# TSVMs A collection of Twin Support Vector Machine (TSVM) implementations for pattern classification. ## Implementations - **TSVM** - Twin Support Vector Machine - **UTSVM** - Unsupervised Twin Support Vector Machine - **DTSVM** - Deep Twin Support Vector Machine - **LSTSVM** - Least Squares Twin Support Vector Machine - **DLSTSVM** - Deep Least Squares Twin Support Vector Machine - **RUTSVM** - Robust Unsupervised Twin Support Vector Machine - **RULSTSVM** - Robust Unsupervised Least Squares Twin Support Vector Machine ## Usage Each implementation follows a similar interface: ```python from TSVM import TSVM # Prepare your data # X: features (n_samples, n_features) # y: labels (n_samples, 1) with values +1 or -1 # C1, C2: regularization parameters # Create and train the model model = TSVM(X, y, C1=1.0, C2=1.0) model.fit() # Make predictions model.predict(x_test) predictions = model.get_preds() ``` ## Requirements - numpy - cvxopt ## References - TSVM: [IEEE Paper](https://ieeexplore.ieee.org/document/4135685) - UTSVM: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0893608012002304) - DTSVM: [IEEE Paper](https://ieeexplore.ieee.org/abstract/document/7022580) - LSTSVM: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0957417408006854) - RUTSVM: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0031320319304510) ## Author Saeed Khosravi