Files
Resume/ultralytics/models/yolo/yoloe/predict.py
2025-11-08 19:15:39 +01:00

170 lines
7.0 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import numpy as np
import torch
from ultralytics.data.augment import LoadVisualPrompt
from ultralytics.models.yolo.detect import DetectionPredictor
from ultralytics.models.yolo.segment import SegmentationPredictor
class YOLOEVPDetectPredictor(DetectionPredictor):
"""
A mixin class for YOLO-EVP (Enhanced Visual Prompting) predictors.
This mixin provides common functionality for YOLO models that use visual prompting, including
model setup, prompt handling, and preprocessing transformations.
Attributes:
model (torch.nn.Module): The YOLO model for inference.
device (torch.device): Device to run the model on (CPU or CUDA).
prompts (dict | torch.Tensor): Visual prompts containing class indices and bounding boxes or masks.
Methods:
setup_model: Initialize the YOLO model and set it to evaluation mode.
set_prompts: Set the visual prompts for the model.
pre_transform: Preprocess images and prompts before inference.
inference: Run inference with visual prompts.
get_vpe: Process source to get visual prompt embeddings.
"""
def setup_model(self, model, verbose: bool = True):
"""
Set up the model for prediction.
Args:
model (torch.nn.Module): Model to load or use.
verbose (bool, optional): If True, provides detailed logging.
"""
super().setup_model(model, verbose=verbose)
self.done_warmup = True
def set_prompts(self, prompts):
"""
Set the visual prompts for the model.
Args:
prompts (dict): Dictionary containing class indices and bounding boxes or masks.
Must include a 'cls' key with class indices.
"""
self.prompts = prompts
def pre_transform(self, im):
"""
Preprocess images and prompts before inference.
This method applies letterboxing to the input image and transforms the visual prompts
(bounding boxes or masks) accordingly.
Args:
im (list): List containing a single input image.
Returns:
(list): Preprocessed image ready for model inference.
Raises:
ValueError: If neither valid bounding boxes nor masks are provided in the prompts.
"""
img = super().pre_transform(im)
bboxes = self.prompts.pop("bboxes", None)
masks = self.prompts.pop("masks", None)
category = self.prompts["cls"]
if len(img) == 1:
visuals = self._process_single_image(img[0].shape[:2], im[0].shape[:2], category, bboxes, masks)
prompts = visuals.unsqueeze(0).to(self.device) # (1, N, H, W)
else:
# NOTE: only supports bboxes as prompts for now
assert bboxes is not None, f"Expected bboxes, but got {bboxes}!"
# NOTE: needs list[np.ndarray]
assert isinstance(bboxes, list) and all(isinstance(b, np.ndarray) for b in bboxes), (
f"Expected list[np.ndarray], but got {bboxes}!"
)
assert isinstance(category, list) and all(isinstance(b, np.ndarray) for b in category), (
f"Expected list[np.ndarray], but got {category}!"
)
assert len(im) == len(category) == len(bboxes), (
f"Expected same length for all inputs, but got {len(im)}vs{len(category)}vs{len(bboxes)}!"
)
visuals = [
self._process_single_image(img[i].shape[:2], im[i].shape[:2], category[i], bboxes[i])
for i in range(len(img))
]
prompts = torch.nn.utils.rnn.pad_sequence(visuals, batch_first=True).to(self.device) # (B, N, H, W)
self.prompts = prompts.half() if self.model.fp16 else prompts.float()
return img
def _process_single_image(self, dst_shape, src_shape, category, bboxes=None, masks=None):
"""
Process a single image by resizing bounding boxes or masks and generating visuals.
Args:
dst_shape (tuple): The target shape (height, width) of the image.
src_shape (tuple): The original shape (height, width) of the image.
category (str): The category of the image for visual prompts.
bboxes (list | np.ndarray, optional): A list of bounding boxes in the format [x1, y1, x2, y2].
masks (np.ndarray, optional): A list of masks corresponding to the image.
Returns:
(torch.Tensor): The processed visuals for the image.
Raises:
ValueError: If neither `bboxes` nor `masks` are provided.
"""
if bboxes is not None and len(bboxes):
bboxes = np.array(bboxes, dtype=np.float32)
if bboxes.ndim == 1:
bboxes = bboxes[None, :]
# Calculate scaling factor and adjust bounding boxes
gain = min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1]) # gain = old / new
bboxes *= gain
bboxes[..., 0::2] += round((dst_shape[1] - src_shape[1] * gain) / 2 - 0.1)
bboxes[..., 1::2] += round((dst_shape[0] - src_shape[0] * gain) / 2 - 0.1)
elif masks is not None:
# Resize and process masks
resized_masks = super().pre_transform(masks)
masks = np.stack(resized_masks) # (N, H, W)
masks[masks == 114] = 0 # Reset padding values to 0
else:
raise ValueError("Please provide valid bboxes or masks")
# Generate visuals using the visual prompt loader
return LoadVisualPrompt().get_visuals(category, dst_shape, bboxes, masks)
def inference(self, im, *args, **kwargs):
"""
Run inference with visual prompts.
Args:
im (torch.Tensor): Input image tensor.
*args (Any): Variable length argument list.
**kwargs (Any): Arbitrary keyword arguments.
Returns:
(torch.Tensor): Model prediction results.
"""
return super().inference(im, vpe=self.prompts, *args, **kwargs)
def get_vpe(self, source):
"""
Process the source to get the visual prompt embeddings (VPE).
Args:
source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | list | tuple): The source
of the image to make predictions on. Accepts various types including file paths, URLs, PIL
images, numpy arrays, and torch tensors.
Returns:
(torch.Tensor): The visual prompt embeddings (VPE) from the model.
"""
self.setup_source(source)
assert len(self.dataset) == 1, "get_vpe only supports one image!"
for _, im0s, _ in self.dataset:
im = self.preprocess(im0s)
return self.model(im, vpe=self.prompts, return_vpe=True)
class YOLOEVPSegPredictor(YOLOEVPDetectPredictor, SegmentationPredictor):
"""Predictor for YOLO-EVP segmentation tasks combining detection and segmentation capabilities."""
pass