# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ops class SegmentationPredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on a segmentation model. This class specializes in processing segmentation model outputs, handling both bounding boxes and masks in the prediction results. Attributes: args (dict): Configuration arguments for the predictor. model (torch.nn.Module): The loaded YOLO segmentation model. batch (list): Current batch of images being processed. Methods: postprocess: Apply non-max suppression and process segmentation detections. construct_results: Construct a list of result objects from predictions. construct_result: Construct a single result object from a prediction. Examples: >>> from ultralytics.utils import ASSETS >>> from ultralytics.models.yolo.segment import SegmentationPredictor >>> args = dict(model="yolo11n-seg.pt", source=ASSETS) >>> predictor = SegmentationPredictor(overrides=args) >>> predictor.predict_cli() """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initialize the SegmentationPredictor with configuration, overrides, and callbacks. This class specializes in processing segmentation model outputs, handling both bounding boxes and masks in the prediction results. Args: cfg (dict): Configuration for the predictor. overrides (dict, optional): Configuration overrides that take precedence over cfg. _callbacks (list, optional): List of callback functions to be invoked during prediction. """ super().__init__(cfg, overrides, _callbacks) self.args.task = "segment" def postprocess(self, preds, img, orig_imgs): """ Apply non-max suppression and process segmentation detections for each image in the input batch. Args: preds (tuple): Model predictions, containing bounding boxes, scores, classes, and mask coefficients. img (torch.Tensor): Input image tensor in model format, with shape (B, C, H, W). orig_imgs (list | torch.Tensor | np.ndarray): Original image or batch of images. Returns: (list): List of Results objects containing the segmentation predictions for each image in the batch. Each Results object includes both bounding boxes and segmentation masks. Examples: >>> predictor = SegmentationPredictor(overrides=dict(model="yolo11n-seg.pt")) >>> results = predictor.postprocess(preds, img, orig_img) """ # Extract protos - tuple if PyTorch model or array if exported protos = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] return super().postprocess(preds[0], img, orig_imgs, protos=protos) def construct_results(self, preds, img, orig_imgs, protos): """ Construct a list of result objects from the predictions. Args: preds (list[torch.Tensor]): List of predicted bounding boxes, scores, and masks. img (torch.Tensor): The image after preprocessing. orig_imgs (list[np.ndarray]): List of original images before preprocessing. protos (list[torch.Tensor]): List of prototype masks. Returns: (list[Results]): List of result objects containing the original images, image paths, class names, bounding boxes, and masks. """ return [ self.construct_result(pred, img, orig_img, img_path, proto) for pred, orig_img, img_path, proto in zip(preds, orig_imgs, self.batch[0], protos) ] def construct_result(self, pred, img, orig_img, img_path, proto): """ Construct a single result object from the prediction. Args: pred (torch.Tensor): The predicted bounding boxes, scores, and masks. img (torch.Tensor): The image after preprocessing. orig_img (np.ndarray): The original image before preprocessing. img_path (str): The path to the original image. proto (torch.Tensor): The prototype masks. Returns: (Results): Result object containing the original image, image path, class names, bounding boxes, and masks. """ if pred.shape[0] == 0: # save empty boxes masks = None elif self.args.retina_masks: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) masks = ops.process_mask_native(proto, pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC else: masks = ops.process_mask(proto, pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) if masks is not None: keep = masks.sum((-2, -1)) > 0 # only keep predictions with masks pred, masks = pred[keep], masks[keep] return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)