# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from __future__ import annotations from pathlib import Path from typing import Any import numpy as np import torch from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.utils import LOGGER, ops from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, kpt_iou class PoseValidator(DetectionValidator): """ A class extending the DetectionValidator class for validation based on a pose model. This validator is specifically designed for pose estimation tasks, handling keypoints and implementing specialized metrics for pose evaluation. Attributes: sigma (np.ndarray): Sigma values for OKS calculation, either OKS_SIGMA or ones divided by number of keypoints. kpt_shape (list[int]): Shape of the keypoints, typically [17, 3] for COCO format. args (dict): Arguments for the validator including task set to "pose". metrics (PoseMetrics): Metrics object for pose evaluation. Methods: preprocess: Preprocess batch by converting keypoints data to float and moving it to the device. get_desc: Return description of evaluation metrics in string format. init_metrics: Initialize pose estimation metrics for YOLO model. _prepare_batch: Prepare a batch for processing by converting keypoints to float and scaling to original dimensions. _prepare_pred: Prepare and scale keypoints in predictions for pose processing. _process_batch: Return correct prediction matrix by computing Intersection over Union (IoU) between detections and ground truth. plot_val_samples: Plot and save validation set samples with ground truth bounding boxes and keypoints. plot_predictions: Plot and save model predictions with bounding boxes and keypoints. save_one_txt: Save YOLO pose detections to a text file in normalized coordinates. pred_to_json: Convert YOLO predictions to COCO JSON format. eval_json: Evaluate object detection model using COCO JSON format. Examples: >>> from ultralytics.models.yolo.pose import PoseValidator >>> args = dict(model="yolo11n-pose.pt", data="coco8-pose.yaml") >>> validator = PoseValidator(args=args) >>> validator() """ def __init__(self, dataloader=None, save_dir=None, args=None, _callbacks=None) -> None: """ Initialize a PoseValidator object for pose estimation validation. This validator is specifically designed for pose estimation tasks, handling keypoints and implementing specialized metrics for pose evaluation. Args: dataloader (torch.utils.data.DataLoader, optional): Dataloader to be used for validation. save_dir (Path | str, optional): Directory to save results. args (dict, optional): Arguments for the validator including task set to "pose". _callbacks (list, optional): List of callback functions to be executed during validation. Examples: >>> from ultralytics.models.yolo.pose import PoseValidator >>> args = dict(model="yolo11n-pose.pt", data="coco8-pose.yaml") >>> validator = PoseValidator(args=args) >>> validator() Notes: This class extends DetectionValidator with pose-specific functionality. It initializes with sigma values for OKS calculation and sets up PoseMetrics for evaluation. A warning is displayed when using Apple MPS due to a known bug with pose models. """ super().__init__(dataloader, save_dir, args, _callbacks) self.sigma = None self.kpt_shape = None self.args.task = "pose" self.metrics = PoseMetrics() if isinstance(self.args.device, str) and self.args.device.lower() == "mps": LOGGER.warning( "Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " "See https://github.com/ultralytics/ultralytics/issues/4031." ) def preprocess(self, batch: dict[str, Any]) -> dict[str, Any]: """Preprocess batch by converting keypoints data to float and moving it to the device.""" batch = super().preprocess(batch) batch["keypoints"] = batch["keypoints"].float() return batch def get_desc(self) -> str: """Return description of evaluation metrics in string format.""" return ("%22s" + "%11s" * 10) % ( "Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)", "Pose(P", "R", "mAP50", "mAP50-95)", ) def init_metrics(self, model: torch.nn.Module) -> None: """ Initialize evaluation metrics for YOLO pose validation. Args: model (torch.nn.Module): Model to validate. """ super().init_metrics(model) self.kpt_shape = self.data["kpt_shape"] is_pose = self.kpt_shape == [17, 3] nkpt = self.kpt_shape[0] self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt def postprocess(self, preds: torch.Tensor) -> dict[str, torch.Tensor]: """ Postprocess YOLO predictions to extract and reshape keypoints for pose estimation. This method extends the parent class postprocessing by extracting keypoints from the 'extra' field of predictions and reshaping them according to the keypoint shape configuration. The keypoints are reshaped from a flattened format to the proper dimensional structure (typically [N, 17, 3] for COCO pose format). Args: preds (torch.Tensor): Raw prediction tensor from the YOLO pose model containing bounding boxes, confidence scores, class predictions, and keypoint data. Returns: (dict[torch.Tensor]): Dict of processed prediction dictionaries, each containing: - 'bboxes': Bounding box coordinates - 'conf': Confidence scores - 'cls': Class predictions - 'keypoints': Reshaped keypoint