Files
Resume/models/utils.py
2025-11-08 19:15:39 +01:00

107 lines
3.4 KiB
Python

from datetime import datetime
from ultralytics import YOLO
import numpy as np
import cv2
import csv
import os
def min_max_normalize(matrix):
min_vals = np.min(matrix, axis=0)
max_vals = np.max(matrix, axis=0)
range_vals = max_vals - min_vals
range_vals[range_vals == 0] = 1
normalized_matrix = (matrix - min_vals) / range_vals
return normalized_matrix
def load_dataset(csv_file,unlabeled_ratio=0.15, test_ratio=0.4):
data = np.genfromtxt(csv_file, delimiter=",", dtype=str, skip_header=1)
class_names = np.unique(data[:, -1])
print(f"classes: {class_names[0]} / {class_names[1]}")
print(f"dataset samples: {data.shape[0]} / features: {data.shape[1] - 1}")
if class_names[0] in np.unique(data[:, -1]) or class_names[1] in np.unique(data[:, -1]):
data[:, -1] = np.where(data[:, -1] == class_names[0], 1, -1)
data = data.astype(np.float32)
features = min_max_normalize(data[:, :-1])
np.random.seed(10000)
indices = np.random.permutation(len(features))
split_idx = int(len(features) * (1 - unlabeled_ratio))
labeled_test_features = features[indices[:split_idx]]
labeled_test_labels = data[indices[:split_idx]][:, -1]
U = features[indices[split_idx:]]
test_split_idx = int(len(labeled_test_features) * (1 - test_ratio))
X = labeled_test_features[:test_split_idx]
y = labeled_test_labels[:test_split_idx]
X_test = labeled_test_features[test_split_idx:]
y_test = labeled_test_labels[test_split_idx:]
y = y.reshape(y.shape[0], 1)
y_test = y_test.reshape(y_test.shape[0], 1)
return X, y, X_test, y_test, U
def save_result(model, dataset, accuracy, params, results_file):
file_exists = os.path.isfile(results_file)
with open(results_file, mode="a", newline="") as f:
writer = csv.DictWriter(f, fieldnames=["timestamp", "model", "dataset", "parameters", "accuracy"])
if not file_exists:
writer.writeheader()
writer.writerow({
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"model": model,
"dataset": dataset,
"parameters": params,
"accuracy": accuracy
})
def load_results(limit, results_file):
if not os.path.isfile(results_file):
return []
with open(results_file, mode="r") as f:
reader = list(csv.DictReader(f))
return reader[::-1][:limit]
def predict_yolo(image_path, confidence):
print("Predicting:", image_path)
# Load YOLO model
model = YOLO("templates/static/public/files/repair/weights/14_class_best.pt")
# Run prediction on the input image
results = model.predict(
source=f"templates/static/public/files/repair/images/{image_path}",
save=False,
conf=confidence,
device = "cpu",
batch=4,
imgsz=320
)
predicted_img = results[0].plot() # OpenCV image with boxes drawn
# Save location (always overwrite the same file)
output_dir = "templates/static/public/files/repair/predicted"
os.makedirs(output_dir, exist_ok=True)
output_filename = "predicted_image.jpg" # fixed name
output_path = os.path.join(output_dir, output_filename)
print(f"image {predicted_img} written in : ", output_path)
# Write image
cv2.imwrite(output_path, predicted_img)
# Return only the filename so template can use it
return output_filename