TSVMs
A collection of Twin Support Vector Machine (TSVM) implementations for pattern classification.
Implementations
- TSVM - Twin Support Vector Machine
- UTSVM - Unsupervised Twin Support Vector Machine
- NewtonUTSVM - Newton Method-based Unsupervised Twin Support Vector Machine
- DTSVM - Deep Twin Support Vector Machine
- LSTSVM - Least Squares Twin Support Vector Machine
- DLSTSVM - Deep Least Squares Twin Support Vector Machine
- RUTSVM - Robust Unsupervised Twin Support Vector Machine
- RULSTSVM - Robust Unsupervised Least Squares Twin Support Vector Machine
Usage
Each implementation follows a similar interface:
from TSVM import TSVM
# Prepare your data
# X: features (n_samples, n_features)
# y: labels (n_samples, 1) with values +1 or -1
# C1, C2: regularization parameters
# Create and train the model
model = TSVM(X, y, C1=1.0, C2=1.0)
model.fit()
# Make predictions
model.predict(x_test)
predictions = model.get_preds()
Requirements
- numpy
- cvxopt
References
- TSVM: IEEE Paper
- UTSVM: ScienceDirect
- DTSVM: IEEE Paper
- LSTSVM: ScienceDirect
- RUTSVM: ScienceDirect
Author
Saeed Khosravi
Description
Languages
Python
100%