iteration":398,"passed_time":9.665230704,"remaining_time":2.446587221},
{"learn":[0.04514104221],"iteration":399,"passed_time":9.689814403,"remaining_time":2.422453601},
{"learn":[0.04478819136],"iteration":400,"passed_time":9.716095345,"remaining_time":2.398736756},
{"learn":[0.04443821936],"iteration":401,"passed_time":9.73906397,"remaining_time":2.374199674},
{"learn":[0.04430866417],"iteration":402,"passed_time":9.761612004,"remaining_time":2.349569142},
{"learn":[0.0442286461],"iteration":403,"passed_time":9.784576629,"remaining_time":2.325047912},
{"learn":[0.0441045591],"iteration":404,"passed_time":9.807797468,"remaining_time":2.300594468},
{"learn":[0.04396148169],"iteration":405,"passed_time":9.830501963,"remaining_time":2.276027548},
{"learn":[0.04383991606],"iteration":406,"passed_time":9.853293043,"remaining_time":2.251489565},
{"learn":[0.04369433117],"iteration":407,"passed_time":9.876191375,"remaining_time":2.22698433},
{"learn":[0.04359398001],"iteration":408,"passed_time":9.900105352,"remaining_time":2.202712927},
{"learn":[0.04335115657],"iteration":409,"passed_time":9.921932205,"remaining_time":2.177985118},
{"learn":[0.0432504709],"iteration":410,"passed_time":9.943676473,"remaining_time":2.153253543},
{"learn":[0.04312499215],"iteration":411,"passed_time":9.965261154,"remaining_time":2.128502382},
{"learn":[0.0430111312],"iteration":412,"passed_time":9.987106548,"remaining_time":2.103821476},
{"learn":[0.04290906293],"iteration":413,"passed_time":10.00847627,"remaining_time":2.079055456},
{"learn":[0.04276421934],"iteration":414,"passed_time":10.03028929,"remaining_time":2.054396601},
{"learn":[0.04243290185],"iteration":415,"passed_time":10.05547683,"remaining_time":2.030432821},
{"learn":[0.04207124094],"iteration":416,"passed_time":10.08181365,"remaining_time":2.006691925},
{"learn":[0.04190756042],"iteration":417,"passed_time":10.10569317,"remaining_time":1.982456554},
{"learn":[0.04169658039],"iteration":418,"passed_time":10.12932701,"remaining_time":1.958175389},
{"learn":[0.04139810429],"iteration":419,"passed_time":10.15671773,"remaining_time":1.9346129},
{"learn":[0.04116312391],"iteration":420,"passed_time":10.18063383,"remaining_time":1.91038022},
{"learn":[0.0409318057],"iteration":421,"passed_time":10.206051,"remaining_time":1.886426489},
{"learn":[0.04070910759],"iteration":422,"passed_time":10.22978806,"remaining_time":1.862160002},
{"learn":[0.04058466131],"iteration":423,"passed_time":10.25200434,"remaining_time":1.837623419},
{"learn":[0.04045016676],"iteration":424,"passed_time":10.27407965,"remaining_time":1.81307288},
{"learn":[0.04033295089],"iteration":425,"passed_time":10.29598217,"remaining_time":1.788503946},
{"learn":[0.04012984965],"iteration":426,"passed_time":10.31875555,"remaining_time":1.764096381},
{"learn":[0.03995289728],"iteration":427,"passed_time":10.34082299,"remaining_time":1.739577699},
{"learn":[0.03970746465],"iteration":428,"passed_time":10.36400745,"remaining_time":1.715255312},
{"learn":[0.03949775163],"iteration":429,"passed_time":10.38808739,"remaining_time":1.691083993},
{"learn":[0.03932209138],"iteration":430,"passed_time":10.41095259,"remaining_time":1.666718629},
{"learn":[0.03910362134],"iteration":431,"passed_time":10.43412156,"remaining_time":1.642408023},
{"learn":[0.03886318619],"iteration":432,"passed_time":10.45846792,"remaining_time":1.618284874},
{"learn":[0.03869829193],"iteration":433,"passed_time":10.48182288,"remaining_time":1.594009932},
{"learn":[0.03846231914],"iteration":434,"passed_time":10.50794099,"remaining_time":1.570152102},
{"learn":[0.03826711438],"iteration":435,"passed_time":10.53190868,"remaining_time":1.545968246},
{"learn":[0.03807202579],"iteration":436,"passed_time":10.55517422,"remaining_time":1.521684156},
{"learn":[0.03786720622],"iteration":437,"passed_time":10.579381,"remaining_time":1.49753795},
{"learn":[0.0377457012],"iteration":438,"passed_time":10.60138736,"remaining_time":1.473085715},
{"learn":[0.03764523055],"iteration":439,"passed_time":10.62328529,"remaining_time":1.448629813},
{"learn":[0.0375267263],"iteration":440,"passed_time":10.64579999,"remaining_time":1.424268026},
{"learn":[0.03739077589],"iteration":441,"passed_time":10.66908854,"remaining_time":1.400016143},
{"learn":[0.03720490686],"iteration":442,"passed_time":10.69258734,"remaining_time":1.375795663},
{"learn":[0.03707441914],"iteration":443,"passed_time":10.71474358,"remaining_time":1.3514091},
{"learn":[0.0369518746],"iteration":444,"passed_time":10.73673589,"remaining_time":1.327012301},
{"learn":[0.03679965145],"iteration":445,"passed_time":10.75968647,"remaining_time":1.302742309},
{"learn":[0.03665723969],"iteration":446,"passed_time":10.78333295,"remaining_time":1.27856073},
{"learn":[0.03647330679],"iteration":447,"passed_time":10.80867049,"remaining_time":1.254577825},
{"learn":[0.03637255373],"iteration":448,"passed_time":10.82990171,"remaining_time":1.230122466},
{"learn":[0.03622583483],"iteration":449,"passed_time":10.85228003,"remaining_time":1.205808892},
{"learn":[0.03607239533],"iteration":450,"passed_time":10.87496749,"remaining_time":1.181537487},
{"learn":[0.03601574616],"iteration":451,"passed_time":10.89771261,"remaining_time":1.157279215},
{"learn":[0.03584618827],"iteration":452,"passed_time":10.92194863,"remaining_time":1.133182308},
{"learn":[0.03574008044],"iteration":453,"passed_time":10.94376603,"remaining_time":1.108839729},
{"learn":[0.03569749187],"iteration":454,"passed_time":10.96549146,"remaining_time":1.084499155},
{"learn":[0.03557336502],"iteration":455,"passed_time":10.98880576,"remaining_time":1.060323363},
{"learn":[0.03539082977],"iteration":456,"passed_time":11.01338067,"remaining_time":1.036269953},
{"learn":[0.0352789402],"iteration":457,"passed_time":11.03566028,"remaining_time":1.012003781},
{"learn":[0.03505536388],"iteration":458,"passed_time":11.05856328,"remaining_time":0.9878019484},
{"learn":[0.03495206755],"iteration":459,"passed_time":11.08111735,"remaining_time":0.9635754219},
{"learn":[0.03478190743],"iteration":460,"passed_time":11.10508112,"remaining_time":0.9394754094},
{"learn":[0.03465723213],"iteration":461,"passed_time":11.12815812,"remaining_time":0.9153030492},
{"learn":[0.03453161153],"iteration":462,"passed_time":11.15050611,"remaining_time":0.8910771623},
{"learn":[0.034334941],"iteration":463,"passed_time":11.17327344,"remaining_time":0.866891905},
{"learn":[0.03416935733],"iteration":464,"passed_time":11.19764405,"remaining_time":0.8428334234},
{"learn":[0.03405767511],"iteration":465,"passed_time":11.22081306,"remaining_time":0.8186859313},
{"learn":[0.03394943303],"iteration":466,"passed_time":11.24345459,"remaining_time":0.7945053567},
{"learn":[0.03374958171],"iteration":467,"passed_time":11.26703627,"remaining_time":0.7703956426},
{"learn":[0.03363658898],"iteration":468,"passed_time":11.28955126,"remaining_time":0.7462176741},
