training data without x features
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -11,7 +11,15 @@ from tqdm import tqdm
|
||||
|
||||
|
||||
class CAT_BOOST:
|
||||
def __init__(self, data_frame, params={}, n_split_kfold=5, test_size=0.15, seed=42):
|
||||
def __init__(
|
||||
self,
|
||||
data_frame,
|
||||
params={},
|
||||
n_split_kfold=5,
|
||||
test_size=0.15,
|
||||
seed=42,
|
||||
output_file_tuning="cat_boost_tuning_results.csv",
|
||||
):
|
||||
self.data_frame = data_frame
|
||||
self.params = params
|
||||
self.n_split_kfold = n_split_kfold
|
||||
@@ -35,6 +43,8 @@ class CAT_BOOST:
|
||||
self.kmeans_estimator = self.params.get("kmeans_estimator", 5)
|
||||
self.tuning_results = None
|
||||
|
||||
self.output_file_tuning = output_file_tuning
|
||||
|
||||
def preprocess(self):
|
||||
self.scaling_method = self.params.get("scaling_method", None)
|
||||
|
||||
@@ -208,6 +218,6 @@ class CAT_BOOST:
|
||||
df_tuning = pandas.concat(
|
||||
[df_tuning.drop(columns=["metrics"]), metrics_df], axis=1
|
||||
)
|
||||
df_tuning.to_csv("cat_boost_tuning_results.csv", index=False)
|
||||
df_tuning.to_csv(self.output_file_tuning, index=False)
|
||||
|
||||
return
|
||||
|
||||
@@ -2,9 +2,9 @@ import pandas
|
||||
from catboost_model import CAT_BOOST
|
||||
from lightgbm_model import LIGHT_GBM
|
||||
|
||||
data_frame = pandas.read_csv("./data/Ketamine_icp_no_missing.csv")
|
||||
data_frame = pandas.read_csv("../data/Ketamine_icp_no_missing.csv")
|
||||
|
||||
cat_boost_results = pandas.read_csv("./cat_boost_tuning_results.csv")
|
||||
cat_boost_results = pandas.read_csv("./cat_boost_tuning_results_no_x.csv")
|
||||
lgbm_results = pandas.read_csv("./lightgbm_tuning_results.csv")
|
||||
|
||||
|
||||
@@ -44,12 +44,12 @@ lgbm_test_metrics_clean = clean_metrics(lgbm_test_metrics)
|
||||
|
||||
comparison_df = pd.DataFrame(
|
||||
[
|
||||
{"model": "catboost", **cat_test_metrics_clean},
|
||||
{"model": "lightgbm_no_x", **cat_test_metrics_clean},
|
||||
{"model": "lightgbm", **lgbm_test_metrics_clean},
|
||||
]
|
||||
)
|
||||
|
||||
comparison_filename = "comparison_catboost_lightgbm.csv"
|
||||
comparison_filename = "comparison_lightgbm_no_x_vs_lightgbm.csv"
|
||||
comparison_df.to_csv(comparison_filename, index=False)
|
||||
|
||||
print(f"Comparison saved to: {comparison_filename}")
|
||||
|
||||
@@ -11,7 +11,15 @@ from tqdm import tqdm
|
||||
|
||||
|
||||
class LIGHT_GBM:
|
||||
def __init__(self, data_frame, params={}, n_split_kfold=5, test_size=0.15, seed=42):
|
||||
def __init__(
|
||||
self,
|
||||
data_frame,
|
||||
params={},
|
||||
n_split_kfold=5,
|
||||
test_size=0.15,
|
||||
seed=42,
|
||||
output_file_tuning="lightgbm_tuning_results.csv",
|
||||
):
|
||||
self.data_frame = data_frame
|
||||
self.params = params
|
||||
self.n_split_kfold = n_split_kfold
|
||||
@@ -37,6 +45,8 @@ class LIGHT_GBM:
|
||||
self.kmeans_estimator = self.params.get("kmeans_estimator", 5)
|
||||
self.tuning_results = None
|
||||
|
||||
self.output_file_tuning = output_file_tuning
|
||||
|
||||
def preprocess(self):
|
||||
self.scaling_method = self.params.get("scaling_method", None)
|
||||
if self.scaling_method:
|
||||
@@ -232,6 +242,6 @@ class LIGHT_GBM:
|
||||
df_tuning = pandas.concat(
|
||||
[df_tuning.drop(columns=["metrics"]), metrics_df], axis=1
|
||||
)
|
||||
df_tuning.to_csv("lightgbm_tuning_results.csv", index=False)
|
||||
df_tuning.to_csv(self.output_file_tuning, index=False)
|
||||
|
||||
return
|
||||
|
||||
Reference in New Issue
Block a user