# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from __future__ import annotations import contextlib import importlib.metadata import inspect import json import logging import os import platform import re import socket import sys import threading import time from functools import lru_cache from pathlib import Path from threading import Lock from types import SimpleNamespace from urllib.parse import unquote import cv2 import numpy as np import torch from ultralytics import __version__ from ultralytics.utils.git import GitRepo from ultralytics.utils.patches import imread, imshow, imwrite, torch_save # for patches from ultralytics.utils.tqdm import TQDM # noqa # PyTorch Multi-GPU DDP Constants RANK = int(os.getenv("RANK", -1)) LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html # Other Constants ARGV = sys.argv or ["", ""] # sometimes sys.argv = [] FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLO ASSETS = ROOT / "assets" # default images ASSETS_URL = "https://github.com/ultralytics/assets/releases/download/v0.0.0" # assets GitHub URL DEFAULT_CFG_PATH = ROOT / "cfg/default.yaml" NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLO multiprocessing threads AUTOINSTALL = str(os.getenv("YOLO_AUTOINSTALL", True)).lower() == "true" # global auto-install mode VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbose mode LOGGING_NAME = "ultralytics" MACOS, LINUX, WINDOWS = (platform.system() == x for x in ["Darwin", "Linux", "Windows"]) # environment booleans MACOS_VERSION = platform.mac_ver()[0] if MACOS else None NOT_MACOS14 = not (MACOS and MACOS_VERSION.startswith("14.")) ARM64 = platform.machine() in {"arm64", "aarch64"} # ARM64 booleans PYTHON_VERSION = platform.python_version() TORCH_VERSION = str(torch.__version__) # Normalize torch.__version__ (PyTorch>1.9 returns TorchVersion objects) TORCHVISION_VERSION = importlib.metadata.version("torchvision") # faster than importing torchvision IS_VSCODE = os.environ.get("TERM_PROGRAM", False) == "vscode" RKNN_CHIPS = frozenset( { "rk3588", "rk3576", "rk3566", "rk3568", "rk3562", "rv1103", "rv1106", "rv1103b", "rv1106b", "rk2118", } ) # Rockchip processors available for export HELP_MSG = """ Examples for running Ultralytics: 1. Install the ultralytics package: pip install ultralytics 2. Use the Python SDK: from ultralytics import YOLO # Load a model model = YOLO("yolo11n.yaml") # build a new model from scratch model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training) # Use the model results = model.train(data="coco8.yaml", epochs=3) # train the model results = model.val() # evaluate model performance on the validation set results = model("https://ultralytics.com/images/bus.jpg") # predict on an image success = model.export(format="onnx") # export the model to ONNX format 3. Use the command line interface (CLI): Ultralytics 'yolo' CLI commands use the following syntax: yolo TASK MODE ARGS Where TASK (optional) is one of [detect, segment, classify, pose, obb] MODE (required) is one of [train, val, predict, export, track, benchmark] ARGS (optional) are any number of custom "arg=value" pairs like "imgsz=320" that override defaults. See all ARGS at https://docs.ultralytics.com/usage/cfg or with "yolo cfg" - Train a detection model for 10 epochs with an initial learning_rate of 0.01 yolo detect train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01 - Predict a YouTube video using a pretrained segmentation model at image size 320: yolo segment predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 - Val a pretrained detection model at batch-size 1 and image size 640: yolo detect val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640 - Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required) yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128 - Run special commands: yolo help yolo checks yolo version yolo settings yolo copy-cfg yolo cfg Docs: https://docs.ultralytics.com Community: https://community.ultralytics.com GitHub: https://github.com/ultralytics/ultralytics """ # Settings and Environment Variables torch.set_printoptions(linewidth=320, precision=4, profile="default") np.set_printoptions(linewidth=320, formatter=dict(float_kind="{:11.5g}".format)) # format short g, %precision=5 cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warnings in Colab os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs # Precompiled type tuples for faster isinstance() checks FLOAT_OR_INT = (float, int) STR_OR_PATH = (str, Path) class DataExportMixin: """ Mixin class for exporting validation metrics or prediction results in various formats. This class provides utilities to export performance metrics (e.g., mAP, precision, recall) or prediction results from classification, object detection, segmentation, or pose estimation tasks into various formats: Polars DataFrame, CSV and JSON. Methods: to_df: Convert summary to a Polars DataFrame. to_csv: Export results as a CSV string. to_json: Export results as a JSON string. tojson: Deprecated alias for `to_json()`. Examples: >>> model = YOLO("yolo11n.pt") >>> results = model("image.jpg") >>> df = results.to_df() >>> print(df) >>> csv_data = results.to_csv() """ def to_df(self, normalize=False, decimals=5): """ Create a polars DataFrame from the prediction results summary or validation metrics. Args: normalize (bool, optional): Normalize numerical values for easier comparison. decimals (int, optional): Decimal places to round floats. Returns: (DataFrame): DataFrame