{"learn":[0.03341608014],"iteration":469,"passed_time":11.31481723,"remaining_time":0.7222223762},
{"learn":[0.03332221514],"iteration":470,"passed_time":11.33944193,"remaining_time":0.6981821993},
{"learn":[0.03326545376],"iteration":471,"passed_time":11.36179187,"remaining_time":0.6740046026},
{"learn":[0.0331200389],"iteration":472,"passed_time":11.38850836,"remaining_time":0.650083987},
{"learn":[0.03302212556],"iteration":473,"passed_time":11.41176383,"remaining_time":0.625961729},
{"learn":[0.03287398575],"iteration":474,"passed_time":11.43655516,"remaining_time":0.6019239557},
{"learn":[0.03278840054],"iteration":475,"passed_time":11.46011271,"remaining_time":0.577820809},
{"learn":[0.03265757698],"iteration":476,"passed_time":11.48284467,"remaining_time":0.5536801411},
{"learn":[0.03252871663],"iteration":477,"passed_time":11.50658214,"remaining_time":0.5295916466},
{"learn":[0.03236889905],"iteration":478,"passed_time":11.5305887,"remaining_time":0.5055164149},
{"learn":[0.03224167231],"iteration":479,"passed_time":11.55399534,"remaining_time":0.4814164723},
{"learn":[0.03216011999],"iteration":480,"passed_time":11.57584315,"remaining_time":0.4572578374},
{"learn":[0.03192498158],"iteration":481,"passed_time":11.59976646,"remaining_time":0.4331862993},
{"learn":[0.03183675149],"iteration":482,"passed_time":11.62260133,"remaining_time":0.4090770655},
{"learn":[0.03171906574],"iteration":483,"passed_time":11.64573888,"remaining_time":0.3849831033},
{"learn":[0.03156880496],"iteration":484,"passed_time":11.67016736,"remaining_time":0.3609330113},
{"learn":[0.03145563437],"iteration":485,"passed_time":11.69324895,"remaining_time":0.3368425623},
{"learn":[0.03136115044],"iteration":486,"passed_time":11.71487592,"remaining_time":0.3127174271},
{"learn":[0.03122164061],"iteration":487,"passed_time":11.73913228,"remaining_time":0.2886671873},
{"learn":[0.03109933328],"iteration":488,"passed_time":11.76249975,"remaining_time":0.2645961089},
{"learn":[0.03102429087],"iteration":489,"passed_time":11.78385305,"remaining_time":0.240486797},
{"learn":[0.03095523906],"iteration":490,"passed_time":11.80655921,"remaining_time":0.216413509},
{"learn":[0.03085009531],"iteration":491,"passed_time":11.82931033,"remaining_time":0.1923465095},
{"learn":[0.03071320709],"iteration":492,"passed_time":11.85312218,"remaining_time":0.1682999093},
{"learn":[0.03055708091],"iteration":493,"passed_time":11.87753088,"remaining_time":0.1442615087},
{"learn":[0.03041588169],"iteration":494,"passed_time":11.90089939,"remaining_time":0.1202111049},
{"learn":[0.03027938644],"iteration":495,"passed_time":11.92492595,"remaining_time":0.09616875767},
{"learn":[0.0301679957],"iteration":496,"passed_time":11.94755094,"remaining_time":0.07211801375},
{"learn":[0.03003869429],"iteration":497,"passed_time":11.97044565,"remaining_time":0.04807407892},
{"learn":[0.02994175927],"iteration":498,"passed_time":11.99279918,"remaining_time":0.02403366569},
{"learn":[0.02983188626],"iteration":499,"passed_time":12.01560647,"remaining_time":0}
]}

Binary file not shown.

View File

@@ -0,0 +1,501 @@
iter Logloss
0 0.6505594592
1 0.6199570308
2 0.5883839207
3 0.5581651741
4 0.5343091005
5 0.5070162395
6 0.4927200876
7 0.4682830337
8 0.4539977069
9 0.4430063307
10 0.4260619942
11 0.4123586166
12 0.3986592355
13 0.3898627233
14 0.3805898091
15 0.3714802352
16 0.3635447217
17 0.3579714002
18 0.3518505418
19 0.3469646375
20 0.342350397
21 0.3380417078
22 0.3336186075
23 0.3298240945
24 0.3257224063
25 0.320477237
26 0.3169914291
27 0.3120681587
28 0.3094016032
29 0.304723249
30 0.3011723022
31 0.2987501309
32 0.2972378553
33 0.2949280448
34 0.2922181334
35 0.2902886884
36 0.2868615526
37 0.2855207315
38 0.2829764561
39 0.2790864362
40 0.2771876663
41 0.274396297
42 0.269695974
43 0.2674762223
44 0.266351576
45 0.2645715787
46 0.2629624082
47 0.2622682603
48 0.2610050288
49 0.2591143021
50 0.2572681325
51 0.2562124872
52 0.2551455095
53 0.254392464
54 0.2528077948
55 0.2513889396
56 0.2506161354
57 0.2494460772
58 0.2485459323
59 0.2469745034
60 0.2459537181
61 0.2453627957
62 0.2433912548
63 0.2422951861
64 0.2400155969
65 0.2390895846
66 0.2375225747
67 0.2362798202
68 0.2348801591
69 0.234274226
70 0.2331038168
71 0.2323492401
72 0.2316465084
73 0.2299897258
74 0.2292043653
75 0.2281960167
76 0.2271872251
77 0.2266875911
78 0.2256819597
79 0.2248734679
80 0.2235711296
81 0.2225638016
82 0.2216924707
83 0.2206671726
84 0.2198053434
85 0.2180945036
86 0.2174988086
87 0.2167547953
88 0.2146076599
89 0.21355014
90 0.2120397433
91 0.2113293421
92 0.2106641679
93 0.2103582924
94 0.2100276146
95 0.2094603169
96 0.208520409
97 0.2081060903
98 0.2075147098
99 0.2063558526
100 0.2055862444
101 0.204938244
102 0.2041199746
103 0.20357568
104 0.2029479812
105 0.2024233181
106 0.2018709313
107 0.2007005578
108 0.1995046398
109 0.1988329196
110 0.1980569761
111 0.197332958
112 0.1968751476
113 0.196281669
114 0.1954746084
115 0.195100344
116 0.1947434834
117 0.1940842572
118 0.193016598
119 0.192326827
120 0.1919624319
121 0.1913875196
122 0.190963803
123 0.1906330299
124 0.1902243409
125 0.1896069044
126 0.1890660639
127 0.1882835195
128 0.1875493514
129 0.1869075794
130 0.1864064876
131 0.1861340119
132 0.1856804614
133 0.1851377629
134 0.1843016898
135 0.1835527038
136 0.1830184334
137 0.1823413379
138 0.1818241981
139 0.1810634762
140 0.1804669956
141 0.1800037734
142 0.179229966
143 0.1784811687
144 0.1776685278
145 0.1770219582
146 0.1766783294
147 0.1762438721
148 0.1758425501
149 0.1749885611
150 0.1738557684
151 0.1732595564
152 0.1727113418
153 0.1719918768
154 0.1714453538
155 0.1709170131
156 0.1700539884
157 0.1696775312
158 0.169185393
159 0.1684625546
160 0.1678449693
161 0.1674127808
162 0.1669160497
163 0.1666650109
164 0.1661196582
165 0.1656309243
166 0.1650005575
167 0.1630925189
168 0.1627982599
169 0.1622984813
170 0.1617063039
171 0.161085537
172 0.1605654299
173 0.1600969242
174 0.1595581484
175 0.1591783098
176 0.1586366754
177 0.1581714089
178 0.1575630275
179 0.1568621859
180 0.1563319754
181 0.1557732651
182 0.15493488
183 0.1542286414
184 0.1534099833
185 0.1522403016
186 0.1517637469
187 0.1514181606
188 0.1511232407
189 0.1505915384
190 0.1501060085
191 0.1493588672
192 0.1485757524
193 0.1479396924
194 0.1476450754
195 0.1472334844
196 0.1466508463
197 0.1459767298
198 0.1449640915
199 0.1442547887
200 0.1435485115
201 0.142877376
202 0.1424560809
203 0.1418883293
204 0.1412903231
205 0.1403055475
206 0.1394721343
207 0.1390547172
208 0.1386442713
209 0.1376316573
210 0.136783024
211 0.1353549217
212 0.1349160868
213 0.1338548394
214 0.1331950161
215 0.1325567202
216 0.1315897372
217 0.130948128
218 0.1305183499
219 0.1296405854
220 0.1288357946
221 0.1279353696
222 0.1265519823
223 0.1260898397
224 0.1252943222
225 0.1248322461
226 0.1241281529
227 0.1232154663
228 0.1225610856
229 0.1217825847
