""" Article : Twin Support Vector Machine with Universum data Link : https://sci-hub.tw/https://www.sciencedirect.com/science/article/abs/pii/S0893608012002304 Author : Saeed Khosravi """ import numpy as np from cvxopt import solvers, matrix class UTSVM: def __init__(self, X, y, U, C1, C2, CU, eps): self.X = X self.y = y self.U = U self.C1 = C1 self.C2 = C2 self.CU = CU self.eps = eps def fit(self): self.w1, self.b1 = self.plane1(self.X, self.y, self.U, self.C1, self.CU, self.eps) self.w2, self.b2 = self.plane2(self.X, self.y, self.U, self.C2, self.CU, self.eps) def predict(self, x_test): norm2_w1 = np.linalg.norm(self.w1) norm2_w2 = np.linalg.norm(self.w2) distance_1 = np.abs(np.dot(x_test, self.w1) + self.b1)/norm2_w1 distance_2 = np.abs(np.dot(x_test, self.w2) + self.b2)/norm2_w2 y_pred = np.zeros_like(distance_1).reshape((-1, 1)) for i in range(y_pred.shape[0]): if (distance_1[i] < distance_2[i]): y_pred[i][0] = 1; else: y_pred[i][0] = -1; self.preds = y_pred def plane1(self, X, y, U, c, cu, eps): A = X[np.ix_(y[:,0] == 1),:][0,:,:] B = X[np.ix_(y[:,0] == -1),:][0,:,:] m1 = A.shape[0] m2 = B.shape[0] ep = np.ones((m1, 1)) en = np.ones((m2, 1)) mu = U.shape[0] eu = np.ones((mu, 1)) H = np.concatenate((A, ep), axis = 1) G = np.concatenate((B, en), axis = 1) O = np.concatenate((U, eu), axis = 1) HTH = np.dot(H.T, H) I = np.eye(HTH.shape[0], HTH.shape[1]) HTH_inv = np.linalg.inv(1e-4*I + HTH) _P = np.dot(np.dot(G, HTH_inv), G.T) _P = np.concatenate((_P, -np.dot(np.dot(G, HTH_inv), O.T)), axis = 1) _P2 = -np.dot(np.dot(O, HTH_inv), G.T) _P2 = np.concatenate((_P2, np.dot(np.dot(O, HTH_inv), O.T)), axis = 1) _P = np.concatenate((_P, _P2), axis = 0) # (en + eu , en + eu) _q = np.concatenate((-en.T, (1-eps)*eu.T), axis = 1).T # (en + eu , 1) _G1 = np.concatenate(( np.eye(m2, m2), np.zeros((m2, mu))), axis = 1) _G2 = np.concatenate((-np.eye(m2, m2), np.zeros((m2, mu))), axis = 1) _G3 = np.concatenate(( np.zeros((mu, m2)), np.eye(mu, mu)), axis = 1) _G4 = np.concatenate(( np.zeros((mu, m2)), -np.eye(mu, mu)), axis = 1) _G = np.concatenate((_G1, _G2), axis = 0) _G = np.concatenate((_G , _G3), axis = 0) _G = np.concatenate((_G, _G4), axis = 0) # (4 * m2, m2 + mu) _h = np.zeros((2*m2 + 2*mu, 1)) _h[:m2, 0] = c _h[2*m2:2*m2+mu, :] = cu _P = matrix(_P, tc= 'd') _q = matrix(_q, tc = 'd') _G = matrix(_G, tc = 'd') _h = matrix(_h, tc = 'd') qp_sol = solvers.qp(_P, _q, _G, _h, kktsolver='ldl', options={'kktreg':1e-9, 'show_progress':False}) qp_sol = np.array(qp_sol['x']) alphas = qp_sol[:m2, 0] mus = qp_sol[m2:, 0] vp = -np.dot(HTH_inv, np.dot(G.T, alphas) - np.dot(O.T, mus)) w = vp[:vp.shape[0]-1] b = vp[vp.shape[0]-1] return w, b def plane2(self, X, y, U, c, cu, eps): A = X[np.ix_(y[:,0] == -1),:][0,:,:] B = X[np.ix_(y[:,0] == 1),:][0,:,:] m1 = A.shape[0] m2 = B.shape[0] en = np.ones((m1, 1)) ep = np.ones((m2, 1)) mu = U.shape[0] eu = np.ones((mu, 1)) Q = np.concatenate((A, en), axis = 1) P = np.concatenate((B, ep), axis = 1) S = np.concatenate((U, eu), axis = 1) QTQ = np.dot(Q.T, Q) I = np.eye(QTQ.shape[0], QTQ.shape[1]) QTQ_inv = np.linalg.inv(1e-4*I + QTQ) _P = np.dot(np.dot(P, QTQ_inv), P.T) _P = np.concatenate((_P, -np.dot(np.dot(P, QTQ_inv), S.T)), axis = 1) _P2 = -np.dot(np.dot(S, QTQ_inv), P.T) _P2 = np.concatenate((_P2, np.dot(np.dot(S, QTQ_inv), S.T)), axis = 1) _P = np.concatenate((_P, _P2), axis = 0) # (ep + eu , ep + eu) _q = np.concatenate((-ep.T, (1-eps)*eu.T), axis = 1).T # (ep + eu , 1) _G1 = np.concatenate(( np.eye(m2, m2), np.zeros((m2, mu))), axis = 1) _G2 = np.concatenate((-np.eye(m2, m2), np.zeros((m2, mu))), axis = 1) _G3 = np.concatenate(( np.zeros((mu, m2)), np.eye(mu, mu)), axis = 1) _G4 = np.concatenate(( np.zeros((mu, m2)), -np.eye(mu, mu)), axis = 1) _G = np.concatenate((_G1, _G2), axis = 0) _G = np.concatenate((_G , _G3), axis = 0) _G = np.concatenate((_G, _G4), axis = 0) # (4 * m2, m2 + mu) _h = np.zeros((2*m2 + 2*mu, 1)) _h[:m2, 0] = c _h[2*m2:2*m2+mu, :] = cu _P = matrix(_P, tc= 'd') _q = matrix(_q, tc = 'd') _G = matrix(_G, tc = 'd') _h = matrix(_h, tc = 'd') qp_sol = solvers.qp(_P, _q, _G, _h, kktsolver='ldl', options={'kktreg':1e-9, 'show_progress':False}) qp_sol = np.array(qp_sol['x']) alphas = qp_sol[:m2, 0] mus = qp_sol[m2:, 0] vp = -np.dot(QTQ_inv, np.dot(P.T, alphas) - np.dot(S.T, mus)) w = vp[:vp.shape[0]-1] b = vp[vp.shape[0]-1] return w, b def get_params(self): return self.w1, self.b1, self.w2, self.b2 def get_preds(self): return self.preds