containing the summary data. """ import polars as pl # scope for faster 'import ultralytics' return pl.DataFrame(self.summary(normalize=normalize, decimals=decimals)) def to_csv(self, normalize=False, decimals=5): """ Export results or metrics to CSV string format. Args: normalize (bool, optional): Normalize numeric values. decimals (int, optional): Decimal precision. Returns: (str): CSV content as string. """ import polars as pl df = self.to_df(normalize=normalize, decimals=decimals) try: return df.write_csv() except Exception: # Minimal string conversion for any remaining complex types def _to_str_simple(v): if v is None: return "" elif isinstance(v, (dict, list, tuple, set)): return repr(v) else: return str(v) df_str = df.select( [pl.col(c).map_elements(_to_str_simple, return_dtype=pl.String).alias(c) for c in df.columns] ) return df_str.write_csv() def to_json(self, normalize=False, decimals=5): """ Export results to JSON format. Args: normalize (bool, optional): Normalize numeric values. decimals (int, optional): Decimal precision. Returns: (str): JSON-formatted string of the results. """ return self.to_df(normalize=normalize, decimals=decimals).write_json() class SimpleClass: """ A simple base class for creating objects with string representations of their attributes. This class provides a foundation for creating objects that can be easily printed or represented as strings, showing all their non-callable attributes. It's useful for debugging and introspection of object states. Methods: __str__: Return a human-readable string representation of the object. __repr__: Return a machine-readable string representation of the object. __getattr__: Provide a custom attribute access error message with helpful information. Examples: >>> class MyClass(SimpleClass): ... def __init__(self): ... self.x = 10 ... self.y = "hello" >>> obj = MyClass() >>> print(obj) __main__.MyClass object with attributes: x: 10 y: 'hello' Notes: - This class is designed to be subclassed. It provides a convenient way to inspect object attributes. - The string representation includes the module and class name of the object. - Callable attributes and attributes starting with an underscore are excluded from the string representation. """ def __str__(self): """Return a human-readable string representation of the object.""" attr = [] for a in dir(self): v = getattr(self, a) if not callable(v) and not a.startswith("_"): if isinstance(v, SimpleClass): # Display only the module and class name for subclasses s = f"{a}: {v.__module__}.{v.__class__.__name__} object" else: s = f"{a}: {repr(v)}" attr.append(s) return f"{self.__module__}.{self.__class__.__name__} object with attributes:\n\n" + "\n".join(attr) def __repr__(self): """Return a machine-readable string representation of the object.""" return self.__str__() def __getattr__(self, attr): """Provide a custom attribute access error message with helpful information.""" name = self.__class__.__name__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") class IterableSimpleNamespace(SimpleNamespace): """ An iterable SimpleNamespace class that provides enhanced functionality for attribute access and iteration. This class extends the SimpleNamespace class with additional methods for iteration, string representation, and attribute access. It is designed to be used as a convenient container for storing and accessing configuration parameters. Methods: __iter__: Return an iterator of key-value pairs from the namespace's attributes. __str__: Return a human-readable string representation of the object. __getattr__: Provide a custom attribute access error message with helpful information. get: Retrieve the value of a specified key, or a default value if the key doesn't exist. Examples: >>> cfg = IterableSimpleNamespace(a=1, b=2, c=3) >>> for k, v in cfg: ... print(f"{k}: {v}") a: 1 b: 2 c: 3 >>> print(cfg) a=1 b=2 c=3 >>> cfg.get("b") 2 >>> cfg.get("d", "default") 'default' Notes: This class is particularly useful for storing configuration parameters in a more accessible and iterable format compared to a standard dictionary. """ def __iter__(self): """Return an iterator of key-value pairs from the namespace's attributes.""" return iter(vars(self).items()) def __str__(self): """Return a human-readable string representation of the object.""" return "\n".join(f"{k}={v}" for k, v in vars(self).items()) def __getattr__(self, attr): """Provide a custom attribute access error message with helpful information.""" name = self.__class__.__name__ raise AttributeError( f""" '{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics 'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace {DEFAULT_CFG_PATH} with the latest version from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml """ ) def get(self, key, default=None): """Return the value of the specified key if it exists; otherwise, return the default value.""" return getattr(self, key, default) def plt_settings(rcparams=None, backend="Agg"): """ Decorator to temporarily set rc parameters and the backend for a plotting function. Args: rcparams (dict, optional): Dictionary of rc parameters to set. backend (str, optional): Name of the backend to use. Returns: (Callable): Decorated function with temporarily set rc parameters and backend. Examples: >>> @plt_settings({"font.size": 12}) >>> def plot_function(): ... plt.figure() ... plt.plot([1, 2, 3]) ... plt.show() >>> with plt_settings({"font.size": 12}): ... plt.figure() ... plt.plot([1, 