coordinates with shape (-1, *self.kpt_shape) Note: If no keypoints are present in a prediction (empty keypoints), that prediction is skipped and continues to the next one. The keypoints are extracted from the 'extra' field which contains additional task-specific data beyond basic detection. """ preds = super().postprocess(preds) for pred in preds: pred["keypoints"] = pred.pop("extra").view(-1, *self.kpt_shape) # remove extra if exists return preds def _prepare_batch(self, si: int, batch: dict[str, Any]) -> dict[str, Any]: """ Prepare a batch for processing by converting keypoints to float and scaling to original dimensions. Args: si (int): Batch index. batch (dict[str, Any]): Dictionary containing batch data with keys like 'keypoints', 'batch_idx', etc. Returns: (dict[str, Any]): Prepared batch with keypoints scaled to original image dimensions. Notes: This method extends the parent class's _prepare_batch method by adding keypoint processing. Keypoints are scaled from normalized coordinates to original image dimensions. """ pbatch = super()._prepare_batch(si, batch) kpts = batch["keypoints"][batch["batch_idx"] == si] h, w = pbatch["imgsz"] kpts = kpts.clone() kpts[..., 0] *= w kpts[..., 1] *= h pbatch["keypoints"] = kpts return pbatch def _process_batch(self, preds: dict[str, torch.Tensor], batch: dict[str, Any]) -> dict[str, np.ndarray]: """ Return correct prediction matrix by computing Intersection over Union (IoU) between detections and ground truth. Args: preds (dict[str, torch.Tensor]): Dictionary containing prediction data with keys 'cls' for class predictions and 'keypoints' for keypoint predictions. batch (dict[str, Any]): Dictionary containing ground truth data with keys 'cls' for class labels, 'bboxes' for bounding boxes, and 'keypoints' for keypoint annotations. Returns: (dict[str, np.ndarray]): Dictionary containing the correct prediction matrix including 'tp_p' for pose true positives across 10 IoU levels. Notes: `0.53` scale factor used in area computation is referenced from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384. """ tp = super()._process_batch(preds, batch) gt_cls = batch["cls"] if gt_cls.shape[0] == 0 or preds["cls"].shape[0] == 0: tp_p = np.zeros((preds["cls"].shape[0], self.niou), dtype=bool) else: # `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384 area = ops.xyxy2xywh(batch["bboxes"])[:, 2:].prod(1) * 0.53 iou = kpt_iou(batch["keypoints"], preds["keypoints"], sigma=self.sigma, area=area) tp_p = self.match_predictions(preds["cls"], gt_cls, iou).cpu().numpy() tp.update({"tp_p": tp_p}) # update tp with kpts IoU return tp def save_one_txt(self, predn: dict[str, torch.Tensor], save_conf: bool, shape: tuple[int, int], file: Path) -> None: """ Save YOLO pose detections to a text file in normalized coordinates. Args: predn (dict[str, torch.Tensor]): Dictionary containing predictions with keys 'bboxes', 'conf', 'cls' and 'keypoints. save_conf (bool): Whether to save confidence scores. shape (tuple[int, int]): Shape of the original image (height, width). file (Path): Output file path to save detections. Notes: The output format is: class_id x_center y_center width height confidence keypoints where keypoints are normalized (x, y, visibility) values for each point. """ from ultralytics.engine.results import Results Results( np.zeros((shape[0], shape[1]), dtype=np.uint8), path=None, names=self.names, boxes=torch.cat([predn["bboxes"], predn["conf"].unsqueeze(-1), predn["cls"].unsqueeze(-1)], dim=1), keypoints=predn["keypoints"], ).save_txt(file, save_conf=save_conf) def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None: """ Convert YOLO predictions to COCO JSON format. This method takes prediction tensors and a filename, converts the bounding boxes from YOLO format to COCO format, and appends the results to the internal JSON dictionary (self.jdict). Args: predn (dict[str, torch.Tensor]): Prediction dictionary containing 'bboxes', 'conf', 'cls', and 'keypoints' tensors. pbatch (dict[str, Any]): Batch dictionary containing 'imgsz', 'ori_shape', 'ratio_pad', and 'im_file'. Notes: The method extracts the image ID from the filename stem (either as an integer if numeric, or as a string), converts bounding boxes from xyxy to xywh format, and adjusts coordinates from center to top-left corner before saving to the JSON dictionary. """ super().pred_to_json(predn, pbatch) kpts = predn["kpts"] for i, k in enumerate(kpts.flatten(1, 2).tolist()): self.jdict[-len(kpts) + i]["keypoints"] = k # keypoints def scale_preds(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> dict[str, torch.Tensor]: """Scales predictions to the original image size.""" return { **super().scale_preds(predn, pbatch), "kpts": ops.scale_coords( pbatch["imgsz"], predn["keypoints"].clone(), pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"], ), } def eval_json(self, stats: dict[str, Any]) -> dict[str, Any]: """Evaluate object detection model using COCO JSON format.""" anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" # annotations pred_json = self.save_dir / "predictions.json" # predictions return super().coco_evaluate(stats, pred_json, anno_json, ["bbox", "keypoints"], suffix=["Box", "Pose"])