init commit
This commit is contained in:
118
ultralytics/utils/triton.py
Normal file
118
ultralytics/utils/triton.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from urllib.parse import urlsplit
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TritonRemoteModel:
|
||||
"""
|
||||
Client for interacting with a remote Triton Inference Server model.
|
||||
|
||||
This class provides a convenient interface for sending inference requests to a Triton Inference Server
|
||||
and processing the responses. Supports both HTTP and gRPC communication protocols.
|
||||
|
||||
Attributes:
|
||||
endpoint (str): The name of the model on the Triton server.
|
||||
url (str): The URL of the Triton server.
|
||||
triton_client: The Triton client (either HTTP or gRPC).
|
||||
InferInput: The input class for the Triton client.
|
||||
InferRequestedOutput: The output request class for the Triton client.
|
||||
input_formats (list[str]): The data types of the model inputs.
|
||||
np_input_formats (list[type]): The numpy data types of the model inputs.
|
||||
input_names (list[str]): The names of the model inputs.
|
||||
output_names (list[str]): The names of the model outputs.
|
||||
metadata: The metadata associated with the model.
|
||||
|
||||
Methods:
|
||||
__call__: Call the model with the given inputs and return the outputs.
|
||||
|
||||
Examples:
|
||||
Initialize a Triton client with HTTP
|
||||
>>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
|
||||
|
||||
Make inference with numpy arrays
|
||||
>>> outputs = model(np.random.rand(1, 3, 640, 640).astype(np.float32))
|
||||
"""
|
||||
|
||||
def __init__(self, url: str, endpoint: str = "", scheme: str = ""):
|
||||
"""
|
||||
Initialize the TritonRemoteModel for interacting with a remote Triton Inference Server.
|
||||
|
||||
Arguments may be provided individually or parsed from a collective 'url' argument of the form
|
||||
<scheme>://<netloc>/<endpoint>/<task_name>
|
||||
|
||||
Args:
|
||||
url (str): The URL of the Triton server.
|
||||
endpoint (str, optional): The name of the model on the Triton server.
|
||||
scheme (str, optional): The communication scheme ('http' or 'grpc').
|
||||
|
||||
Examples:
|
||||
>>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
|
||||
>>> model = TritonRemoteModel(url="http://localhost:8000/yolov8")
|
||||
"""
|
||||
if not endpoint and not scheme: # Parse all args from URL string
|
||||
splits = urlsplit(url)
|
||||
endpoint = splits.path.strip("/").split("/", 1)[0]
|
||||
scheme = splits.scheme
|
||||
url = splits.netloc
|
||||
|
||||
self.endpoint = endpoint
|
||||
self.url = url
|
||||
|
||||
# Choose the Triton client based on the communication scheme
|
||||
if scheme == "http":
|
||||
import tritonclient.http as client # noqa
|
||||
|
||||
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
|
||||
config = self.triton_client.get_model_config(endpoint)
|
||||
else:
|
||||
import tritonclient.grpc as client # noqa
|
||||
|
||||
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
|
||||
config = self.triton_client.get_model_config(endpoint, as_json=True)["config"]
|
||||
|
||||
# Sort output names alphabetically, i.e. 'output0', 'output1', etc.
|
||||
config["output"] = sorted(config["output"], key=lambda x: x.get("name"))
|
||||
|
||||
# Define model attributes
|
||||
type_map = {"TYPE_FP32": np.float32, "TYPE_FP16": np.float16, "TYPE_UINT8": np.uint8}
|
||||
self.InferRequestedOutput = client.InferRequestedOutput
|
||||
self.InferInput = client.InferInput
|
||||
self.input_formats = [x["data_type"] for x in config["input"]]
|
||||
self.np_input_formats = [type_map[x] for x in self.input_formats]
|
||||
self.input_names = [x["name"] for x in config["input"]]
|
||||
self.output_names = [x["name"] for x in config["output"]]
|
||||
self.metadata = eval(config.get("parameters", {}).get("metadata", {}).get("string_value", "None"))
|
||||
|
||||
def __call__(self, *inputs: np.ndarray) -> list[np.ndarray]:
|
||||
"""
|
||||
Call the model with the given inputs and return inference results.
|
||||
|
||||
Args:
|
||||
*inputs (np.ndarray): Input data to the model. Each array should match the expected shape and type
|
||||
for the corresponding model input.
|
||||
|
||||
Returns:
|
||||
(list[np.ndarray]): Model outputs with the same dtype as the input. Each element in the list
|
||||
corresponds to one of the model's output tensors.
|
||||
|
||||
Examples:
|
||||
>>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
|
||||
>>> outputs = model(np.random.rand(1, 3, 640, 640).astype(np.float32))
|
||||
"""
|
||||
infer_inputs = []
|
||||
input_format = inputs[0].dtype
|
||||
for i, x in enumerate(inputs):
|
||||
if x.dtype != self.np_input_formats[i]:
|
||||
x = x.astype(self.np_input_formats[i])
|
||||
infer_input = self.InferInput(self.input_names[i], [*x.shape], self.input_formats[i].replace("TYPE_", ""))
|
||||
infer_input.set_data_from_numpy(x)
|
||||
infer_inputs.append(infer_input)
|
||||
|
||||
infer_outputs = [self.InferRequestedOutput(output_name) for output_name in self.output_names]
|
||||
outputs = self.triton_client.infer(model_name=self.endpoint, inputs=infer_inputs, outputs=infer_outputs)
|
||||
|
||||
return [outputs.as_numpy(output_name).astype(input_format) for output_name in self.output_names]
|
||||
Reference in New Issue
Block a user