2, 3]) ... plt.show() """ if rcparams is None: rcparams = {"font.size": 11} def decorator(func): """Decorator to apply temporary rc parameters and backend to a function.""" def wrapper(*args, **kwargs): """Set rc parameters and backend, call the original function, and restore the settings.""" import matplotlib.pyplot as plt # scope for faster 'import ultralytics' original_backend = plt.get_backend() switch = backend.lower() != original_backend.lower() if switch: plt.close("all") # auto-close()ing of figures upon backend switching is deprecated since 3.8 plt.switch_backend(backend) # Plot with backend and always revert to original backend try: with plt.rc_context(rcparams): result = func(*args, **kwargs) finally: if switch: plt.close("all") plt.switch_backend(original_backend) return result return wrapper return decorator def set_logging(name="LOGGING_NAME", verbose=True): """ Set up logging with UTF-8 encoding and configurable verbosity. This function configures logging for the Ultralytics library, setting the appropriate logging level and formatter based on the verbosity flag and the current process rank. It handles special cases for Windows environments where UTF-8 encoding might not be the default. Args: name (str): Name of the logger. verbose (bool): Flag to set logging level to INFO if True, ERROR otherwise. Returns: (logging.Logger): Configured logger object. Examples: >>> set_logging(name="ultralytics", verbose=True) >>> logger = logging.getLogger("ultralytics") >>> logger.info("This is an info message") Notes: - On Windows, this function attempts to reconfigure stdout to use UTF-8 encoding if possible. - If reconfiguration is not possible, it falls back to a custom formatter that handles non-UTF-8 environments. - The function sets up a StreamHandler with the appropriate formatter and level. - The logger's propagate flag is set to False to prevent duplicate logging in parent loggers. """ level = logging.INFO if verbose and RANK in {-1, 0} else logging.ERROR # rank in world for Multi-GPU trainings class PrefixFormatter(logging.Formatter): def format(self, record): """Format log records with prefixes based on level.""" # Apply prefixes based on log level if record.levelno == logging.WARNING: prefix = "WARNING" if WINDOWS else "WARNING ⚠️" record.msg = f"{prefix} {record.msg}" elif record.levelno == logging.ERROR: prefix = "ERROR" if WINDOWS else "ERROR ❌" record.msg = f"{prefix} {record.msg}" # Handle emojis in message based on platform formatted_message = super().format(record) return emojis(formatted_message) formatter = PrefixFormatter("%(message)s") # Handle Windows UTF-8 encoding issues if WINDOWS and hasattr(sys.stdout, "encoding") and sys.stdout.encoding != "utf-8": with contextlib.suppress(Exception): # Attempt to reconfigure stdout to use UTF-8 encoding if possible if hasattr(sys.stdout, "reconfigure"): sys.stdout.reconfigure(encoding="utf-8") # For environments where reconfigure is not available, wrap stdout in a TextIOWrapper elif hasattr(sys.stdout, "buffer"): import io sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding="utf-8") # Create and configure the StreamHandler with the appropriate formatter and level stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setFormatter(formatter) stream_handler.setLevel(level) # Set up the logger logger = logging.getLogger(name) logger.setLevel(level) logger.addHandler(stream_handler) logger.propagate = False return logger # Set logger LOGGER = set_logging(LOGGING_NAME, verbose=VERBOSE) # define globally (used in train.py, val.py, predict.py, etc.) logging.getLogger("sentry_sdk").setLevel(logging.CRITICAL + 1) def emojis(string=""): """Return platform-dependent emoji-safe version of string.""" return string.encode().decode("ascii", "ignore") if WINDOWS else string class ThreadingLocked: """ A decorator class for ensuring thread-safe execution of a function or method. This class can be used as a decorator to make sure that if the decorated function is called from multiple threads, only one thread at a time will be able to execute the function. Attributes: lock (threading.Lock): A lock object used to manage access to the decorated function. Examples: >>> from ultralytics.utils import ThreadingLocked >>> @ThreadingLocked() >>> def my_function(): ... # Your code here """ def __init__(self): """Initialize the decorator class with a threading lock.""" self.lock = threading.Lock() def __call__(self, f): """Run thread-safe execution of function or method.""" from functools import wraps @wraps(f) def decorated(*args, **kwargs): """Apply thread-safety to the decorated function or method.""" with self.lock: return f(*args, **kwargs) return decorated class YAML: """ YAML utility class for efficient file operations with automatic C-implementation detection. This class provides optimized YAML loading and saving operations using PyYAML's fastest available implementation (C-based when possible). It implements a singleton pattern with lazy initialization, allowing direct class method usage without explicit instantiation. The class handles file path creation, validation, and character encoding issues automatically. The implementation prioritizes performance through: - Automatic C-based loader/dumper selection when available - Singleton pattern to reuse the same instance - Lazy initialization to defer import costs until needed - Fallback mechanisms for handling problematic YAML content Attributes: _instance: Internal