main.R
This commit is contained in:
65
main.R
65
main.R
@@ -4,14 +4,11 @@
|
||||
library(lightgbm)
|
||||
library(MLmetrics)
|
||||
|
||||
# 1. Load your data
|
||||
df <- read.csv("./data/Ketamine_icp.csv")
|
||||
|
||||
# --- 2. Data Preparation ---
|
||||
target_name <- "label"
|
||||
target_name <- "label"
|
||||
target_index <- which(names(df) == target_name)
|
||||
|
||||
# Prepare target variable
|
||||
if (is.factor(df[, target_index])) {
|
||||
y <- as.numeric(df[, target_index]) - 1
|
||||
} else {
|
||||
@@ -19,18 +16,16 @@ if (is.factor(df[, target_index])) {
|
||||
}
|
||||
|
||||
# Create the data matrix for features
|
||||
X <- as.matrix(df[, -target_index])
|
||||
X <- as.matrix(df[, -target_index])
|
||||
|
||||
# --- 3. Split Data into Training and Testing Sets ---
|
||||
set.seed(42)
|
||||
train_index <- sample(nrow(X), size = 0.8 * nrow(X))
|
||||
set.seed(42)
|
||||
train_index <- sample(nrow(X), size = 0.8 * nrow(X))
|
||||
|
||||
X_train <- X[train_index, ]
|
||||
X_test <- X[-train_index, ]
|
||||
y_train <- y[train_index]
|
||||
y_test <- y[-train_index]
|
||||
|
||||
# --- 4. Get Feature Importance from Full Model ---
|
||||
lgb_train_full <- lgb.Dataset(data = X_train, label = y_train)
|
||||
|
||||
params <- list(
|
||||
@@ -64,23 +59,21 @@ results_df <- data.frame(
|
||||
Recall_class1 = numeric()
|
||||
)
|
||||
|
||||
# --- 5. Loop through different numbers of top features ---
|
||||
cat("Training models with different numbers of top features...\n")
|
||||
cat("=====================================================\n")
|
||||
|
||||
for (i in 1:num_features) {
|
||||
cat(paste("Training model with top", i, "features...\n"))
|
||||
|
||||
|
||||
# Select top i features
|
||||
top_features <- importance$Feature[1:i]
|
||||
|
||||
|
||||
# Subset training and test data
|
||||
X_train_sub <- X_train[, top_features, drop = FALSE]
|
||||
X_test_sub <- X_test[, top_features, drop = FALSE]
|
||||
|
||||
|
||||
# Create LightGBM dataset
|
||||
lgb_train_sub <- lgb.Dataset(data = X_train_sub, label = y_train)
|
||||
|
||||
|
||||
# Train model with subset of features
|
||||
bst_sub <- lgb.train(
|
||||
params = params,
|
||||
@@ -88,27 +81,27 @@ for (i in 1:num_features) {
|
||||
nrounds = 100,
|
||||
verbose = -1
|
||||
)
|
||||
|
||||
|
||||
# Make predictions
|
||||
pred_prob_sub <- predict(bst_sub, X_test_sub)
|
||||
pred_class_sub <- as.numeric(pred_prob_sub > 0.5)
|
||||
|
||||
|
||||
# Calculate metrics
|
||||
accuracy <- mean(pred_class_sub == y_test)
|
||||
|
||||
|
||||
# For binary classification
|
||||
if (length(unique(y_test)) == 2) {
|
||||
# F1 score for class 1
|
||||
f1 <- F1_Score(y_true = y_test, y_pred = pred_class_sub, positive = 1)
|
||||
|
||||
|
||||
# Precision and Recall for class 1
|
||||
precision <- Precision(y_true = y_test, y_pred = pred_class_sub, positive = 1)
|
||||
recall <- Recall(y_true = y_test, y_pred = pred_class_sub, positive = 1)
|
||||
|
||||
|
||||
# F2-score (beta = 2)
|
||||
beta <- 2
|
||||
f2 <- (1 + beta^2) * (precision * recall) / (beta^2 * precision + recall)
|
||||
|
||||
|
||||
# Handle cases where precision or recall might be NaN
|
||||
if (is.na(f2)) {
|
||||
f2 <- 0
|
||||
@@ -120,7 +113,7 @@ for (i in 1:num_features) {
|
||||
recall <- NA
|
||||
f2 <- NA
|
||||
}
|
||||
|
||||
|
||||
# Store results
|
||||
results_df <- rbind(results_df, data.frame(
|
||||
Num_Features = i,
|
||||
@@ -131,49 +124,44 @@ for (i in 1:num_features) {