230 0.12119544
231 0.1201025465
232 0.1193795277
233 0.1188654429
234 0.1178438479
235 0.1173572605
236 0.1164264053
237 0.1159977674
238 0.1154646969
239 0.1148100226
240 0.1138558555
241 0.1130261467
242 0.1116842639
243 0.1105644217
244 0.1097393073
245 0.1088130653
246 0.1082146647
247 0.1076318341
248 0.1069338009
249 0.1061728523
250 0.1057125099
251 0.105263911
252 0.104622054
253 0.1040334688
254 0.1034978632
255 0.1022838523
256 0.1017358698
257 0.1009628412
258 0.1003992689
259 0.0997164366
260 0.09903368875
261 0.09854662155
262 0.09805747523
263 0.09741884443
264 0.09610540779
265 0.09565119136
266 0.09510746696
267 0.09465424408
268 0.09394914967
269 0.09341616081
270 0.09285369188
271 0.09232671453
272 0.09171540397
273 0.09092693429
274 0.09032530539
275 0.08961859073
276 0.0889928576
277 0.08843924734
278 0.08792722887
279 0.08737190418
280 0.08682846822
281 0.08609147931
282 0.0855848848
283 0.0849478236
284 0.08443710276
285 0.08352754909
286 0.08305956533
287 0.0823083313
288 0.08184267631
289 0.08124107118
290 0.08074769811
291 0.08021947918
292 0.0795478537
293 0.07916246376
294 0.07867604825
295 0.07823144468
296 0.0778000497
297 0.07743135104
298 0.07687188002
299 0.07654323388
300 0.07612356047
301 0.07578569588
302 0.07528439413
303 0.07491501857
304 0.07459938027
305 0.07434000126
306 0.07405502385
307 0.07359936025
308 0.07321257176
309 0.07281411801
310 0.0723927812
311 0.07195828953
312 0.07162083385
313 0.07091211511
314 0.07035546389
315 0.06998280407
316 0.06967070096
317 0.06930882148
318 0.06897063076
319 0.06859761419
320 0.06823762036
321 0.06793421641
322 0.06750300536
323 0.06715951494
324 0.06685166117
325 0.06656581837
326 0.06596331136
327 0.06557079132
328 0.06514273361
329 0.0648161061
330 0.06429278866
331 0.06388688686
332 0.06356263701
333 0.06327858563
334 0.06299176056
335 0.06268236565
336 0.0624306551
337 0.06208009921
338 0.06180855918
339 0.06162921724
340 0.06115204937
341 0.06057626473
342 0.06030054307
343 0.05995592477
344 0.05966810366
345 0.05913088628
346 0.05885383971
347 0.0586178066
348 0.0581001034
349 0.05783949145
350 0.05741847465
351 0.05711831445
352 0.05679720458
353 0.05657943319
354 0.05636778384
355 0.05607497286
356 0.05587282454
357 0.05559949705
358 0.05524366884
359 0.05488789301
360 0.05445960317
361 0.05417052086
362 0.05393397186
363 0.05357891611
364 0.05335249446
365 0.05317320492
366 0.05301985043
367 0.05270775281
368 0.05243844604
369 0.05218227737
370 0.05202597967
371 0.05168457597
372 0.0513787649
373 0.05116703418
374 0.05093101511
375 0.0507589405
376 0.05053112856
377 0.05033706654
378 0.05020300153
379 0.05001435435
380 0.04975525929
381 0.04948290657
382 0.04929070362
383 0.04910496235
384 0.04881316411
385 0.04858449122
386 0.04830036156
387 0.04799888759
388 0.04764501811
389 0.04735869133
390 0.04717676982
391 0.04702198439
392 0.04680681448
393 0.04651695718
394 0.04627615035
395 0.04606321813
396 0.04589309758
397 0.04556006451
398 0.0453589455
399 0.04514104221
400 0.04478819136
401 0.04443821936
402 0.04430866417
403 0.0442286461
404 0.0441045591
405 0.04396148169
406 0.04383991606
407 0.04369433117
408 0.04359398001
409 0.04335115657
410 0.0432504709
411 0.04312499215
412 0.0430111312
413 0.04290906293
414 0.04276421934
415 0.04243290185
416 0.04207124094
417 0.04190756042
418 0.04169658039
419 0.04139810429
420 0.04116312391
421 0.0409318057
422 0.04070910759
423 0.04058466131
424 0.04045016676
425 0.04033295089
426 0.04012984965
427 0.03995289728
428 0.03970746465
429 0.03949775163
430 0.03932209138
431 0.03910362134
432 0.03886318619
433 0.03869829193
434 0.03846231914
435 0.03826711438
436 0.03807202579
437 0.03786720622
438 0.0377457012
439 0.03764523055
440 0.0375267263
441 0.03739077589
442 0.03720490686
443 0.03707441914
444 0.0369518746
445 0.03679965145
446 0.03665723969
447 0.03647330679
448 0.03637255373
449 0.03622583483
450 0.03607239533
451 0.03601574616
452 0.03584618827
453 0.03574008044
454 0.03569749187
455 0.03557336502
456 0.03539082977
457 0.0352789402
458 0.03505536388
459 0.03495206755
460 0.03478190743
461 0.03465723213
462 0.03453161153
463 0.034334941
464 0.03416935733
465 0.03405767511
466 0.03394943303
467 0.03374958171
468 0.03363658898
469 0.03341608014
470 0.03332221514
471 0.03326545376
472 0.0331200389
473 0.03302212556
474 0.03287398575
475 0.03278840054
476 0.03265757698
477 0.03252871663
478 0.03236889905
479 0.03224167231
480 0.03216011999
481 0.03192498158
482 0.03183675149
483 0.03171906574
484 0.03156880496
485 0.03145563437
486 0.03136115044
487 0.03122164061
488 0.03109933328
489 0.03102429087
490 0.03095523906
491 0.03085009531
492 0.03071320709
493 0.03055708091
494 0.03041588169
495 0.03027938644
496 0.0301679957
497 0.03003869429
498 0.02994175927
499 0.02983188626
1 iter Logloss
2 0 0.6505594592
3 1 0.6199570308
4 2 0.5883839207
5 3 0.5581651741
6 4 0.5343091005
7 5 0.5070162395
8 6 0.4927200876
9 7 0.4682830337
10 8 0.4539977069
11 9 0.4430063307
12 10 0.4260619942
13 11 0.4123586166
14 12 0.3986592355
15 13 0.3898627233
16 14 0.3805898091
17 15 0.3714802352
18 16 0.3635447217
19 17 0.3579714002
20 18 0.3518505418
21 19 0.3469646375
22 20 0.342350397
23 21 0.3380417078
24 22 0.3336186075
25 23 0.3298240945
26 24 0.3257224063
27 25 0.320477237
28 26 0.3169914291
29 27 0.3120681587
30 28 0.3094016032
31 29 0.304723249
32 30 0.3011723022
33 31 0.2987501309
34 32 0.2972378553
35 33 0.2949280448
36 34 0.2922181334
37 35 0.2902886884
38 36 0.2868615526
39 37 0.2855207315
40 38 0.2829764561
41 39 0.2790864362
42 40 0.2771876663
43 41 0.274396297
44 42 0.269695974
45 43 0.2674762223
46 44 0.266351576
47 45 0.2645715787
48 46 0.2629624082
49 47 0.2622682603
50 48 0.2610050288
51 49 0.2591143021
52 50 0.2572681325
53 51 0.2562124872
54 52 0.2551455095
55 53 0.254392464
56 54 0.2528077948
57 55 0.2513889396
58 56 0.2506161354
59 57 0.2494460772
60 58 0.2485459323
61 59 0.2469745034
62 60 0.2459537181
63 61 0.2453627957
64 62 0.2433912548
65 63 0.2422951861
66 64 0.2400155969
67 65 0.2390895846
68 66 0.2375225747
69 67 0.2362798202
70 68 0.2348801591
71 69 0.234274226
72 70 0.2331038168
73 71 0.2323492401
74 72 0.2316465084
75 73 0.2299897258
76 74 0.2292043653
77 75 0.2281960167
78 76 0.2271872251
79 77 0.2266875911
80 78 0.2256819597
81 79 0.2248734679
82 80 0.2235711296
83 81 0.2225638016
84 82 0.2216924707
85 83 0.2206671726
86 84 0.2198053434
87 85 0.2180945036
88 86 0.2174988086
89 87 0.2167547953
90 88 0.2146076599
91 89 0.21355014
92 90 0.2120397433
93 91 0.2113293421
94 92 0.2106641679
95 93 0.2103582924
96 94 0.2100276146
97 95 0.2094603169
98 96 0.208520409
99 97 0.2081060903
100 98 0.2075147098
101 99 0.2063558526
102 100 0.2055862444
103 101 0.204938244
104 102 0.2041199746
105 103 0.20357568
106 104 0.2029479812
107 105 0.2024233181
108 106 0.2018709313
109 107 0.2007005578
110 108 0.1995046398
111 109 0.1988329196
112 110 0.1980569761