singleton instance storage. yaml: Reference to the PyYAML module. SafeLoader: Best available YAML loader (CSafeLoader if available). SafeDumper: Best available YAML dumper (CSafeDumper if available). Examples: >>> data = YAML.load("config.yaml") >>> data["new_value"] = 123 >>> YAML.save("updated_config.yaml", data) >>> YAML.print(data) """ _instance = None @classmethod def _get_instance(cls): """Initialize singleton instance on first use.""" if cls._instance is None: cls._instance = cls() return cls._instance def __init__(self): """Initialize with optimal YAML implementation (C-based when available).""" import yaml self.yaml = yaml # Use C-based implementation if available for better performance try: self.SafeLoader = yaml.CSafeLoader self.SafeDumper = yaml.CSafeDumper except (AttributeError, ImportError): self.SafeLoader = yaml.SafeLoader self.SafeDumper = yaml.SafeDumper @classmethod def save(cls, file="data.yaml", data=None, header=""): """ Save Python object as YAML file. Args: file (str | Path): Path to save YAML file. data (dict | None): Dict or compatible object to save. header (str): Optional string to add at file beginning. """ instance = cls._get_instance() if data is None: data = {} # Create parent directories if needed file = Path(file) file.parent.mkdir(parents=True, exist_ok=True) # Convert non-serializable objects to strings valid_types = int, float, str, bool, list, tuple, dict, type(None) for k, v in data.items(): if not isinstance(v, valid_types): data[k] = str(v) # Write YAML file with open(file, "w", errors="ignore", encoding="utf-8") as f: if header: f.write(header) instance.yaml.dump(data, f, sort_keys=False, allow_unicode=True, Dumper=instance.SafeDumper) @classmethod def load(cls, file="data.yaml", append_filename=False): """ Load YAML file to Python object with robust error handling. Args: file (str | Path): Path to YAML file. append_filename (bool): Whether to add filename to returned dict. Returns: (dict): Loaded YAML content. """ instance = cls._get_instance() assert str(file).endswith((".yaml", ".yml")), f"Not a YAML file: {file}" # Read file content with open(file, errors="ignore", encoding="utf-8") as f: s = f.read() # Try loading YAML with fallback for problematic characters try: data = instance.yaml.load(s, Loader=instance.SafeLoader) or {} except Exception: # Remove problematic characters and retry s = re.sub(r"[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+", "", s) data = instance.yaml.load(s, Loader=instance.SafeLoader) or {} # Check for accidental user-error None strings (should be 'null' in YAML) if "None" in data.values(): data = {k: None if v == "None" else v for k, v in data.items()} if append_filename: data["yaml_file"] = str(file) return data @classmethod def print(cls, yaml_file): """ Pretty print YAML file or object to console. Args: yaml_file (str | Path | dict): Path to YAML file or dict to print. """ instance = cls._get_instance() # Load file if path provided yaml_dict = cls.load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file # Use -1 for unlimited width in C implementation dump = instance.yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True, width=-1, Dumper=instance.SafeDumper) LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}") # Default configuration DEFAULT_CFG_DICT = YAML.load(DEFAULT_CFG_PATH) DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys() DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT) def read_device_model() -> str: """ Read the device model information from the system and cache it for quick access. Returns: (str): Kernel release information. """ return platform.release().lower() def is_ubuntu() -> bool: """ Check if the OS is Ubuntu. Returns: (bool): True if OS is Ubuntu, False otherwise. """ try: with open("/etc/os-release") as f: return "ID=ubuntu" in f.read() except FileNotFoundError: return False def is_colab(): """ Check if the current script is running inside a Google Colab notebook. Returns: (bool): True if running inside a Colab notebook, False otherwise. """ return "COLAB_RELEASE_TAG" in os.environ or "COLAB_BACKEND_VERSION" in os.environ def is_kaggle(): """ Check if the current script is running inside a Kaggle kernel. Returns: (bool): True if running inside a Kaggle kernel, False otherwise. """ return os.environ.get("PWD") == "/kaggle/working" and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com" def is_jupyter(): """ Check if the current script is running inside a Jupyter Notebook. Returns: (bool): True if running inside a Jupyter Notebook, False otherwise. Notes: - Only works on Colab and Kaggle, other environments like Jupyterlab and Paperspace are not reliably detectable. - "get_ipython" in globals() method suffers false positives when IPython package installed manually. """ return IS_COLAB or IS_KAGGLE def is_runpod(): """ Check if the current script is running inside a RunPod container. Returns: (bool): True if running in RunPod, False otherwise. """ return "RUNPOD_POD_ID" in os.environ def is_docker() -> bool: """ Determine if the script is running inside a Docker container. Returns: (bool): True if the script is running inside a Docker container, False otherwise. """ try: return os.path.exists("/.dockerenv") except Exception: return False def is_raspberrypi() -> bool: """ Determine if the Python environment is running on a Raspberry Pi. Returns: (bool): True if running on a Raspberry Pi, False otherwise. """ return "rpi" in DEVICE_MODEL @lru_cache(maxsize=3) def is_jetson(jetpack=None) -> bool: """ Determine if the Python environment is running on an NVIDIA Jetson device. Args: jetpack (int | None): If specified, check for specific JetPack version (4, 5, 6). Returns: (bool): True if running on an NVIDIA Jetson device, False otherwise. """ if jetson := ("tegra" in DEVICE_MODEL): if jetpack: try: content = open("/etc/nv_tegra_release").read() version_map = {4: "R32", 5: "R35", 6: "R36"} # JetPack to L4T major version mapping return jetpack in version_map and version_map[jetpack] in content except Exception: return False return jetson def is_online() -> bool: """ Fast online check using DNS (v4/v6) resolution (Cloudflare + Google). Returns: (bool): True if connection is successful, False otherwise. """ if str(os.getenv("YOLO_OFFLINE", "")).lower() == "true": return False for host in ("one.one.one.one", "dns.google"): try: socket.getaddrinfo(host, 0, socket.AF_UNSPEC, 0, 0, socket.AI_ADDRCONFIG) return True except OSError: continue return False def is_pip_package(filepath: str = __name__) -> bool: """ Determine if the file at the given filepath is part of a pip package. Args: filepath (str): The filepath to check. Returns: (bool): True if the file is part of a pip package, False otherwise. """ import importlib.util # Get the spec for the module spec = importlib.util.find_spec(filepath) # Return whether the spec is not None and the origin is not None (indicating it is a package) return spec is not None and spec.origin is not None def is_dir_writeable(dir_path: str | Path) -> bool: """ Check if a directory is writeable. Args: dir_path (str | Path): The path to the directory. Returns: (bool): True if the directory is writeable, False otherwise. """ return os.access(str(dir_path), os.W_OK) def is_pytest_running(): """ Determine whether pytest is currently running or not. Returns: (bool): True if pytest is running, False otherwise. """ return ("PYTEST_CURRENT_TEST" in os.environ) or ("pytest" in sys.modules) or ("pytest" in Path(ARGV[0]).stem) def is_github_action_running() -> bool: """ Determine if the current environment is a GitHub Actions runner. Returns: (bool): True if the current environment is a GitHub Actions runner, False otherwise. """ return "GITHUB_ACTIONS" in os.environ and "GITHUB_WORKFLOW" in os.environ and "RUNNER_OS" in os.environ def get_default_args(func): """ Return a dictionary of default arguments for a function. Args: func (callable): The function to inspect. Returns: (dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter. """ signature = inspect.signature(func) return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} def get_ubuntu_version(): """ Retrieve the Ubuntu version if the OS is Ubuntu. Returns: (str): Ubuntu version or None if not an Ubuntu OS. """ if is_ubuntu(): try: with open("/etc/os-release") as f: return re.search(r'VERSION_ID="(\d+\.\d+)"', f.read())[1] except (FileNotFoundError, AttributeError): return None def get_user_config_dir(sub_dir="Ultralytics"): """ Return a writable config dir, preferring YOLO_CONFIG_DIR and being OS-aware. Args: sub_dir (str): The name of the subdirectory to create. Returns: (Path): The path to the user config directory. """ if env_dir := os.getenv("YOLO_CONFIG_DIR"): p = Path(env_dir).expanduser() / sub_dir elif LINUX: p = Path(os.getenv("XDG_CONFIG_HOME", Path.home() / ".config")) / sub_dir elif WINDOWS: p = Path.home() / "AppData" / "Roaming" / sub_dir elif MACOS: p = Path.home() / "Library" / "Application Support" / sub_dir else: raise ValueError(f"Unsupported operating system: {platform.system()}") if p.exists(): # already created → trust it return p if is_dir_writeable(p.parent): # create if possible p.mkdir(parents=True, exist_ok=True) return p # Fallbacks for Docker, GCP/AWS functions where only /tmp is writeable for alt in [Path("/tmp") / sub_dir, Path.cwd() / sub_dir]: if alt.exists(): return alt if is_dir_writeable(alt.parent): alt.mkdir(parents=True, exist_ok=True) LOGGER.warning( f"user config directory '{p}' is not writeable, using '{alt}'. Set YOLO_CONFIG_DIR to override." ) return alt # Last fallback → CWD p = Path.cwd() / sub_dir p.mkdir(parents=True, exist_ok=True) return p # Define constants (required below) DEVICE_MODEL = read_device_model() # is_jetson() and is_raspberrypi() depend on this constant ONLINE = is_online() IS_COLAB = is_colab() IS_KAGGLE = is_kaggle() IS_DOCKER = is_docker() IS_JETSON = is_jetson() IS_JUPYTER = is_jupyter() IS_PIP_PACKAGE = is_pip_package() IS_RASPBERRYPI = is_raspberrypi() GIT = GitRepo() USER_CONFIG_DIR = get_user_config_dir() # Ultralytics settings dir SETTINGS_FILE = USER_CONFIG_DIR / "settings.json" def colorstr(*input): r""" Color a string based on the provided color and style arguments using ANSI escape codes. This function can be called in two ways: - colorstr('color', 'style', 'your string') - colorstr('your string') In the second form, 'blue' and 'bold' will be applied by default. Args: *input (str | Path): A sequence of strings where the first n-1 strings are color and style arguments, and the last string is the one to be colored. Returns: (str): The input string wrapped with ANSI escape codes for the specified color and style. Notes: Supported Colors and Styles: - Basic Colors: 'black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white' - Bright Colors: 'bright_black', 'bright_red', 'bright_green', 'bright_yellow', 'bright_blue', 'bright_magenta', 'bright_cyan', 'bright_white' - Misc: 