|
||||
Precision_class1 = round(precision, 4),
|
||||
Recall_class1 = round(recall, 4)
|
||||
))
|
||||
|
||||
|
||||
# Print progress
|
||||
cat(paste(" Accuracy:", round(accuracy, 4),
|
||||
cat(paste(" Accuracy:", round(accuracy, 4),
|
||||
"| F1:", round(f1, 4),
|
||||
"| F2:", round(f2, 4),
|
||||
"| Precision:", round(precision, 4),
|
||||
"| Recall:", round(recall, 4), "\n"))
|
||||
}
|
||||
|
||||
cat("=====================================================\n")
|
||||
|
||||
# --- 6. Display Results ---
|
||||
cat("\nSummary of Results:\n")
|
||||
cat("===================\n")
|
||||
cat("Summary of Results:\n")
|
||||
print(results_df)
|
||||
|
||||
# Find best performing models based on different metrics
|
||||
cat("\nBest Performing Models:\n")
|
||||
cat("=======================\n")
|
||||
|
||||
# Best by F1 score
|
||||
if (!all(is.na(results_df$F1_class1))) {
|
||||
best_f1_idx <- which.max(results_df$F1_class1)
|
||||
cat(paste("Best F1-score (", results_df$F1_class1[best_f1_idx],
|
||||
cat(paste("Best F1-score (", results_df$F1_class1[best_f1_idx],
|
||||
") with", results_df$Num_Features[best_f1_idx], "features\n"))
|
||||
}
|
||||
|
||||
# Best by F2 score
|
||||
if (!all(is.na(results_df$F2_class1))) {
|
||||
best_f2_idx <- which.max(results_df$F2_class1)
|
||||
cat(paste("Best F2-score (", results_df$F2_class1[best_f2_idx],
|
||||
cat(paste("Best F2-score (", results_df$F2_class1[best_f2_idx],
|
||||
") with", results_df$Num_Features[best_f2_idx], "features\n"))
|
||||
}
|
||||
|
||||
# Best by Accuracy
|
||||
best_acc_idx <- which.max(results_df$Accuracy)
|
||||
cat(paste("Best Accuracy (", results_df$Accuracy[best_acc_idx],
|
||||
cat(paste("Best Accuracy (", results_df$Accuracy[best_acc_idx],
|
||||
") with", results_df$Num_Features[best_acc_idx], "features\n"))
|
||||
|
||||
# --- 7. Optional: Plot metrics vs number of features ---
|
||||
if (require(ggplot2)) {
|
||||
library(ggplot2)
|
||||
|
||||
|
||||
# Plot F1 and F2 scores
|
||||
p1 <- ggplot(results_df, aes(x = Num_Features)) +
|
||||
geom_line(aes(y = F1_class1, color = "F1 Score"), size = 1) +
|
||||
@@ -185,7 +173,7 @@ if (require(ggplot2)) {
|
||||
y = "Score Value") +
|
||||
theme_minimal() +
|
||||
scale_color_manual(values = c("F1 Score" = "blue", "F2 Score" = "red"))
|
||||
|
||||
|
||||
# Plot Accuracy
|
||||
p2 <- ggplot(results_df, aes(x = Num_Features, y = Accuracy)) +
|
||||
geom_line(color = "darkgreen", size = 1) +
|
||||
@@ -194,7 +182,7 @@ if (require(ggplot2)) {
|
||||
x = "Number of Top Features",
|
||||
y = "Accuracy") +
|
||||
theme_minimal()
|
||||
|
||||
|
||||
# Plot Precision and Recall
|
||||
p3 <- ggplot(results_df, aes(x = Num_Features)) +
|
||||
geom_line(aes(y = Precision_class1, color = "Precision"), size = 1) +
|
||||
@@ -206,17 +194,14 @@ if (require(ggplot2)) {
|
||||
y = "Score Value") +
|
||||
theme_minimal() +
|
||||
scale_color_manual(values = c("Precision" = "purple", "Recall" = "orange"))
|
||||
|
||||
|
||||
# Display plots
|
||||
print(p1)
|
||||
print(p2)
|
||||
print(p3)
|
||||
}
|
||||
|
||||
# --- 8. Save results to CSV ---
|
||||
write.csv(results_df, "feature_selection_results.csv", row.names = FALSE)
|
||||
cat("\nResults saved to 'feature_selection_results.csv'\n")
|
||||
|
||||
# --- 9. Display top 20 feature importance plot ---
|
||||
lgb.plot.importance(importance, top_n = min(20, num_features))
|
||||
|
||||
|
||||
Reference in New Issue
Block a user