113 111 0.197332958
114 112 0.1968751476
115 113 0.196281669
116 114 0.1954746084
117 115 0.195100344
118 116 0.1947434834
119 117 0.1940842572
120 118 0.193016598
121 119 0.192326827
122 120 0.1919624319
123 121 0.1913875196
124 122 0.190963803
125 123 0.1906330299
126 124 0.1902243409
127 125 0.1896069044
128 126 0.1890660639
129 127 0.1882835195
130 128 0.1875493514
131 129 0.1869075794
132 130 0.1864064876
133 131 0.1861340119
134 132 0.1856804614
135 133 0.1851377629
136 134 0.1843016898
137 135 0.1835527038
138 136 0.1830184334
139 137 0.1823413379
140 138 0.1818241981
141 139 0.1810634762
142 140 0.1804669956
143 141 0.1800037734
144 142 0.179229966
145 143 0.1784811687
146 144 0.1776685278
147 145 0.1770219582
148 146 0.1766783294
149 147 0.1762438721
150 148 0.1758425501
151 149 0.1749885611
152 150 0.1738557684
153 151 0.1732595564
154 152 0.1727113418
155 153 0.1719918768
156 154 0.1714453538
157 155 0.1709170131
158 156 0.1700539884
159 157 0.1696775312
160 158 0.169185393
161 159 0.1684625546
162 160 0.1678449693
163 161 0.1674127808
164 162 0.1669160497
165 163 0.1666650109
166 164 0.1661196582
167 165 0.1656309243
168 166 0.1650005575
169 167 0.1630925189
170 168 0.1627982599
171 169 0.1622984813
172 170 0.1617063039
173 171 0.161085537
174 172 0.1605654299
175 173 0.1600969242
176 174 0.1595581484
177 175 0.1591783098
178 176 0.1586366754
179 177 0.1581714089
180 178 0.1575630275
181 179 0.1568621859
182 180 0.1563319754
183 181 0.1557732651
184 182 0.15493488
185 183 0.1542286414
186 184 0.1534099833
187 185 0.1522403016
188 186 0.1517637469
189 187 0.1514181606
190 188 0.1511232407
191 189 0.1505915384
192 190 0.1501060085
193 191 0.1493588672
194 192 0.1485757524
195 193 0.1479396924
196 194 0.1476450754
197 195 0.1472334844
198 196 0.1466508463
199 197 0.1459767298
200 198 0.1449640915
201 199 0.1442547887
202 200 0.1435485115
203 201 0.142877376
204 202 0.1424560809
205 203 0.1418883293
206 204 0.1412903231
207 205 0.1403055475
208 206 0.1394721343
209 207 0.1390547172
210 208 0.1386442713
211 209 0.1376316573
212 210 0.136783024
213 211 0.1353549217
214 212 0.1349160868
215 213 0.1338548394
216 214 0.1331950161
217 215 0.1325567202
218 216 0.1315897372
219 217 0.130948128
220 218 0.1305183499
221 219 0.1296405854
222 220 0.1288357946
223 221 0.1279353696
224 222 0.1265519823
225 223 0.1260898397
226 224 0.1252943222
227 225 0.1248322461
228 226 0.1241281529
229 227 0.1232154663
230 228 0.1225610856
231 229 0.1217825847
232 230 0.12119544
233 231 0.1201025465
234 232 0.1193795277
235 233 0.1188654429
236 234 0.1178438479
237 235 0.1173572605
238 236 0.1164264053
239 237 0.1159977674
240 238 0.1154646969
241 239 0.1148100226
242 240 0.1138558555
243 241 0.1130261467
244 242 0.1116842639
245 243 0.1105644217
246 244 0.1097393073
247 245 0.1088130653
248 246 0.1082146647
249 247 0.1076318341
250 248 0.1069338009
251 249 0.1061728523
252 250 0.1057125099
253 251 0.105263911
254 252 0.104622054
255 253 0.1040334688
256 254 0.1034978632
257 255 0.1022838523
258 256 0.1017358698
259 257 0.1009628412
260 258 0.1003992689
261 259 0.0997164366
262 260 0.09903368875
263 261 0.09854662155
264 262 0.09805747523
265 263 0.09741884443
266 264 0.09610540779
267 265 0.09565119136
268 266 0.09510746696
269 267 0.09465424408
270 268 0.09394914967
271 269 0.09341616081
272 270 0.09285369188
273 271 0.09232671453
274 272 0.09171540397
275 273 0.09092693429
276 274 0.09032530539
277 275 0.08961859073
278 276 0.0889928576
279 277 0.08843924734
280 278 0.08792722887
281 279 0.08737190418
282 280 0.08682846822
283 281 0.08609147931
284 282 0.0855848848
285 283 0.0849478236
286 284 0.08443710276
287 285 0.08352754909
288 286 0.08305956533
289 287 0.0823083313
290 288 0.08184267631
291 289 0.08124107118
292 290 0.08074769811
293 291 0.08021947918
294 292 0.0795478537
295 293 0.07916246376
296 294 0.07867604825
297 295 0.07823144468
298 296 0.0778000497
299 297 0.07743135104
300 298 0.07687188002
301 299 0.07654323388
302 300 0.07612356047
303 301 0.07578569588
304 302 0.07528439413
305 303 0.07491501857
306 304 0.07459938027
307 305 0.07434000126
308 306 0.07405502385
309 307 0.07359936025
310 308 0.07321257176
311 309 0.07281411801
312 310 0.0723927812
313 311 0.07195828953
314 312 0.07162083385
315 313 0.07091211511
316 314 0.07035546389
317 315 0.06998280407
318 316 0.06967070096
319 317 0.06930882148
320 318 0.06897063076
321 319 0.06859761419
322 320 0.06823762036
323 321 0.06793421641
324 322 0.06750300536
325 323 0.06715951494
326 324 0.06685166117
327 325 0.06656581837
328 326 0.06596331136
329 327 0.06557079132
330 328 0.06514273361
331 329 0.0648161061
332 330 0.06429278866
333 331 0.06388688686
334 332 0.06356263701
335 333 0.06327858563
336 334 0.06299176056
337 335 0.06268236565
338 336 0.0624306551
339 337 0.06208009921
340 338 0.06180855918
341 339 0.06162921724
342 340 0.06115204937
343 341 0.06057626473
344 342 0.06030054307
345 343 0.05995592477
346 344 0.05966810366
347 345 0.05913088628
348 346 0.05885383971
349 347 0.0586178066
350 348 0.0581001034
351 349 0.05783949145
352 350 0.05741847465
353 351 0.05711831445
354 352 0.05679720458
355 353 0.05657943319
356 354 0.05636778384
357 355 0.05607497286
358 356 0.05587282454
359 357 0.05559949705
360 358 0.05524366884
361 359 0.05488789301
362 360 0.05445960317
363 361 0.05417052086
364 362 0.05393397186
365 363 0.05357891611
366 364 0.05335249446
367 365 0.05317320492
368 366 0.05301985043
369 367 0.05270775281
370 368 0.05243844604
371 369 0.05218227737
372 370 0.05202597967
373 371 0.05168457597
374 372 0.0513787649
375 373 0.05116703418
376 374 0.05093101511
377 375 0.0507589405
378 376 0.05053112856
379 377 0.05033706654
380 378 0.05020300153
381 379 0.05001435435
382 380 0.04975525929
383 381 0.04948290657
384 382 0.04929070362
385 383 0.04910496235
386 384 0.04881316411
387 385 0.04858449122
388 386 0.04830036156
389 387 0.04799888759
390 388 0.04764501811
391 389 0.04735869133
392 390 0.04717676982
393 391 0.04702198439
394 392 0.04680681448
395 393 0.04651695718
396 394 0.04627615035
397 395 0.04606321813
398 396 0.04589309758
399 397 0.04556006451
400 398 0.0453589455
401 399 0.04514104221
402 400 0.04478819136
403 401 0.04443821936
404 402 0.04430866417
405 403 0.0442286461
406 404 0.0441045591
407 405 0.04396148169
408 406 0.04383991606
409 407 0.04369433117
410 408 0.04359398001
411 409 0.04335115657
412 410 0.0432504709
413 411 0.04312499215
414 412 0.0430111312
415 413 0.04290906293
416 414 0.04276421934
417 415 0.04243290185
418 416 0.04207124094
419 417 0.04190756042
420 418 0.04169658039
421 419 0.04139810429
422 420 0.04116312391
423 421 0.0409318057
424 422 0.04070910759
425 423 0.04058466131
426 424 0.04045016676
427 425 0.04033295089
428 426 0.04012984965
429 427 0.03995289728
430 428 0.03970746465
431 429 0.03949775163
432 430 0.03932209138
433 431 0.03910362134
434 432 0.03886318619
435 433 0.03869829193
436 434 0.03846231914
437 435 0.03826711438
438 436 0.03807202579
439 437 0.03786720622
440 438 0.0377457012
441 439 0.03764523055
442 440 0.0375267263
443 441 0.03739077589
444 442 0.03720490686
445 443 0.03707441914
446 444 0.0369518746
447 445 0.03679965145
448 446 0.03665723969
449 447 0.03647330679
450 448 0.03637255373
451 449 0.03622583483
452 450 0.03607239533
453 451 0.03601574616
454 452 0.03584618827
455 453 0.03574008044
456 454 0.03569749187
457 455 0.03557336502
458 456 0.03539082977
459 457 0.0352789402
460 458 0.03505536388
461 459 0.03495206755
462 460 0.03478190743
463 461 0.03465723213
464 462 0.03453161153
465 463 0.034334941
466 464 0.03416935733
467 465 0.03405767511
468 466 0.03394943303
469 467 0.03374958171
470 468 0.03363658898
471 469 0.03341608014
472 470 0.03332221514
473 471 0.03326545376
474 472 0.0331200389
475 473 0.03302212556
476 474 0.03287398575
477 475 0.03278840054
478 476 0.03265757698
479 477 0.03252871663
480 478 0.03236889905
481 479 0.03224167231
482 480 0.03216011999
483 481 0.03192498158
484 482 0.03183675149
485 483 0.03171906574
486 484 0.03156880496
487 485 0.03145563437
488 486 0.03136115044
489 487 0.03122164061
490 488 0.03109933328
491 489 0.03102429087
492 490 0.03095523906
493 491 0.03085009531
494 492 0.03071320709
495 493 0.03055708091
496 494 0.03041588169
497 495 0.03027938644
498 496 0.0301679957
499 497 0.03003869429
500 498 0.02994175927
501 499 0.02983188626

501
catboost_info/time_left.tsv Normal file
View File

@@ -0,0 +1,501 @@
iter Passed Remaining
0 31 15495
1 56 13981
2 78 13029
3 102 12704
4 125 12422
5 149 12287
6 173 12237
7 198 12212
8 221 12080
9 244 11997
10 269 11962
11 294 11978
12 320 12005
13 345 11987
14 370 11970
15 393 11913
16 416 11823
17 439 11776
18 463 11746
19 487 11705
20 512 11685
21 537 11674
22 560 11629
23 584 11596
24 607 11551
25 631 11510
26 655 11490
27 680 11469
28 705 11455
29 729 11422
30 754 11417
31 779 11393
32 803 11368
33 829 11366
34 854 11356
35 879 11329
36 902 11287
37 925 11249
38 948 11215
39 972 11184
40 995 11146
41 1020 11126
42 1045 11116
43 1068 11073
44 1091 11036
45 1113 10994
46 1137 10964
47 1160 10923
48 1185 10913
49 1209 10887
50 1233 10858
51 1258 10841
52 1280 10796
53 1305 10781
54 1329 10756
55 1353 10731
56 1377 10708
57 1398 10660
58 1422 10631
59 1446 10606
60 1468 10569
61 1490 10529
62 1513 10497
63 1537 10473
64 1561 10450
65 1585 10429
66 1610 10406
67 1636 10394
68 1659 10367
69 1683 10338
70 1706 10308
71 1730 10284
72 1754 10262
73 1778 10236
74 1801 10206
75 1825 10186
76 1850 10165
77 1875 10147
78 1899 10123
79 1924 10104
80 1948 10076
81 1971 10049
82 1994 10021
83 2016 9987
84 2041 9967
85 2065 9941
86 2089 9917
87 2113 9893
88 2139 9879
89 2162 9851
90 2186 9828
91 2211 9807
92 2234 9780
93 2258 9756
94 2283 9734
95 2307 9709
96 2332 9690
97 2356 9667
98 2380 9641
99 2404 9616
100 2428 9591
101 2450 9561
102 2474 9536
103 2497 9509
104 2518 9475
105 2542 9449
106 2567 9429
107 2590 9402
108 2613 9375
109 2638 9355
110 2661 9328
111 2685 9304
112 2711 9284
113 2736 9264
114 2764 9254
115 2788 9231
116 2814 9213
117 2840 9195
118 2865 9175
119 2892 9158
120 2916 9135
121 2941 9114
122 2965 9089
123 2990 9068
124 3014 9042
125 3038 9019
126 3062 8993
127 3087 8974
128 3113 8955
129 3137 8929
130 3162 8908
131 3185 8881
132 3208 8852
133 3232 8829
134 3256 8803
135 3278 8775
136 3302 8751
137 3327 8728
138 3352 8706
139 3378 8688
140 3402 8663
141 3426 8639
142 3452 8619
143 3476 8595
144 3501 8571
145 3524 8546
146 3547 8518
147 3571 8494
148 3593 8464
149 3616 8439
150 3641 8416
151 3665 8390
152 3688 8364
153 3711 8339
154 3737 8319
155 3761 8295
156 3785 8270
157 3809 8245
158 3832 8220
159 3856 8195
160 3881 8173
161 3907 8151
162 3931 8128
163 3954 8101
164 3980 8081
165 4004 8057
166 4031 8039
167 4056 8016
168 4080 7992
169 4103 7964
170 4127 7940
171 4152 7918
172 4177 7896
173 4201 7871
174 4224 7846
175 4247 7818
176 4274 7800
177 4299 7778
178 4329 7764
179 4359 7750
180 4386 7730
181 4424 7731
182 4465 7735
183 4500 7728
184 4527 7709
185 4559 7696
186 4586 7676
187 4617 7663
188 4642 7639
189 4667 7615
190 4690 7588
191 4715 7564
192 4738 7538
193 4762 7512
194 4786 7487
195 4809 7460
196 4834 7435
197 4861 7415
198 4888 7393
199 4913 7370
200 4937 7344
201 4959 7316
202 4981 7288
203 5007 7266
204 5030 7238
205 5052 7211
206 5075 7184
207 5100 7159
208 5124 7135
209 5148 7110
210 5174 7087
211 5197 7060
212 5219 7033
213 5245 7010
214 5268 6984
215 5293 6960
216 5319 6936
217 5342 6911
218 5368 6887
219 5392 6863
220 5418 6840
221 5443 6816
222 5469 6793
223 5493 6768
224 5518 6744
225 5542 6720
226 5568 6696
227 5594 6674
228 5618 6648
229 5642 6624
230 5665 6597
231 5692 6575
232 5716 6550
233 5738 6522
234 5762 6497
235 5784 6470
236 5808 6445
237 5830 6418
238 5854 6393
239 5880 6370
240 5905 6346
241 5932 6324
242 5958 6301
243 5983 6277
244 6006 6252
245 6031 6227
246 6055 6202
247 6079 6177
248 6105 6154
249 6130 6130
250 6156 6107
251 6180 6082
252 6206 6059
253 6231 6034
254 6255 6010
255 6280 5986
256 6305 5961
257 6330 5937
258 6354 5912
259 6378 5887
260 6404 5864
261 6429 5840
262 6451 5813
263 6476 5789
264 6503 5766
265 6529 5743
266 6552 5718
267 6576 5693
268 6601 5669
269 6626 5644
270 6650 5619
271 6673 5594
272 6697 5569
273 6723 5545
274 6748 5521
275 6773 5497
276 6797 5472
277 6821 5447
278 6846 5422
279 6870 5398
280 6895 5373
281 6918 5348
282 6943 5324
283 6968 5300
284 6994 5276
285 7018 5251
286 7040 5225
287 7066 5201
288 7089 5176
289 7114 5151
290 7139 5127
291 7162 5102
292 7186 5077
293 7209 5051
294 7232 5026
295 7255 5000
296 7279 4975
297 7302 4950
298 7325 4924
299 7349 4899
300 7372 4873
301 7397 4849
302 7422 4825
303 7445 4800
304 7468 4774
305 7490 4748
306 7512 4722
307 7534 4696
308 7557 4671
309 7580 4646
310 7604 4621
311 7628 4596
312 7650 4570
313 7674 4545
314 7700 4522
315 7723 4497
316 7747 4472
317 7770 4447
318 7795 4422
319 7820 4399
320 7844 4374
321 7867 4349
322 7892 4324
323 7914 4299
324 7937 4274
325 7961 4249
326 7984 4224
327 8008 4199
328 8033 4175
329 8056 4150
330 8080 4125
331 8105 4101
332 8126 4075
333 8149 4050
334 8172 4025
335 8196 4000
336 8218 3975
337 8242 3950
338 8267 3926
339 8288 3900
340 8311 3875
341 8335 3850
342 8356 3825
343 8380 3800
344 8403 3775
345 8427 3750
346 8450 3726
347 8474 3701
348 8498 3676
349 8519 3651
350 8542 3626
351 8565 3601
352 8588 3576
353 8613 3552
354 8636 3527
355 8659 3502
356 8682 3477
357 8705 3452
358 8728 3428
359 8750 3403
360 8776 3379
361 8799 3354
362 8822 3329
363 8846 3305
364 8868 3280
365 8890 3255
366 8913 3230
367 8935 3205
368 8958 3180
369 8982 3155
370 9003 3130
371 9028 3106
372 9051 3081
373 9073 3056
374 9095 3031
375 9117 3006
376 9141 2982
377 9164 2957
378 9186 2932
379 9208 2907
380 9230 2883
381 9256 2859
382 9278 2834
383 9300 2809
384 9324 2785
385 9346 2760
386 9372 2736
387 9394 2711
388 9420 2688
389 9445 2664
390 9467 2639
391 9491 2614
392 9515 2590
393 9539 2566
394 9564 2542
395 9590 2518
396 9614 2494
397 9640 2470
398 9665 2446
399 9689 2422
400 9716 2398
401 9739 2374
402 9761 2349
403 9784 2325
404 9807 2300
405 9830 2276
406 9853 2251
407 9876 2226
408 9900 2202
409 9921 2177
410 9943 2153
411 9965 2128
412 9987 2103
413 10008 2079
414 10030 2054
415 10055 2030
416 10081 2006
417 10105 1982
418 10129 1958
419 10156 1934
420 10180 1910
421 10206 1886
422 10229 1862
423 10252 1837
424 10274 1813
425 10295 1788
426 10318 1764
427 10340 1739
428 10364 1715
429 10388 1691
430 10410 1666
431 10434 1642
432 10458 1618
433 10481 1594
434 10507 1570
435 10531 1545
436 10555 1521
437 10579 1497
438 10601 1473
439 10623 1448
440 10645 1424
441 10669 1400
442 10692 1375
443 10714 1351
444 10736 1327
445 10759 1302
446 10783 1278
447 10808 1254
448 10829 1230
449 10852 1205
450 10874 1181
451 10897 1157
452 10921 1133
453 10943 1108
454 10965 1084
455 10988 1060
456 11013 1036
457 11035 1012
458 11058 987
459 11081 963
460 11105 939
461 11128 915
462 11150 891
463 11173 866
464 11197 842
465 11220 818
466 11243 794
467 11267 770
468 11289 746
469 11314 722
470 11339 698
471 11361 674
472 11388 650
473 11411 625
474 11436 601
475 11460 577
476 11482 553
477 11506 529
478 11530 505
479 11553 481
480 11575 457
481 11599 433
482 11622 409
483 11645 384
484 11670 360
485 11693 336
486 11714 312
487 11739 288
488 11762 264
489 11783 240
490 11806 216
491 11829 192
492 11853 168
493 11877 144
494 11900 120
495 11924 96
496 11947 72
497 11970 48
498 11992 24
499 12015 0
1 iter Passed Remaining
2 0 31 15495
3 1 56 13981
4 2 78 13029
5 3 102 12704
6 4 125 12422
7 5 149 12287
8 6 173 12237
9 7 198 12212
10 8 221 12080
11 9 244 11997
12 10 269 11962
13 11 294 11978
14 12 320 12005
15 13 345 11987
16 14 370 11970
17 15 393 11913
18 16 416 11823
19 17 439 11776
20 18 463 11746
21 19 487 11705
22 20 512 11685
23 21 537 11674
24 22 560 11629
25 23 584 11596
26 24 607 11551
27 25 631 11510
28 26 655 11490
29 27 680 11469
30 28 705 11455
31 29 729 11422
32 30 754 11417
33 31 779 11393
34 32 803 11368
35 33 829 11366
36 34 854 11356
37 35 879 11329
38 36 902 11287
39 37 925 11249
40 38 948 11215
41 39 972 11184
42 40 995 11146
43 41 1020 11126
44 42 1045 11116
45 43 1068 11073
46 44 1091 11036
47 45 1113 10994
48 46 1137 10964
49 47 1160 10923
50 48 1185 10913
51 49 1209 10887
52 50 1233 10858
53 51 1258 10841
54 52 1280 10796
55 53 1305 10781
56 54 1329 10756
57 55 1353 10731
58 56 1377 10708
59 57 1398 10660
60 58 1422 10631
61 59 1446 10606
62 60 1468 10569
63 61 1490 10529
64 62 1513 10497
65 63 1537 10473
66 64 1561 10450
67 65 1585 10429
68 66 1610 10406
69 67 1636 10394
70 68 1659 10367
71 69 1683 10338
72 70 1706 10308
73 71 1730 10284
74 72 1754 10262
75 73 1778 10236
76 74 1801 10206
77 75 1825 10186
78 76 1850 10165
79 77 1875 10147
80 78 1899 10123
81 79 1924 10104
82 80 1948 10076
83 81 1971 10049
84 82 1994 10021
85 83 2016 9987
86 84 2041 9967
87 85 2065 9941
88 86 2089 9917
89 87 2113 9893
90 88 2139 9879
91 89 2162 9851
92 90 2186 9828
93 91 2211 9807
94 92 2234 9780
95 93 2258 9756
96 94 2283 9734
97 95 2307 9709
98 96 2332 9690
99 97 2356 9667
100 98 2380 9641
101 99 2404 9616
102 100 2428 9591
103 101 2450 9561
104 102 2474 9536
105 103 2497 9509
106 104 2518 9475
107 105 2542 9449
108 106 2567 9429
109 107 2590 9402
110 108 2613 9375
111 109 2638 9355
112 110 2661 9328
113 111 2685 9304
114 112 2711 9284
115 113 2736 9264
116 114 2764 9254
117 115 2788 9231
118 116 2814 9213
119 117 2840 9195
120 118 2865 9175
121 119 2892 9158
122 120 2916 9135
123 121 2941 9114
124 122 2965 9089
125 123 2990 9068
126 124 3014 9042
127 125 3038 9019
128 126 3062 8993
129 127 3087 8974
130 128 3113 8955
131 129 3137 8929
132 130 3162 8908
133 131 3185 8881
134 132 3208 8852
135 133 3232 8829
136 134 3256 8803
137 135 3278 8775
138 136 3302 8751
139 137 3327 8728
140 138 3352 8706
141 139 3378 8688
142 140 3402 8663
143 141 3426 8639
144 142 3452 8619
145 143 3476 8595
146 144 3501 8571
147 145 3524 8546
148 146 3547 8518
149 147 3571 8494
150 148 3593 8464
151 149 3616 8439
152 150 3641 8416
153 151 3665 8390
154 152 3688 8364
155 153 3711 8339
156 154 3737 8319
157 155 3761 8295
158 156 3785 8270
159 157 3809 8245
160 158 3832 8220
161 159 3856 8195
162 160 3881 8173
163 161 3907 8151
164 162 3931 8128
165 163 3954 8101
166 164 3980 8081
167 165 4004 8057
168 166 4031 8039
169 167 4056 8016
170 168 4080 7992
171 169 4103 7964
172 170 4127 7940
173 171 4152 7918
174 172 4177 7896
175 173 4201 7871
176 174 4224 7846
177 175 4247 7818
178 176 4274 7800
179 177 4299 7778
180 178 4329 7764
181 179 4359 7750
182 180 4386 7730
183 181 4424 7731
184 182 4465 7735
185 183 4500 7728
186 184 4527 7709
187 185 4559 7696
188 186 4586 7676
189 187 4617 7663
190 188 4642 7639
191 189 4667 7615
192 190 4690 7588
193 191 4715 7564
194 192 4738 7538
195 193 4762 7512
196 194 4786 7487
197 195 4809 7460
198 196 4834 7435
199 197 4861 7415
200 198 4888 7393
201 199 4913 7370
202 200 4937 7344
203 201 4959 7316
204 202 4981 7288
205 203 5007 7266
206 204 5030 7238
207 205 5052 7211
208 206 5075 7184
209 207 5100 7159
210 208 5124 7135
211 209 5148 7110
212 210 5174 7087
213 211 5197 7060
214 212 5219 7033
215 213 5245 7010
216 214 5268 6984
217 215 5293 6960
218 216 5319 6936
219 217 5342 6911
220 218 5368 6887
221 219 5392 6863
222 220 5418 6840
223 221 5443 6816
224 222 5469 6793
225 223 5493 6768
226 224 5518 6744
227 225 5542 6720
228 226 5568 6696
229 227 5594 6674
230 228 5618 6648
231 229 5642 6624
232 230 5665 6597
233 231 5692 6575
234 232 5716 6550
235 233 5738 6522
236 234 5762 6497
237 235 5784 6470
238 236 5808 6445
239 237 5830 6418
240 238 5854 6393
241 239 5880 6370
242 240 5905 6346
243 241 5932 6324
244 242 5958 6301
245 243 5983 6277
246 244 6006 6252
247 245 6031 6227
248 246 6055 6202
249 247 6079 6177
250 248 6105 6154
251 249 6130 6130
252 250 6156 6107
253 251 6180 6082
254 252 6206 6059
255 253 6231 6034
256 254 6255 6010
257 255 6280 5986
258 256 6305 5961
259 257 6330 5937
260 258 6354 5912
261 259 6378 5887
262 260 6404 5864
263 261 6429 5840
264 262 6451 5813
265 263 6476 5789
266 264 6503 5766
267 265 6529 5743
268 266 6552 5718
269 267 6576 5693
270 268 6601 5669
271 269 6626 5644
272 270 6650 5619
273 271 6673 5594
274 272 6697 5569
275 273 6723 5545
276 274 6748 5521
277 275 6773 5497
278 276 6797 5472
279 277 6821 5447
280 278 6846 5422
281 279 6870 5398
282 280 6895 5373
283 281 6918 5348
284 282 6943 5324
285 283 6968 5300
286 284 6994 5276
287 285 7018 5251
288 286 7040 5225
289 287 7066 5201
290 288 7089 5176
291 289 7114 5151
292 290 7139 5127
293 291 7162 5102
294 292 7186 5077
295 293 7209 5051
296 294 7232 5026
297 295 7255 5000
298 296 7279 4975
299 297 7302 4950
300 298 7325 4924
301 299 7349 4899
302 300 7372 4873
303 301 7397 4849
304 302 7422 4825
305 303 7445 4800
306 304 7468 4774
307 305 7490 4748
308 306 7512 4722
309 307 7534 4696
310 308 7557 4671
311 309 7580 4646
312 310 7604 4621
313 311 7628 4596
314 312 7650 4570
315 313 7674 4545
316 314 7700 4522
317 315 7723 4497
318 316 7747 4472
319 317 7770 4447
320 318 7795 4422
321 319 7820 4399
322 320 7844 4374
323 321 7867 4349
324 322 7892 4324
325 323 7914 4299
326 324 7937 4274
327 325 7961 4249
328 326 7984 4224
329 327 8008 4199
330 328 8033 4175
331 329 8056 4150
332 330 8080 4125
333 331 8105 4101
334 332 8126 4075
335 333 8149 4050
336 334 8172 4025
337 335 8196 4000
338 336 8218 3975
339 337 8242 3950
340 338 8267 3926
341 339 8288 3900
342 340 8311 3875
343 341 8335 3850
344 342 8356 3825
345 343 8380 3800
346 344 8403 3775
347 345 8427 3750
348 346 8450 3726
349 347 8474 3701
350 348 8498 3676
351 349 8519 3651
352 350 8542 3626
353 351 8565 3601
354 352 8588 3576
355 353 8613 3552
356 354 8636 3527
357 355 8659 3502
358 356 8682 3477
359 357 8705 3452
360 358 8728 3428
361 359 8750 3403
362 360 8776 3379
363 361 8799 3354
364 362 8822 3329
365 363 8846 3305
366 364 8868 3280
367 365 8890 3255
368 366 8913 3230
369 367 8935 3205
370 368 8958 3180
371 369 8982 3155
372 370 9003 3130
373 371 9028 3106
374 372 9051 3081
375 373 9073 3056
376 374 9095 3031
377 375 9117 3006
378 376 9141 2982
379 377 9164 2957
380 378 9186 2932
381 379 9208 2907
382 380 9230 2883
383 381 9256 2859
384 382 9278 2834
385 383 9300 2809
386 384 9324 2785
387 385 9346 2760
388 386 9372 2736
389 387 9394 2711
390 388 9420 2688
391 389 9445 2664
392 390 9467 2639
393 391 9491 2614
394 392 9515 2590
395 393 9539 2566
396 394 9564 2542
397 395 9590 2518
398 396 9614 2494
399 397 9640 2470
400 398 9665 2446
401 399 9689 2422
402 400 9716 2398
403 401 9739 2374
404 402 9761 2349
405 403 9784 2325
406 404 9807 2300
407 405 9830 2276
408 406 9853 2251
409 407 9876 2226
410 408 9900 2202
411 409 9921 2177
412 410 9943 2153
413 411 9965 2128
414 412 9987 2103
415 413 10008 2079
416 414 10030 2054
417 415 10055 2030
418 416 10081 2006
419 417 10105 1982
420 418 10129 1958
421 419 10156 1934
422 420 10180 1910
423 421 10206 1886
424 422 10229 1862
425 423 10252 1837
426 424 10274 1813
427 425 10295 1788
428 426 10318 1764
429 427 10340 1739
430 428 10364 1715
431 429 10388 1691
432 430 10410 1666
433 431 10434 1642
434 432 10458 1618
435 433 10481 1594
436 434 10507 1570
437 435 10531 1545
438 436 10555 1521
439 437 10579 1497
440 438 10601 1473
441 439 10623 1448
442 440 10645 1424
443 441 10669 1400
444 442 10692 1375
445 443 10714 1351
446 444 10736 1327
447 445 10759 1302
448 446 10783 1278
449 447 10808 1254
450 448 10829 1230
451 449 10852 1205
452 450 10874 1181
453 451 10897 1157
454 452 10921 1133
455 453 10943 1108
456 454 10965 1084
457 455 10988 1060
458 456 11013 1036
459 457 11035 1012
460 458 11058 987
461 459 11081 963
462 460 11105 939
463 461 11128 915
464 462 11150 891
465 463 11173 866
466 464 11197 842
467 465 11220 818
468 466 11243 794
469 467 11267 770
470 468 11289 746
471 469 11314 722
472 470 11339 698
473 471 11361 674
474 472 11388 650
475 473 11411 625
476 474 11436 601
477 475 11460 577
478 476 11482 553
479 477 11506 529
480 478 11530 505
481 479 11553 481
482 480 11575 457
483 481 11599 433
484 482 11622 409
485 483 11645 384
486 484 11670 360
487 485 11693 336
488 486 11714 312
489 487 11739 288
490 488 11762 264
491 489 11783 240
492 490 11806 216
493 491 11829 192
494 492 11853 168
495 493 11877 144
496 494 11900 120
497 495 11924 96
498 496 11947 72
499 497 11970 48
500 498 11992 24
501 499 12015 0

View File

@@ -0,0 +1,5 @@
model,stage,accuracy,f1_macro,f2_macro,recall_macro,precision_macro,f1_class0,f1_class1,f2_class0,f2_class1,recall_class0,recall_class1,precision_class0,precision_class1,TP,TN,FP,FN
CatBoost_balanced,train,0.9843784049402589,0.8696686267343388,0.8824472728294012,0.8916952848998795,0.8508242781484853,0.9919396338322237,0.7473976196364541,0.9908276010500254,0.7740669446087769,0.9900881006639566,0.7933024691358025,0.9938004847319636,0.7078480715650071,789,26898,140,19
CatBoost_balanced,test,0.9802604802604803,0.8348421298822796,0.8461546793313885,0.8541662696976049,0.8176680164072361,0.9898162729658793,0.6798679867986799,0.988757446094471,0.703551912568306,0.9880528191154894,0.7202797202797203,0.991586032814472,0.64375,103,4714,57,40
LGBM_KMEANS_SMOTE,train,0.9883286128479746,0.8784419356817057,0.8436008106620193,0.8240767336379762,0.9582821430574249,0.9940169232360254,0.7628669481273861,0.9966698960611392,0.6905317252628993,0.9984466771524954,0.6497067901234568,0.9896275269971563,0.9269367591176938,775,27036,2,33
LGBM_KMEANS_SMOTE,test,0.9865689865689866,0.8543196878009516,0.8121616449258658,0.7895809912158687,0.9600745182511498,0.9931221342225928,0.7155172413793104,0.9964866786565728,0.6278366111951589,0.9987424020121568,0.5804195804195804,0.9875647668393782,0.9325842696629213,83,4765,6,60
1 model stage accuracy f1_macro f2_macro recall_macro precision_macro f1_class0 f1_class1 f2_class0 f2_class1 recall_class0 recall_class1 precision_class0 precision_class1 TP TN FP FN
2 CatBoost_balanced train 0.9843784049402589 0.8696686267343388 0.8824472728294012 0.8916952848998795 0.8508242781484853 0.9919396338322237 0.7473976196364541 0.9908276010500254 0.7740669446087769 0.9900881006639566 0.7933024691358025 0.9938004847319636 0.7078480715650071 789 26898 140 19
3 CatBoost_balanced test 0.9802604802604803 0.8348421298822796 0.8461546793313885 0.8541662696976049 0.8176680164072361 0.9898162729658793 0.6798679867986799 0.988757446094471 0.703551912568306 0.9880528191154894 0.7202797202797203 0.991586032814472 0.64375 103 4714 57 40
4 LGBM_KMEANS_SMOTE train 0.9883286128479746 0.8784419356817057 0.8436008106620193 0.8240767336379762 0.9582821430574249 0.9940169232360254 0.7628669481273861 0.9966698960611392 0.6905317252628993 0.9984466771524954 0.6497067901234568 0.9896275269971563 0.9269367591176938 775 27036 2 33
5 LGBM_KMEANS_SMOTE test 0.9865689865689866 0.8543196878009516 0.8121616449258658 0.7895809912158687 0.9600745182511498 0.9931221342225928 0.7155172413793104 0.9964866786565728 0.6278366111951589 0.9987424020121568 0.5804195804195804 0.9875647668393782 0.9325842696629213 83 4765 6 60

497
runner.py
View File

@@ -1,14 +1,14 @@
import pandas
from catboost import CatBoostClassifier
from imblearn.ensemble import BalancedRandomForestClassifier
# from imblearn.ensemble import BalancedRandomForestClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
# from sklearn.ensemble import RandomForestClassifier
# from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
# from xgboost import XGBClassifier
from custom_models.LGBMFocalWrapper import LGBMFocalWrapper
# from custom_models.LGBMFocalWrapper import LGBMFocalWrapper
from train import test_model, train_model_with_kfold
data_frame = pandas.read_csv("./data/Ketamin_icp_cleaned.csv")
@@ -28,33 +28,266 @@ pos = sum(y_train == 1)
scale_pos = neg / pos if pos > 0 else 1.0
models = [
# {
# "name": "LGBM_FOCAL_LOSS",
# "model": LGBMFocalWrapper(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# random_state=42,
# ),
# "smote": True,
# "smote_method": "kmeans",
# },
# {
# "name": "LGBM_SMOTE",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "smote",
# },
# {
# "name": "LGBM_KMEANS_SMOTE",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "kmeans",
# },
# {
# "name": "LGBM_SVM_SMOTE",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "svm",
# },
# {
# "name": "LGBM_BORDERLINE_SMOTE",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "borderline",
# },
# {
# "name": "LGBM_ADASYN_SMOTE",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "adasyn",
# },
# {
# "name": "LGBM_Balanced",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# class_weight="balanced",
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": False,
# },
# {
# "name": "LGBM_DART",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# boosting_type="dart",
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "kmeans",
# },
# {
# "name": "LGBM_GOSS",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# boosting_type="goss",
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "kmeans",
# },
# {
# "name": "LGBM_RF",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# boosting_type="rf",
# subsample=0.8,
# colsample_bytree=0.8,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "kmeans",
# },
# {
# "name": "LGBM_scale_pos_weight",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# scale_pos_weight=scale_pos,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": False,
# },
# {
# "name": "LGBM_is_unbalance",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# is_unbalance=True,
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": False,
# },
# {
# "name": "LGBM_DART",
# "model": LGBMClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=-1,
# subsample=0.8,
# colsample_bytree=0.8,
# boosting_type="dart",
# random_state=42,
# verbose=-1,
# n_jobs=-1,
# ),
# "smote": True,
# "smote_method": "kmeans",
# },
# {
# "name": "XGB_scale_pos_weight",
# "model": XGBClassifier(
# n_estimators=500,
# learning_rate=0.05,
# max_depth=6,
# scale_pos_weight=scale_pos,
# random_state=42,
# n_jobs=-1,
# use_label_encoder=False,
# eval_metric="logloss",
# ),
# "smote": False,
# },
# {
# "name": "CatBoost_balanced",
# "model": CatBoostClassifier(
# iterations=500,
# learning_rate=0.05,
# depth=6,
# class_weights=[1, scale_pos],
# random_state=42,
# verbose=0,
# ),
# "smote": False,
# },
# {
# "name": "RandomForest_balanced",
# "model": RandomForestClassifier(
# n_estimators=500,
# max_depth=None,
# class_weight="balanced",
# random_state=42,
# n_jobs=-1,
# ),
# "smote": False,
# },
# {
# "name": "BalancedRandomForest",
# "model": BalancedRandomForestClassifier(
# n_estimators=500,
# max_depth=None,
# random_state=42,
# n_jobs=-1,
# ),
# "smote": False,
# },
# {
# "name": "LogisticRegression_balanced",
# "model": LogisticRegression(
# max_iter=1000,
# class_weight="balanced",
# solver="liblinear",
# random_state=42,
# ),
# "smote": False,
# },
{
"name": "LGBM_FOCAL_LOSS",
"model": LGBMFocalWrapper(
n_estimators=500,
"name": "CatBoost_balanced",
"model": CatBoostClassifier(
iterations=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
depth=6,
class_weights=[1, scale_pos],
random_state=42,
),
"smote": True,
"smote_method": "kmeans",
},
{
"name": "LGBM_SMOTE",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
random_state=42,
verbose=-1,
verbose=0,
n_jobs=-1,
),
"smote": True,
"smote_method": "smote",
"smote": False,
},
{
"name": "LGBM_KMEANS_SMOTE",
@@ -70,212 +303,8 @@ models = [
),
"smote": True,
"smote_method": "kmeans",
},
{
"name": "LGBM_SVM_SMOTE",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": True,
"smote_method": "svm",
},
{
"name": "LGBM_BORDERLINE_SMOTE",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": True,
"smote_method": "borderline",
},
{
"name": "LGBM_ADASYN_SMOTE",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": True,
"smote_method": "adasyn",
},
{
"name": "LGBM_Balanced",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
class_weight="balanced",
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": False,
},
{
"name": "LGBM_DART",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
boosting_type="dart",
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": True,
"smote_method": "kmeans",
},
{
"name": "LGBM_GOSS",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
boosting_type="goss",
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": True,
"smote_method": "kmeans",
},
{
"name": "LGBM_RF",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
boosting_type="rf",
subsample=0.8,
colsample_bytree=0.8,
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": True,
"smote_method": "kmeans",
},
{
"name": "LGBM_scale_pos_weight",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
scale_pos_weight=scale_pos,
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": False,
},
{
"name": "LGBM_is_unbalance",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
is_unbalance=True,
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": False,
},
{
"name": "LGBM_DART",
"model": LGBMClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=-1,
subsample=0.8,
colsample_bytree=0.8,
boosting_type="dart",
random_state=42,
verbose=-1,
n_jobs=-1,
),
"smote": True,
"smote_method": "kmeans",
},
{
"name": "XGB_scale_pos_weight",
"model": XGBClassifier(
n_estimators=500,
learning_rate=0.05,
max_depth=6,
scale_pos_weight=scale_pos,
random_state=42,
n_jobs=-1,
use_label_encoder=False,
eval_metric="logloss",
),
"smote": False,
},
{
"name": "CatBoost_balanced",
"model": CatBoostClassifier(
iterations=500,
learning_rate=0.05,
depth=6,
class_weights=[1, scale_pos],
random_state=42,
verbose=0,
),
"smote": False,
},
{
"name": "RandomForest_balanced",
"model": RandomForestClassifier(
n_estimators=500,
max_depth=None,
class_weight="balanced",
random_state=42,
n_jobs=-1,
),
"smote": False,
},
{
"name": "BalancedRandomForest",
"model": BalancedRandomForestClassifier(
n_estimators=500,
max_depth=None,
random_state=42,
n_jobs=-1,
),
"smote": False,
},
{
"name": "LogisticRegression_balanced",
"model": LogisticRegression(
max_iter=1000,
class_weight="balanced",
solver="liblinear",
random_state=42,
),
"smote": False,
},
}
]
@@ -308,7 +337,7 @@ for m in models:
)
results_df = pandas.DataFrame(results_to_save)
csv_file = "lightgbm_results.csv"
csv_file = "lgbm_vs_cat_kmeans_smote_k10_results.csv"
try:
results_df.to_csv(csv_file, mode="a", index=False, header=False)

View File

@@ -43,7 +43,7 @@ def train_model_with_kfold(
if smote:
if smote_method.lower() == "kmeans":
sampler = KMeansSMOTE(
k_neighbors=5,
k_neighbors=10,
cluster_balance_threshold=0.1,
random_state=random_state,
)