# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from __future__ import annotations from pathlib import Path from typing import Any import torch from ultralytics.data import YOLODataset from ultralytics.data.augment import Compose, Format, v8_transforms from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.utils import colorstr, ops __all__ = ("RTDETRValidator",) # tuple or list class RTDETRDataset(YOLODataset): """ Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class. This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for real-time detection and tracking tasks. Attributes: augment (bool): Whether to apply data augmentation. rect (bool): Whether to use rectangular training. use_segments (bool): Whether to use segmentation masks. use_keypoints (bool): Whether to use keypoint annotations. imgsz (int): Target image size for training. Methods: load_image: Load one image from dataset index. build_transforms: Build transformation pipeline for the dataset. Examples: Initialize an RT-DETR dataset >>> dataset = RTDETRDataset(img_path="path/to/images", imgsz=640) >>> image, hw = dataset.load_image(0) """ def __init__(self, *args, data=None, **kwargs): """ Initialize the RTDETRDataset class by inheriting from the YOLODataset class. This constructor sets up a dataset specifically optimized for the RT-DETR (Real-Time DEtection and TRacking) model, building upon the base YOLODataset functionality. Args: *args (Any): Variable length argument list passed to the parent YOLODataset class. data (dict | None): Dictionary containing dataset information. If None, default values will be used. **kwargs (Any): Additional keyword arguments passed to the parent YOLODataset class. """ super().__init__(*args, data=data, **kwargs) def load_image(self, i, rect_mode=False): """ Load one image from dataset index 'i'. Args: i (int): Index of the image to load. rect_mode (bool, optional): Whether to use rectangular mode for batch inference. Returns: im (torch.Tensor): The loaded image. resized_hw (tuple): Height and width of the resized image with shape (2,). Examples: Load an image from the dataset >>> dataset = RTDETRDataset(img_path="path/to/images") >>> image, hw = dataset.load_image(0) """ return super().load_image(i=i, rect_mode=rect_mode) def build_transforms(self, hyp=None): """ Build transformation pipeline for the dataset. Args: hyp (dict, optional): Hyperparameters for transformations. Returns: (Compose): Composition of transformation functions. """ if self.augment: hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 hyp.cutmix = hyp.cutmix if self.augment and not self.rect else 0.0 transforms = v8_transforms(self, self.imgsz, hyp, stretch=True) else: # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scale_fill=True)]) transforms = Compose([]) transforms.append( Format( bbox_format="xywh", normalize=True, return_mask=self.use_segments, return_keypoint=self.use_keypoints, batch_idx=True, mask_ratio=hyp.mask_ratio, mask_overlap=hyp.overlap_mask, ) ) return transforms class RTDETRValidator(DetectionValidator): """ RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for the RT-DETR (Real-Time DETR) object detection model. The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for post-processing, and updates evaluation metrics accordingly. Attributes: args (Namespace): Configuration arguments for validation. data (dict): Dataset configuration dictionary. Methods: build_dataset: Build an RTDETR Dataset for validation. postprocess: Apply Non-maximum suppression to prediction outputs. Examples: Initialize and run RT-DETR validation >>> from ultralytics.models.rtdetr import RTDETRValidator >>> args = dict(model="rtdetr-l.pt", data="coco8.yaml") >>> validator = RTDETRValidator(args=args) >>> validator() Notes: For further details on the attributes and methods, refer to the parent DetectionValidator class. """ def build_dataset(self, img_path, mode="val", batch=None): """ Build an RTDETR Dataset. Args: img_path (str): Path to the folder containing images. mode (str, optional): `train` mode or `val` mode, users are able to customize different augmentations for each mode. batch (int, optional): Size of batches, this is for `rect`. Returns: (RTDETRDataset): Dataset configured for RT-DETR validation. """ return RTDETRDataset( img_path=img_path, imgsz=self.args.imgsz, batch_size=batch, augment=False, # no augmentation hyp=self.args, rect=False, # no rect cache=self.args.cache or None, prefix=colorstr(f"{mode}: "), data=self.data, ) def postprocess( self, preds: torch.Tensor | list[torch.Tensor] | tuple[torch.Tensor] ) -> list[dict[str, torch.Tensor]]: """ Apply Non-maximum suppression to prediction outputs. Args: preds (torch.Tensor | list | tuple): Raw predictions from the model. If tensor, should have shape (batch_size, num_predictions, num_classes + 4) where last dimension contains bbox coords and class scores. Returns: (list[dict[str, torch.Tensor]]): List of dictionaries for each image, each containing: - 'bboxes': Tensor of shape (N, 4) with bounding box coordinates - 'conf': Tensor of shape (N,) with confidence scores - 'cls': Tensor of shape (N,) with class indices """ if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference preds = [preds, None] bs, _, nd = preds[0].shape bboxes, scores = preds[0].split((4, nd - 4), dim=-1) bboxes *= self.args.imgsz outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs for i, bbox in enumerate(bboxes): # (300, 4) bbox = ops.xywh2xyxy(bbox) score, cls = scores[i].max(-1) # (300, ) pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter # Sort by confidence to correctly get internal metrics pred = pred[score.argsort(descending=True)] outputs[i] = pred[score > self.args.conf] return [{"bboxes": x[:, :4], "conf": x[:, 4], "cls": x[:, 5]} for x in outputs] def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None: """ Serialize YOLO predictions to COCO json format. Args: predn (dict[str, torch.Tensor]): Predictions dictionary containing 'bboxes', 'conf', and 'cls' keys with bounding box coordinates, confidence scores, and class predictions. pbatch (dict[str, Any]): Batch dictionary containing 'imgsz', 'ori_shape', 'ratio_pad', and 'im_file'. """ path = Path(pbatch["im_file"]) stem = path.stem image_id = int(stem) if stem.isnumeric() else stem box = predn["bboxes"].clone() box[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred box[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred box = ops.xyxy2xywh(box) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for b, s, c in zip(box.tolist(), predn["conf"].tolist(), predn["cls"].tolist()): self.jdict.append( { "image_id": image_id, "file_name": path.name, "category_id": self.class_map[int(c)], "bbox": [round(x, 3) for x in b], "score": round(s, 5), } )