init commit
This commit is contained in:
127
ultralytics/utils/dist.py
Normal file
127
ultralytics/utils/dist.py
Normal file
@@ -0,0 +1,127 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
from . import USER_CONFIG_DIR
|
||||
from .torch_utils import TORCH_1_9
|
||||
|
||||
|
||||
def find_free_network_port() -> int:
|
||||
"""
|
||||
Find a free port on localhost.
|
||||
|
||||
It is useful in single-node training when we don't want to connect to a real main node but have to set the
|
||||
`MASTER_PORT` environment variable.
|
||||
|
||||
Returns:
|
||||
(int): The available network port number.
|
||||
"""
|
||||
import socket
|
||||
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
s.bind(("127.0.0.1", 0))
|
||||
return s.getsockname()[1] # port
|
||||
|
||||
|
||||
def generate_ddp_file(trainer):
|
||||
"""
|
||||
Generate a DDP (Distributed Data Parallel) file for multi-GPU training.
|
||||
|
||||
This function creates a temporary Python file that enables distributed training across multiple GPUs.
|
||||
The file contains the necessary configuration to initialize the trainer in a distributed environment.
|
||||
|
||||
Args:
|
||||
trainer (ultralytics.engine.trainer.BaseTrainer): The trainer containing training configuration and arguments.
|
||||
Must have args attribute and be a class instance.
|
||||
|
||||
Returns:
|
||||
(str): Path to the generated temporary DDP file.
|
||||
|
||||
Notes:
|
||||
The generated file is saved in the USER_CONFIG_DIR/DDP directory and includes:
|
||||
- Trainer class import
|
||||
- Configuration overrides from the trainer arguments
|
||||
- Model path configuration
|
||||
- Training initialization code
|
||||
"""
|
||||
module, name = f"{trainer.__class__.__module__}.{trainer.__class__.__name__}".rsplit(".", 1)
|
||||
|
||||
content = f"""
|
||||
# Ultralytics Multi-GPU training temp file (should be automatically deleted after use)
|
||||
overrides = {vars(trainer.args)}
|
||||
|
||||
if __name__ == "__main__":
|
||||
from {module} import {name}
|
||||
from ultralytics.utils import DEFAULT_CFG_DICT
|
||||
|
||||
cfg = DEFAULT_CFG_DICT.copy()
|
||||
cfg.update(save_dir='') # handle the extra key 'save_dir'
|
||||
trainer = {name}(cfg=cfg, overrides=overrides)
|
||||
trainer.args.model = "{getattr(trainer.hub_session, "model_url", trainer.args.model)}"
|
||||
results = trainer.train()
|
||||
"""
|
||||
(USER_CONFIG_DIR / "DDP").mkdir(exist_ok=True)
|
||||
with tempfile.NamedTemporaryFile(
|
||||
prefix="_temp_",
|
||||
suffix=f"{id(trainer)}.py",
|
||||
mode="w+",
|
||||
encoding="utf-8",
|
||||
dir=USER_CONFIG_DIR / "DDP",
|
||||
delete=False,
|
||||
) as file:
|
||||
file.write(content)
|
||||
return file.name
|
||||
|
||||
|
||||
def generate_ddp_command(trainer):
|
||||
"""
|
||||
Generate command for distributed training.
|
||||
|
||||
Args:
|
||||
trainer (ultralytics.engine.trainer.BaseTrainer): The trainer containing configuration for distributed training.
|
||||
|
||||
Returns:
|
||||
cmd (list[str]): The command to execute for distributed training.
|
||||
file (str): Path to the temporary file created for DDP training.
|
||||
"""
|
||||
import __main__ # noqa local import to avoid https://github.com/Lightning-AI/pytorch-lightning/issues/15218
|
||||
|
||||
if not trainer.resume:
|
||||
shutil.rmtree(trainer.save_dir) # remove the save_dir
|
||||
file = generate_ddp_file(trainer)
|
||||
dist_cmd = "torch.distributed.run" if TORCH_1_9 else "torch.distributed.launch"
|
||||
port = find_free_network_port()
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
dist_cmd,
|
||||
"--nproc_per_node",
|
||||
f"{trainer.world_size}",
|
||||
"--master_port",
|
||||
f"{port}",
|
||||
file,
|
||||
]
|
||||
return cmd, file
|
||||
|
||||
|
||||
def ddp_cleanup(trainer, file):
|
||||
"""
|
||||
Delete temporary file if created during distributed data parallel (DDP) training.
|
||||
|
||||
This function checks if the provided file contains the trainer's ID in its name, indicating it was created
|
||||
as a temporary file for DDP training, and deletes it if so.
|
||||
|
||||
Args:
|
||||
trainer (ultralytics.engine.trainer.BaseTrainer): The trainer used for distributed training.
|
||||
file (str): Path to the file that might need to be deleted.
|
||||
|
||||
Examples:
|
||||
>>> trainer = YOLOTrainer()
|
||||
>>> file = "/tmp/ddp_temp_123456789.py"
|
||||
>>> ddp_cleanup(trainer, file)
|
||||
"""
|
||||
if f"{id(trainer)}.py" in file: # if temp_file suffix in file
|
||||
os.remove(file)
|
||||
Reference in New Issue
Block a user