training data without x features
This commit is contained in:
@@ -4,14 +4,14 @@ from lightgbm_model import LIGHT_GBM
|
||||
|
||||
data_frame = pandas.read_csv("../data/Ketamine_icp_no_missing.csv")
|
||||
|
||||
cat_boost_results = pandas.read_csv("./cat_boost_tuning_results_no_x.csv")
|
||||
lgbm_results = pandas.read_csv("./lightgbm_tuning_results.csv")
|
||||
cat_boost_results = pandas.read_csv("../cat_boost_tuning_results.csv")
|
||||
lgbm_results = pandas.read_csv("../lightgbm_tuning_results.csv")
|
||||
|
||||
|
||||
def get_best_params(data_frame, metrics=["f2_class1", "f1_class1"]):
|
||||
max_f2 = cat_boost_results[metrics[0]].max()
|
||||
def get_best_params(results, metrics=["f2_class1", "f1_class1"]):
|
||||
max_f2 = results[metrics[0]].max()
|
||||
|
||||
best_f2_rows = cat_boost_results[cat_boost_results[metrics[0]] == max_f2]
|
||||
best_f2_rows = results[results[metrics[0]] == max_f2]
|
||||
|
||||
best_row = best_f2_rows.loc[best_f2_rows[metrics[1]].idxmax()]
|
||||
|
||||
@@ -44,12 +44,12 @@ lgbm_test_metrics_clean = clean_metrics(lgbm_test_metrics)
|
||||
|
||||
comparison_df = pd.DataFrame(
|
||||
[
|
||||
{"model": "lightgbm_no_x", **cat_test_metrics_clean},
|
||||
{"model": "catboost", **cat_test_metrics_clean},
|
||||
{"model": "lightgbm", **lgbm_test_metrics_clean},
|
||||
]
|
||||
)
|
||||
|
||||
comparison_filename = "comparison_lightgbm_no_x_vs_lightgbm.csv"
|
||||
comparison_filename = "comparison_catboost_lightgbm.csv"
|
||||
comparison_df.to_csv(comparison_filename, index=False)
|
||||
|
||||
print(f"Comparison saved to: {comparison_filename}")
|
||||
|
||||
Reference in New Issue
Block a user