Files
Resume/models/LSTSVM.py
2025-11-08 19:15:39 +01:00

104 lines
3.4 KiB
Python

"""
Article : Least squares twin support vector machines for pattern classification
Link : https://sci-hub.tw/https://www.sciencedirect.com/science/article/abs/pii/S0957417408006854
Author : Saeed Khosravi
"""
import numpy as np
class LSTSVM:
"""
Least Squares Support Vector Machines
A = Instances with label +1
B = Instances with label -1
C1 = hyperparameter for hyperplane 1
C2 = hyperparameter for hyperplane 2
"""
def __init__(self, X, y, C1, C2, eps = 1e-4):
self.A = X[np.ix_(y[:,0] == 1),:][0,:,:]
self.B = X[np.ix_(y[:,0] == -1),:][0,:,:]
self.C1 = C1
self.C2 = C2
self.eps = eps
def fit(self):
A = self.A
B = self.B
C1 = self.C1
C2 = self.C2
eps = self.eps
m1, n = A.shape
m2, n = B.shape
e1 = np.ones((m1, 1))
e2 = np.ones((m2, 1))
X = np.concatenate((A, B), axis=0)
G = np.concatenate((A, e1), axis=1)
H = np.concatenate((B, e2), axis=1)
if(m1 < m2):
Y = self.calc_Y_or_Z(H)
#w1, b1
GYGT = np.dot(np.dot(G, Y), G.T)
I = np.eye(GYGT.shape[0], GYGT.shape[1])
w1_b1 = - np.dot(Y - np.dot(np.dot(np.dot(Y, G.T), np.linalg.inv(C1*I + GYGT)), np.dot(G, Y)),
np.dot(H.T, np.ones((H.T.shape[1], 1))))
w1 = w1_b1[:-1, :]
b1 = w1_b1[ -1, :]
#w2, b2
w2_b2 = C2 * np.dot(Y - np.dot(np.dot(np.dot(Y, G.T), np.linalg.inv((I/C2)+GYGT)), np.dot(G, Y)),
np.dot(G.T, np.ones((G.T.shape[1], 1))))
w2 = w2_b2[:-1, :]
b2 = w2_b2[ -1, :]
else:
Z = self.calc_Y_or_Z(G)
#w1, b1
HZHT = np.dot(np.dot(H, Z), H.T)
I = np.eye(HZHT.shape[0], HZHT.shape[1])
w1_b1 = -C1*np.dot(Z - np.dot(np.dot(np.dot(Z, H.T), np.linalg.inv((I/C1) + HZHT)), np.dot(H, Z)),
np.dot(H.T, np.ones((H.T.shape[1], 1))))
w1 = w1_b1[:-1, :]
b1 = w1_b1[ -1, :]
#w2, b2
w2_b2 = np.dot(Z - np.dot(np.dot(np.dot(Z, H.T), np.linalg.inv(C2*I + HZHT)), np.dot(H, Z)),
np.dot(G.T, np.ones((G.T.shape[1], 1))))
w2 = w2_b2[:-1, :]
b2 = w2_b2[ -1, :]
self.w1 = w1
self.w2 = w2
self.b1 = b1
self.b2 = b2
def predict(self, x_test, y_test):
distance1 = np.abs(np.dot(x_test, self.w1) + self.b1)
distance2 = np.abs(np.dot(x_test, self.w2) + self.b2)
y_pred = np.zeros_like(y_test)
for d in range(y_pred.shape[0]):
if (distance1[d] < distance2[d]):
y_pred[d][0] = 1;
else:
y_pred[d][0] = -1;
self.preds = y_pred
def calc_Y_or_Z(self, M):
MMT = np.dot(M, M.T)
I = np.eye(MMT.shape[0], MMT.shape[1])
tmp = np.dot(np.dot(M.T, np.linalg.inv(self.eps*I + MMT)), M)
I = np.eye(tmp.shape[0], tmp.shape[1])
return (1/self.eps)*(I-tmp)
def get_params(self):
return self.w1, self.b1, self.w2, self.b2
def get_preds(self):
return self.preds
def score(self, y_test):
accuracy = np.sum(self.preds == y_test)/y_test.shape[0]
return accuracy