init commit
This commit is contained in:
93
ultralytics/solutions/object_cropper.py
Normal file
93
ultralytics/solutions/object_cropper.py
Normal file
@@ -0,0 +1,93 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from ultralytics.solutions.solutions import BaseSolution, SolutionResults
|
||||
from ultralytics.utils.plotting import save_one_box
|
||||
|
||||
|
||||
class ObjectCropper(BaseSolution):
|
||||
"""
|
||||
A class to manage the cropping of detected objects in a real-time video stream or images.
|
||||
|
||||
This class extends the BaseSolution class and provides functionality for cropping objects based on detected bounding
|
||||
boxes. The cropped images are saved to a specified directory for further analysis or usage.
|
||||
|
||||
Attributes:
|
||||
crop_dir (str): Directory where cropped object images are stored.
|
||||
crop_idx (int): Counter for the total number of cropped objects.
|
||||
iou (float): IoU (Intersection over Union) threshold for non-maximum suppression.
|
||||
conf (float): Confidence threshold for filtering detections.
|
||||
|
||||
Methods:
|
||||
process: Crop detected objects from the input image and save them to the output directory.
|
||||
|
||||
Examples:
|
||||
>>> cropper = ObjectCropper()
|
||||
>>> frame = cv2.imread("frame.jpg")
|
||||
>>> processed_results = cropper.process(frame)
|
||||
>>> print(f"Total cropped objects: {cropper.crop_idx}")
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs: Any) -> None:
|
||||
"""
|
||||
Initialize the ObjectCropper class for cropping objects from detected bounding boxes.
|
||||
|
||||
Args:
|
||||
**kwargs (Any): Keyword arguments passed to the parent class and used for configuration.
|
||||
crop_dir (str): Path to the directory for saving cropped object images.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.crop_dir = self.CFG["crop_dir"] # Directory for storing cropped detections
|
||||
if not os.path.exists(self.crop_dir):
|
||||
os.mkdir(self.crop_dir) # Create directory if it does not exist
|
||||
if self.CFG["show"]:
|
||||
self.LOGGER.warning(
|
||||
f"show=True disabled for crop solution, results will be saved in the directory named: {self.crop_dir}"
|
||||
)
|
||||
self.crop_idx = 0 # Initialize counter for total cropped objects
|
||||
self.iou = self.CFG["iou"]
|
||||
self.conf = self.CFG["conf"]
|
||||
|
||||
def process(self, im0) -> SolutionResults:
|
||||
"""
|
||||
Crop detected objects from the input image and save them as separate images.
|
||||
|
||||
Args:
|
||||
im0 (np.ndarray): The input image containing detected objects.
|
||||
|
||||
Returns:
|
||||
(SolutionResults): A SolutionResults object containing the total number of cropped objects and processed
|
||||
image.
|
||||
|
||||
Examples:
|
||||
>>> cropper = ObjectCropper()
|
||||
>>> frame = cv2.imread("image.jpg")
|
||||
>>> results = cropper.process(frame)
|
||||
>>> print(f"Total cropped objects: {results.total_crop_objects}")
|
||||
"""
|
||||
with self.profilers[0]:
|
||||
results = self.model.predict(
|
||||
im0,
|
||||
classes=self.classes,
|
||||
conf=self.conf,
|
||||
iou=self.iou,
|
||||
device=self.CFG["device"],
|
||||
verbose=False,
|
||||
)[0]
|
||||
self.clss = results.boxes.cls.tolist() # required for logging only.
|
||||
|
||||
for box in results.boxes:
|
||||
self.crop_idx += 1
|
||||
save_one_box(
|
||||
box.xyxy,
|
||||
im0,
|
||||
file=Path(self.crop_dir) / f"crop_{self.crop_idx}.jpg",
|
||||
BGR=True,
|
||||
)
|
||||
|
||||
# Return SolutionResults
|
||||
return SolutionResults(plot_im=im0, total_crop_objects=self.crop_idx)
|
||||
Reference in New Issue
Block a user