# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University # Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/ # Example usage: yolo train data=VisDrone.yaml # parent # ├── ultralytics # └── datasets # └── VisDrone ← downloads here (2.3 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: VisDrone # dataset root dir train: images/train # train images (relative to 'path') 6471 images val: images/val # val images (relative to 'path') 548 images test: images/test # test-dev images (optional) 1610 images # Classes names: 0: pedestrian 1: people 2: bicycle 3: car 4: van 5: truck 6: tricycle 7: awning-tricycle 8: bus 9: motor # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import os from pathlib import Path import shutil from ultralytics.utils.downloads import download from ultralytics.utils import TQDM def visdrone2yolo(dir, split, source_name=None): """Convert VisDrone annotations to YOLO format with images/{split} and labels/{split} structure.""" from PIL import Image source_dir = dir / (source_name or f"VisDrone2019-DET-{split}") images_dir = dir / "images" / split labels_dir = dir / "labels" / split labels_dir.mkdir(parents=True, exist_ok=True) # Move images to new structure if (source_images_dir := source_dir / "images").exists(): images_dir.mkdir(parents=True, exist_ok=True) for img in source_images_dir.glob("*.jpg"): img.rename(images_dir / img.name) for f in TQDM((source_dir / "annotations").glob("*.txt"), desc=f"Converting {split}"): img_size = Image.open(images_dir / f.with_suffix(".jpg").name).size dw, dh = 1.0 / img_size[0], 1.0 / img_size[1] lines = [] with open(f, encoding="utf-8") as file: for row in [x.split(",") for x in file.read().strip().splitlines()]: if row[4] != "0": # Skip ignored regions x, y, w, h = map(int, row[:4]) cls = int(row[5]) - 1 # Convert to YOLO format x_center, y_center = (x + w / 2) * dw, (y + h / 2) * dh w_norm, h_norm = w * dw, h * dh lines.append(f"{cls} {x_center:.6f} {y_center:.6f} {w_norm:.6f} {h_norm:.6f}\n") (labels_dir / f.name).write_text("".join(lines), encoding="utf-8") # Download (ignores test-challenge split) dir = Path(yaml["path"]) # dataset root dir urls = [ "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip", "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip", "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip", # "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip", ] download(urls, dir=dir, threads=4) # Convert splits = {"VisDrone2019-DET-train": "train", "VisDrone2019-DET-val": "val", "VisDrone2019-DET-test-dev": "test"} for folder, split in splits.items(): visdrone2yolo(dir, split, folder) # convert VisDrone annotations to YOLO labels shutil.rmtree(dir / folder) # cleanup original directory