'end', 'bold', 'underline' Examples: >>> colorstr("blue", "bold", "hello world") >>> "\033[34m\033[1mhello world\033[0m" References: https://en.wikipedia.org/wiki/ANSI_escape_code """ *args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string colors = { "black": "\033[30m", # basic colors "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "magenta": "\033[35m", "cyan": "\033[36m", "white": "\033[37m", "bright_black": "\033[90m", # bright colors "bright_red": "\033[91m", "bright_green": "\033[92m", "bright_yellow": "\033[93m", "bright_blue": "\033[94m", "bright_magenta": "\033[95m", "bright_cyan": "\033[96m", "bright_white": "\033[97m", "end": "\033[0m", # misc "bold": "\033[1m", "underline": "\033[4m", } return "".join(colors[x] for x in args) + f"{string}" + colors["end"] def remove_colorstr(input_string): """ Remove ANSI escape codes from a string, effectively un-coloring it. Args: input_string (str): The string to remove color and style from. Returns: (str): A new string with all ANSI escape codes removed. Examples: >>> remove_colorstr(colorstr("blue", "bold", "hello world")) >>> "hello world" """ ansi_escape = re.compile(r"\x1B\[[0-9;]*[A-Za-z]") return ansi_escape.sub("", input_string) class TryExcept(contextlib.ContextDecorator): """ Ultralytics TryExcept class for handling exceptions gracefully. This class can be used as a decorator or context manager to catch exceptions and optionally print warning messages. It allows code to continue execution even when exceptions occur, which is useful for non-critical operations. Attributes: msg (str): Optional message to display when an exception occurs. verbose (bool): Whether to print the exception message. Examples: As a decorator: >>> @TryExcept(msg="Error occurred in func", verbose=True) >>> def func(): >>> # Function logic here >>> pass As a context manager: >>> with TryExcept(msg="Error occurred in block", verbose=True): >>> # Code block here >>> pass """ def __init__(self, msg="", verbose=True): """Initialize TryExcept class with optional message and verbosity settings.""" self.msg = msg self.verbose = verbose def __enter__(self): """Execute when entering TryExcept context, initialize instance.""" pass def __exit__(self, exc_type, value, traceback): """Define behavior when exiting a 'with' block, print error message if necessary.""" if self.verbose and value: LOGGER.warning(f"{self.msg}{': ' if self.msg else ''}{value}") return True class Retry(contextlib.ContextDecorator): """ Retry class for function execution with exponential backoff. This decorator can be used to retry a function on exceptions, up to a specified number of times with an exponentially increasing delay between retries. It's useful for handling transient failures in network operations or other unreliable processes. Attributes: times (int): Maximum number of retry attempts. delay (int): Initial delay between retries in seconds. Examples: Example usage as a decorator: >>> @Retry(times=3, delay=2) >>> def test_func(): >>> # Replace with function logic that may raise exceptions >>> return True """ def __init__(self, times=3, delay=2): """Initialize Retry class with specified number of retries and delay.""" self.times = times self.delay = delay self._attempts = 0 def __call__(self, func): """Decorator implementation for Retry with exponential backoff.""" def wrapped_func(*args, **kwargs): """Apply retries to the decorated function or method.""" self._attempts = 0 while self._attempts < self.times: try: return func(*args, **kwargs) except Exception as e: self._attempts += 1 LOGGER.warning(f"Retry {self._attempts}/{self.times} failed: {e}") if self._attempts >= self.times: raise e time.sleep(self.delay * (2**self._attempts)) # exponential backoff delay return wrapped_func def threaded(func): """ Multi-thread a target function by default and return the thread or function result. This decorator provides flexible execution of the target function, either in a separate thread or synchronously. By default, the function runs in a thread, but this can be controlled via the 'threaded=False' keyword argument which is removed from kwargs before calling the function. Args: func (callable): The function to be potentially executed in a separate thread. Returns: (callable): A wrapper function that either returns a daemon thread or the direct function result. Examples: >>> @threaded ... def process_data(data): ... return data >>> >>> thread = process_data(my_data) # Runs in background thread >>> result = process_data(my_data, threaded=False) # Runs synchronously, returns function result """ def wrapper(*args, **kwargs): """Multi-thread a given function based on 'threaded' kwarg and return the thread or function result.""" if kwargs.pop("threaded", True): # run in thread thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) thread.start() return thread else: return func(*args, **kwargs) return wrapper def set_sentry(): """ Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and sync=True in settings. Run 'yolo settings' to see and update settings. Conditions required to send errors (ALL conditions must be met or no errors will be reported): - sentry_sdk package is installed - sync=True in YOLO settings - pytest is not running - running in a pip package installation - running in a non-git directory - running with rank -1 or 0 - online environment - CLI used to run package (checked with 'yolo' as the name of the main CLI command) """ if ( not SETTINGS["sync"] or RANK not in {-1, 0} or Path(ARGV[0]).name != "yolo" or TESTS_RUNNING or not ONLINE or not IS_PIP_PACKAGE or GIT.is_repo ): return # If sentry_sdk package is not installed then return and do not use Sentry try: import sentry_sdk # noqa except ImportError: return def before_send(event, hint): """ Modify the event before sending it to Sentry based on specific exception types and messages. Args: event (dict): The event dictionary containing information about the error. hint (dict): A dictionary containing additional information about the error. Returns: (dict | None): The modified event or None if the event should not be sent to Sentry. """ if "exc_info" in hint: exc_type, exc_value, _ = hint["exc_info"] if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value): return None # do not send event event["tags"] = { "sys_argv": ARGV[0], "sys_argv_name": Path(ARGV[0]).name, "install": "git" if GIT.is_repo else "pip" if IS_PIP_PACKAGE else "other", "os": ENVIRONMENT, } return event sentry_sdk.init( dsn="https://888e5a0778212e1d0314c37d4b9aae5d@o4504521589325824.ingest.us.sentry.io/4504521592406016", debug=False, auto_enabling_integrations=False, traces_sample_rate=1.0, release=__version__, environment="runpod" if is_runpod() else "production", before_send=before_send, ignore_errors=[KeyboardInterrupt, FileNotFoundError], ) sentry_sdk.set_user({"id": SETTINGS["uuid"]}) # SHA-256 anonymized UUID hash class JSONDict(dict): """ A dictionary-like class that provides JSON persistence for its contents. This class extends the built-in dictionary to automatically save its contents to a JSON file whenever they are modified. It ensures thread-safe operations using a lock and handles JSON serialization of Path objects. Attributes: file_path (Path): The path to the JSON file used for persistence. lock (threading.Lock): A lock object to ensure thread-safe operations. Methods: _load: Load the data from the JSON file into the dictionary. _save: Save the current state of the dictionary to the JSON file. __setitem__: Store a key-value pair and persist it to disk. __delitem__: Remove an item and update the persistent storage. update: Update the dictionary and persist changes. clear: Clear all entries and update the persistent storage. Examples: >>> json_dict = JSONDict("data.json") >>> json_dict["key"] = "value" >>> print(json_dict["key"]) value >>> del json_dict["key"] >>> json_dict.update({"new_key": "new_value"}) >>> json_dict.clear() """ def __init__(self, file_path: str | Path = "data.json"): """Initialize a JSONDict object with a specified file path for JSON persistence.""" super().__init__() self.file_path = Path(file_path) self.lock = Lock() self._load() def _load(self): """Load the data from the JSON file into the dictionary.""" try: if self.file_path.exists(): with open(self.file_path) as f: self.update(json.load(f)) except json.JSONDecodeError: LOGGER.warning(f"Error decoding JSON from {self.file_path}. Starting with an empty dictionary.") except Exception as e: LOGGER.error(f"Error reading from {self.file_path}: {e}") def _save(self): """Save the current state of the dictionary to the JSON file.""" try: self.file_path.parent.mkdir(parents=True, exist_ok=True) with open(self.file_path, "w", encoding="utf-8") as f: json.dump(dict(self), f, indent=2, default=self._json_default) except Exception as e: LOGGER.error(f"Error writing to {self.file_path}: {e}") @staticmethod def _json_default(obj): """Handle JSON serialization of Path objects.""" if isinstance(obj, Path): return str(obj) raise TypeError(f"Object of type {type(obj).__name__} is not JSON serializable") def __setitem__(self, key, value): """Store a key-value pair and persist to disk.""" with self.lock: super().__setitem__(key, value) self._save() def __delitem__(self, key): """Remove an item and update the persistent storage.""" with self.lock: super().__delitem__(key) self._save() def __str__(self): """Return a pretty-printed JSON string representation of the dictionary.""" contents = json.dumps(dict(self), indent=2, ensure_ascii=False, default=self._json_default) return f'JSONDict("{self.file_path}"):\n{contents}' def update(self, *args, **kwargs): """Update the dictionary and persist changes.""" with self.lock: super().update(*args, **kwargs) self._save() def clear(self): """Clear all entries and update the persistent storage.""" with self.lock: super().clear() self._save() class SettingsManager(JSONDict): """ SettingsManager class for managing and persisting Ultralytics settings. This class extends JSONDict to provide JSON persistence for settings, ensuring thread-safe operations and default values. It validates settings on initialization and provides methods to update or reset settings. The settings include directories for datasets, weights, and runs, as well as various integration flags. Attributes: file (Path): The path to the JSON file used for persistence. version (str): The version of the settings schema. defaults (dict): A dictionary containing default settings. help_msg (str): A help message for users on how to view and update settings. Methods: _validate_settings: Validate the current settings and reset if necessary. update: Update settings, validating keys and types. reset: Reset the settings to default and save them. Examples: Initialize and update settings: >>> settings = SettingsManager() >>> settings.update(runs_dir="/new/runs/dir") >>> print(settings["runs_dir"]) /new/runs/dir """ def __init__(self, file=SETTINGS_FILE, version="0.0.6"): """Initialize the SettingsManager with default settings and load user settings.""" import hashlib import uuid from ultralytics.utils.torch_utils import torch_distributed_zero_first root = GIT.root or Path() datasets_root = (root.parent if GIT.root and is_dir_writeable(root.parent) else root).resolve() self.file = Path(file) self.version = version self.defaults = { "settings_version": version, # Settings schema version "datasets_dir": str(datasets_root / "datasets"), # Datasets directory "weights_dir": str(root / "weights"), # Model weights directory "runs_dir": str(root / "runs"), # Experiment runs directory "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash "sync": True, # Enable synchronization "api_key": "", # Ultralytics API Key "openai_api_key": "", # OpenAI API Key "clearml": True, # ClearML integration "comet": True, # Comet integration "dvc": True, # DVC integration "hub": True, # Ultralytics HUB integration "mlflow": True, # MLflow integration "neptune": True, # Neptune integration "raytune": True, # Ray Tune integration "tensorboard": False, # TensorBoard logging "wandb": False, # Weights & Biases logging "vscode_msg": True, # VSCode message "openvino_msg": True, # OpenVINO export on Intel CPU message } self.help_msg = ( f"\nView Ultralytics Settings with 'yolo settings' or at '{self.file}'" "\nUpdate Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. " "For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings." ) with torch_distributed_zero_first(LOCAL_RANK): super().__init__(self.file) if not self.file.exists() or not self: # Check if file doesn't exist or is empty LOGGER.info(f"Creating new Ultralytics Settings v{version} file ✅ {self.help_msg}") self.reset() self._validate_settings() def _validate_settings(self): """Validate the current settings and reset if necessary.""" correct_keys = frozenset(self.keys()) == frozenset(self.defaults.keys()) correct_types = all(isinstance(self.get(k), type(v)) for k, v in self.defaults.items()) correct_version = self.get("settings_version", "") == self.version if not (correct_keys and correct_types and correct_version): LOGGER.warning( "Ultralytics settings reset to default values. This may be due to a possible problem " f"with your settings or a recent ultralytics package update. {self.help_msg}" ) self.reset() if self.get("datasets_dir") == self.get("runs_dir"): LOGGER.warning( f"Ultralytics setting 'datasets_dir: {self.get('datasets_dir')}' " f"must be different than 'runs_dir: {self.get('runs_dir')}'. " f"Please change one to avoid possible issues during training. {self.help_msg}" ) def __setitem__(self, key, value): """Update one key: value pair.""" self.update({key: value}) def update(self, *args, **kwargs): """Update settings, validating keys and types.""" for arg in args: if isinstance(arg, dict): kwargs.update(arg) for k, v in kwargs.items(): if k not in self.defaults: raise KeyError(f"No Ultralytics setting '{k}'. {self.help_msg}") t = type(self.defaults[k]) if not isinstance(v, t): raise TypeError( f"Ultralytics setting '{k}' must be '{t.__name__}' type, not '{type(v).__name__}'. {self.help_msg}" ) super().update(*args, **kwargs) def reset(self): """Reset the settings to default and save them.""" self.clear() self.update(self.defaults) def deprecation_warn(arg, new_arg=None): """Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument.""" msg = f"'{arg}' is deprecated and will be removed in the future." if new_arg is not None: msg += f" Use '{new_arg}' instead." LOGGER.warning(msg) def clean_url(url): """Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt.""" url = Path(url).as_posix().replace(":/", "://") # Pathlib turns :// -> :/, as_posix() for Windows return unquote(url).split("?", 1)[0] # '%2F' to '/', split https://url.com/file.txt?auth def url2file(url): """Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt.""" return Path(clean_url(url)).name def vscode_msg(ext="ultralytics.ultralytics-snippets") -> str: """Display a message to install Ultralytics-Snippets for VS Code if not already installed.""" path = (USER_CONFIG_DIR.parents[2] if WINDOWS else USER_CONFIG_DIR.parents[1]) / ".vscode/extensions" obs_file = path / ".obsolete" # file tracks uninstalled extensions, while source directory remains installed = any(path.glob(f"{ext}*")) and ext not in (obs_file.read_text("utf-8") if obs_file.exists() else "") url = "https://docs.ultralytics.com/integrations/vscode" return "" if installed else f"{colorstr('VS Code:')} view Ultralytics VS Code Extension ⚡ at {url}" # Run below code on utils init ------------------------------------------------------------------------------------ # Check first-install steps PREFIX = colorstr("Ultralytics: ") SETTINGS = SettingsManager() # initialize settings PERSISTENT_CACHE = JSONDict(USER_CONFIG_DIR / "persistent_cache.json") # initialize persistent cache DATASETS_DIR = Path(SETTINGS["datasets_dir"]) # global datasets directory WEIGHTS_DIR = Path(SETTINGS["weights_dir"]) # global weights directory RUNS_DIR = Path(SETTINGS["runs_dir"]) # global runs directory ENVIRONMENT = ( "Colab" if IS_COLAB else "Kaggle" if IS_KAGGLE else "Jupyter" if IS_JUPYTER else "Docker" if IS_DOCKER else platform.system() ) TESTS_RUNNING = is_pytest_running() or is_github_action_running() set_sentry() # Apply monkey patches torch.save = torch_save if WINDOWS: # Apply cv2 patches for non-ASCII and non-UTF characters in image paths cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow