init commit
This commit is contained in:
805
ultralytics/nn/modules/transformer.py
Normal file
805
ultralytics/nn/modules/transformer.py
Normal file
@@ -0,0 +1,805 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
"""Transformer modules."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import constant_, xavier_uniform_
|
||||
|
||||
from ultralytics.utils.torch_utils import TORCH_1_11
|
||||
|
||||
from .conv import Conv
|
||||
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
||||
|
||||
__all__ = (
|
||||
"TransformerEncoderLayer",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
A single layer of the transformer encoder.
|
||||
|
||||
This class implements a standard transformer encoder layer with multi-head attention and feedforward network,
|
||||
supporting both pre-normalization and post-normalization configurations.
|
||||
|
||||
Attributes:
|
||||
ma (nn.MultiheadAttention): Multi-head attention module.
|
||||
fc1 (nn.Linear): First linear layer in the feedforward network.
|
||||
fc2 (nn.Linear): Second linear layer in the feedforward network.
|
||||
norm1 (nn.LayerNorm): Layer normalization after attention.
|
||||
norm2 (nn.LayerNorm): Layer normalization after feedforward network.
|
||||
dropout (nn.Dropout): Dropout layer for the feedforward network.
|
||||
dropout1 (nn.Dropout): Dropout layer after attention.
|
||||
dropout2 (nn.Dropout): Dropout layer after feedforward network.
|
||||
act (nn.Module): Activation function.
|
||||
normalize_before (bool): Whether to apply normalization before attention and feedforward.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
c1: int,
|
||||
cm: int = 2048,
|
||||
num_heads: int = 8,
|
||||
dropout: float = 0.0,
|
||||
act: nn.Module = nn.GELU(),
|
||||
normalize_before: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the TransformerEncoderLayer with specified parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Input dimension.
|
||||
cm (int): Hidden dimension in the feedforward network.
|
||||
num_heads (int): Number of attention heads.
|
||||
dropout (float): Dropout probability.
|
||||
act (nn.Module): Activation function.
|
||||
normalize_before (bool): Whether to apply normalization before attention and feedforward.
|
||||
"""
|
||||
super().__init__()
|
||||
from ...utils.torch_utils import TORCH_1_9
|
||||
|
||||
if not TORCH_1_9:
|
||||
raise ModuleNotFoundError(
|
||||
"TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
|
||||
)
|
||||
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
|
||||
# Implementation of Feedforward model
|
||||
self.fc1 = nn.Linear(c1, cm)
|
||||
self.fc2 = nn.Linear(cm, c1)
|
||||
|
||||
self.norm1 = nn.LayerNorm(c1)
|
||||
self.norm2 = nn.LayerNorm(c1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.act = act
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None = None) -> torch.Tensor:
|
||||
"""Add position embeddings to the tensor if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: torch.Tensor | None = None,
|
||||
src_key_padding_mask: torch.Tensor | None = None,
|
||||
pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass with post-normalization.
|
||||
|
||||
Args:
|
||||
src (torch.Tensor): Input tensor.
|
||||
src_mask (torch.Tensor, optional): Mask for the src sequence.
|
||||
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
|
||||
pos (torch.Tensor, optional): Positional encoding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after attention and feedforward.
|
||||
"""
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
|
||||
src = src + self.dropout2(src2)
|
||||
return self.norm2(src)
|
||||
|
||||
def forward_pre(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: torch.Tensor | None = None,
|
||||
src_key_padding_mask: torch.Tensor | None = None,
|
||||
pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass with pre-normalization.
|
||||
|
||||
Args:
|
||||
src (torch.Tensor): Input tensor.
|
||||
src_mask (torch.Tensor, optional): Mask for the src sequence.
|
||||
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
|
||||
pos (torch.Tensor, optional): Positional encoding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after attention and feedforward.
|
||||
"""
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src2 = self.norm2(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
|
||||
return src + self.dropout2(src2)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: torch.Tensor | None = None,
|
||||
src_key_padding_mask: torch.Tensor | None = None,
|
||||
pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Forward propagate the input through the encoder module.
|
||||
|
||||
Args:
|
||||
src (torch.Tensor): Input tensor.
|
||||
src_mask (torch.Tensor, optional): Mask for the src sequence.
|
||||
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
|
||||
pos (torch.Tensor, optional): Positional encoding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after transformer encoder layer.
|
||||
"""
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||
|
||||
|
||||
class AIFI(TransformerEncoderLayer):
|
||||
"""
|
||||
AIFI transformer layer for 2D data with positional embeddings.
|
||||
|
||||
This class extends TransformerEncoderLayer to work with 2D feature maps by adding 2D sine-cosine positional
|
||||
embeddings and handling the spatial dimensions appropriately.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
c1: int,
|
||||
cm: int = 2048,
|
||||
num_heads: int = 8,
|
||||
dropout: float = 0,
|
||||
act: nn.Module = nn.GELU(),
|
||||
normalize_before: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the AIFI instance with specified parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Input dimension.
|
||||
cm (int): Hidden dimension in the feedforward network.
|
||||
num_heads (int): Number of attention heads.
|
||||
dropout (float): Dropout probability.
|
||||
act (nn.Module): Activation function.
|
||||
normalize_before (bool): Whether to apply normalization before attention and feedforward.
|
||||
"""
|
||||
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for the AIFI transformer layer.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor with shape [B, C, H, W].
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor with shape [B, C, H, W].
|
||||
"""
|
||||
c, h, w = x.shape[1:]
|
||||
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
|
||||
# Flatten [B, C, H, W] to [B, HxW, C]
|
||||
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
|
||||
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
|
||||
|
||||
@staticmethod
|
||||
def build_2d_sincos_position_embedding(
|
||||
w: int, h: int, embed_dim: int = 256, temperature: float = 10000.0
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Build 2D sine-cosine position embedding.
|
||||
|
||||
Args:
|
||||
w (int): Width of the feature map.
|
||||
h (int): Height of the feature map.
|
||||
embed_dim (int): Embedding dimension.
|
||||
temperature (float): Temperature for the sine/cosine functions.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Position embedding with shape [1, embed_dim, h*w].
|
||||
"""
|
||||
assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
|
||||
grid_w = torch.arange(w, dtype=torch.float32)
|
||||
grid_h = torch.arange(h, dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij") if TORCH_1_11 else torch.meshgrid(grid_w, grid_h)
|
||||
pos_dim = embed_dim // 4
|
||||
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
||||
omega = 1.0 / (temperature**omega)
|
||||
|
||||
out_w = grid_w.flatten()[..., None] @ omega[None]
|
||||
out_h = grid_h.flatten()[..., None] @ omega[None]
|
||||
|
||||
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
|
||||
|
||||
|
||||
class TransformerLayer(nn.Module):
|
||||
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
|
||||
|
||||
def __init__(self, c: int, num_heads: int):
|
||||
"""
|
||||
Initialize a self-attention mechanism using linear transformations and multi-head attention.
|
||||
|
||||
Args:
|
||||
c (int): Input and output channel dimension.
|
||||
num_heads (int): Number of attention heads.
|
||||
"""
|
||||
super().__init__()
|
||||
self.q = nn.Linear(c, c, bias=False)
|
||||
self.k = nn.Linear(c, c, bias=False)
|
||||
self.v = nn.Linear(c, c, bias=False)
|
||||
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
||||
self.fc1 = nn.Linear(c, c, bias=False)
|
||||
self.fc2 = nn.Linear(c, c, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply a transformer block to the input x and return the output.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after transformer layer.
|
||||
"""
|
||||
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
||||
return self.fc2(self.fc1(x)) + x
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
"""
|
||||
Vision Transformer block based on https://arxiv.org/abs/2010.11929.
|
||||
|
||||
This class implements a complete transformer block with optional convolution layer for channel adjustment,
|
||||
learnable position embedding, and multiple transformer layers.
|
||||
|
||||
Attributes:
|
||||
conv (Conv, optional): Convolution layer if input and output channels differ.
|
||||
linear (nn.Linear): Learnable position embedding.
|
||||
tr (nn.Sequential): Sequential container of transformer layers.
|
||||
c2 (int): Output channel dimension.
|
||||
"""
|
||||
|
||||
def __init__(self, c1: int, c2: int, num_heads: int, num_layers: int):
|
||||
"""
|
||||
Initialize a Transformer module with position embedding and specified number of heads and layers.
|
||||
|
||||
Args:
|
||||
c1 (int): Input channel dimension.
|
||||
c2 (int): Output channel dimension.
|
||||
num_heads (int): Number of attention heads.
|
||||
num_layers (int): Number of transformer layers.
|
||||
"""
|
||||
super().__init__()
|
||||
self.conv = None
|
||||
if c1 != c2:
|
||||
self.conv = Conv(c1, c2)
|
||||
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
||||
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
||||
self.c2 = c2
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward propagate the input through the transformer block.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor with shape [b, c1, w, h].
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor with shape [b, c2, w, h].
|
||||
"""
|
||||
if self.conv is not None:
|
||||
x = self.conv(x)
|
||||
b, _, w, h = x.shape
|
||||
p = x.flatten(2).permute(2, 0, 1)
|
||||
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
"""A single block of a multi-layer perceptron."""
|
||||
|
||||
def __init__(self, embedding_dim: int, mlp_dim: int, act=nn.GELU):
|
||||
"""
|
||||
Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function.
|
||||
|
||||
Args:
|
||||
embedding_dim (int): Input and output dimension.
|
||||
mlp_dim (int): Hidden dimension.
|
||||
act (nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for the MLPBlock.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after MLP block.
|
||||
"""
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""
|
||||
A simple multi-layer perceptron (also called FFN).
|
||||
|
||||
This class implements a configurable MLP with multiple linear layers, activation functions, and optional
|
||||
sigmoid output activation.
|
||||
|
||||
Attributes:
|
||||
num_layers (int): Number of layers in the MLP.
|
||||
layers (nn.ModuleList): List of linear layers.
|
||||
sigmoid (bool): Whether to apply sigmoid to the output.
|
||||
act (nn.Module): Activation function.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, act=nn.ReLU, sigmoid: bool = False
|
||||
):
|
||||
"""
|
||||
Initialize the MLP with specified input, hidden, output dimensions and number of layers.
|
||||
|
||||
Args:
|
||||
input_dim (int): Input dimension.
|
||||
hidden_dim (int): Hidden dimension.
|
||||
output_dim (int): Output dimension.
|
||||
num_layers (int): Number of layers.
|
||||
act (nn.Module): Activation function.
|
||||
sigmoid (bool): Whether to apply sigmoid to the output.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
self.sigmoid = sigmoid
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for the entire MLP.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after MLP.
|
||||
"""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = getattr(self, "act", nn.ReLU())(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x.sigmoid() if getattr(self, "sigmoid", False) else x
|
||||
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
"""
|
||||
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
|
||||
|
||||
This class implements layer normalization for 2D feature maps, normalizing across the channel dimension
|
||||
while preserving spatial dimensions.
|
||||
|
||||
Attributes:
|
||||
weight (nn.Parameter): Learnable scale parameter.
|
||||
bias (nn.Parameter): Learnable bias parameter.
|
||||
eps (float): Small constant for numerical stability.
|
||||
|
||||
References:
|
||||
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
|
||||
"""
|
||||
|
||||
def __init__(self, num_channels: int, eps: float = 1e-6):
|
||||
"""
|
||||
Initialize LayerNorm2d with the given parameters.
|
||||
|
||||
Args:
|
||||
num_channels (int): Number of channels in the input.
|
||||
eps (float): Small constant for numerical stability.
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass for 2D layer normalization.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Normalized output tensor.
|
||||
"""
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
return self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
|
||||
|
||||
class MSDeformAttn(nn.Module):
|
||||
"""
|
||||
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
||||
|
||||
This module implements multiscale deformable attention that can attend to features at multiple scales
|
||||
with learnable sampling locations and attention weights.
|
||||
|
||||
Attributes:
|
||||
im2col_step (int): Step size for im2col operations.
|
||||
d_model (int): Model dimension.
|
||||
n_levels (int): Number of feature levels.
|
||||
n_heads (int): Number of attention heads.
|
||||
n_points (int): Number of sampling points per attention head per feature level.
|
||||
sampling_offsets (nn.Linear): Linear layer for generating sampling offsets.
|
||||
attention_weights (nn.Linear): Linear layer for generating attention weights.
|
||||
value_proj (nn.Linear): Linear layer for projecting values.
|
||||
output_proj (nn.Linear): Linear layer for projecting output.
|
||||
|
||||
References:
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int = 256, n_levels: int = 4, n_heads: int = 8, n_points: int = 4):
|
||||
"""
|
||||
Initialize MSDeformAttn with the given parameters.
|
||||
|
||||
Args:
|
||||
d_model (int): Model dimension.
|
||||
n_levels (int): Number of feature levels.
|
||||
n_heads (int): Number of attention heads.
|
||||
n_points (int): Number of sampling points per attention head per feature level.
|
||||
"""
|
||||
super().__init__()
|
||||
if d_model % n_heads != 0:
|
||||
raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
|
||||
_d_per_head = d_model // n_heads
|
||||
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"
|
||||
|
||||
self.im2col_step = 64
|
||||
|
||||
self.d_model = d_model
|
||||
self.n_levels = n_levels
|
||||
self.n_heads = n_heads
|
||||
self.n_points = n_points
|
||||
|
||||
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
||||
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
||||
self.value_proj = nn.Linear(d_model, d_model)
|
||||
self.output_proj = nn.Linear(d_model, d_model)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
"""Reset module parameters."""
|
||||
constant_(self.sampling_offsets.weight.data, 0.0)
|
||||
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
||||
grid_init = (
|
||||
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
||||
.view(self.n_heads, 1, 1, 2)
|
||||
.repeat(1, self.n_levels, self.n_points, 1)
|
||||
)
|
||||
for i in range(self.n_points):
|
||||
grid_init[:, :, i, :] *= i + 1
|
||||
with torch.no_grad():
|
||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
||||
constant_(self.attention_weights.weight.data, 0.0)
|
||||
constant_(self.attention_weights.bias.data, 0.0)
|
||||
xavier_uniform_(self.value_proj.weight.data)
|
||||
constant_(self.value_proj.bias.data, 0.0)
|
||||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.0)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
refer_bbox: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
value_shapes: list,
|
||||
value_mask: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass for multiscale deformable attention.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor with shape [bs, query_length, C].
|
||||
refer_bbox (torch.Tensor): Reference bounding boxes with shape [bs, query_length, n_levels, 2],
|
||||
range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area.
|
||||
value (torch.Tensor): Value tensor with shape [bs, value_length, C].
|
||||
value_shapes (list): List with shape [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})].
|
||||
value_mask (torch.Tensor, optional): Mask tensor with shape [bs, value_length], True for non-padding
|
||||
elements, False for padding elements.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor with shape [bs, Length_{query}, C].
|
||||
|
||||
References:
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
bs, len_q = query.shape[:2]
|
||||
len_v = value.shape[1]
|
||||
assert sum(s[0] * s[1] for s in value_shapes) == len_v
|
||||
|
||||
value = self.value_proj(value)
|
||||
if value_mask is not None:
|
||||
value = value.masked_fill(value_mask[..., None], float(0))
|
||||
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
|
||||
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
||||
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
|
||||
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
|
||||
# N, Len_q, n_heads, n_levels, n_points, 2
|
||||
num_points = refer_bbox.shape[-1]
|
||||
if num_points == 2:
|
||||
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
|
||||
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
|
||||
elif num_points == 4:
|
||||
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
||||
else:
|
||||
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
||||
return self.output_proj(output)
|
||||
|
||||
|
||||
class DeformableTransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
|
||||
|
||||
This class implements a single decoder layer with self-attention, cross-attention using multiscale deformable
|
||||
attention, and a feedforward network.
|
||||
|
||||
Attributes:
|
||||
self_attn (nn.MultiheadAttention): Self-attention module.
|
||||
dropout1 (nn.Dropout): Dropout after self-attention.
|
||||
norm1 (nn.LayerNorm): Layer normalization after self-attention.
|
||||
cross_attn (MSDeformAttn): Cross-attention module.
|
||||
dropout2 (nn.Dropout): Dropout after cross-attention.
|
||||
norm2 (nn.LayerNorm): Layer normalization after cross-attention.
|
||||
linear1 (nn.Linear): First linear layer in the feedforward network.
|
||||
act (nn.Module): Activation function.
|
||||
dropout3 (nn.Dropout): Dropout in the feedforward network.
|
||||
linear2 (nn.Linear): Second linear layer in the feedforward network.
|
||||
dropout4 (nn.Dropout): Dropout after the feedforward network.
|
||||
norm3 (nn.LayerNorm): Layer normalization after the feedforward network.
|
||||
|
||||
References:
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = 256,
|
||||
n_heads: int = 8,
|
||||
d_ffn: int = 1024,
|
||||
dropout: float = 0.0,
|
||||
act: nn.Module = nn.ReLU(),
|
||||
n_levels: int = 4,
|
||||
n_points: int = 4,
|
||||
):
|
||||
"""
|
||||
Initialize the DeformableTransformerDecoderLayer with the given parameters.
|
||||
|
||||
Args:
|
||||
d_model (int): Model dimension.
|
||||
n_heads (int): Number of attention heads.
|
||||
d_ffn (int): Dimension of the feedforward network.
|
||||
dropout (float): Dropout probability.
|
||||
act (nn.Module): Activation function.
|
||||
n_levels (int): Number of feature levels.
|
||||
n_points (int): Number of sampling points.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# Self attention
|
||||
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
|
||||
# Cross attention
|
||||
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
# FFN
|
||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
||||
self.act = act
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(d_ffn, d_model)
|
||||
self.dropout4 = nn.Dropout(dropout)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None) -> torch.Tensor:
|
||||
"""Add positional embeddings to the input tensor, if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_ffn(self, tgt: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass through the Feed-Forward Network part of the layer.
|
||||
|
||||
Args:
|
||||
tgt (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after FFN.
|
||||
"""
|
||||
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout4(tgt2)
|
||||
return self.norm3(tgt)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed: torch.Tensor,
|
||||
refer_bbox: torch.Tensor,
|
||||
feats: torch.Tensor,
|
||||
shapes: list,
|
||||
padding_mask: torch.Tensor | None = None,
|
||||
attn_mask: torch.Tensor | None = None,
|
||||
query_pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform the forward pass through the entire decoder layer.
|
||||
|
||||
Args:
|
||||
embed (torch.Tensor): Input embeddings.
|
||||
refer_bbox (torch.Tensor): Reference bounding boxes.
|
||||
feats (torch.Tensor): Feature maps.
|
||||
shapes (list): Feature shapes.
|
||||
padding_mask (torch.Tensor, optional): Padding mask.
|
||||
attn_mask (torch.Tensor, optional): Attention mask.
|
||||
query_pos (torch.Tensor, optional): Query position embeddings.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after decoder layer.
|
||||
"""
|
||||
# Self attention
|
||||
q = k = self.with_pos_embed(embed, query_pos)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
|
||||
0
|
||||
].transpose(0, 1)
|
||||
embed = embed + self.dropout1(tgt)
|
||||
embed = self.norm1(embed)
|
||||
|
||||
# Cross attention
|
||||
tgt = self.cross_attn(
|
||||
self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
|
||||
)
|
||||
embed = embed + self.dropout2(tgt)
|
||||
embed = self.norm2(embed)
|
||||
|
||||
# FFN
|
||||
return self.forward_ffn(embed)
|
||||
|
||||
|
||||
class DeformableTransformerDecoder(nn.Module):
|
||||
"""
|
||||
Deformable Transformer Decoder based on PaddleDetection implementation.
|
||||
|
||||
This class implements a complete deformable transformer decoder with multiple decoder layers and prediction
|
||||
heads for bounding box regression and classification.
|
||||
|
||||
Attributes:
|
||||
layers (nn.ModuleList): List of decoder layers.
|
||||
num_layers (int): Number of decoder layers.
|
||||
hidden_dim (int): Hidden dimension.
|
||||
eval_idx (int): Index of the layer to use during evaluation.
|
||||
|
||||
References:
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim: int, decoder_layer: nn.Module, num_layers: int, eval_idx: int = -1):
|
||||
"""
|
||||
Initialize the DeformableTransformerDecoder with the given parameters.
|
||||
|
||||
Args:
|
||||
hidden_dim (int): Hidden dimension.
|
||||
decoder_layer (nn.Module): Decoder layer module.
|
||||
num_layers (int): Number of decoder layers.
|
||||
eval_idx (int): Index of the layer to use during evaluation.
|
||||
"""
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.hidden_dim = hidden_dim
|
||||
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed: torch.Tensor, # decoder embeddings
|
||||
refer_bbox: torch.Tensor, # anchor
|
||||
feats: torch.Tensor, # image features
|
||||
shapes: list, # feature shapes
|
||||
bbox_head: nn.Module,
|
||||
score_head: nn.Module,
|
||||
pos_mlp: nn.Module,
|
||||
attn_mask: torch.Tensor | None = None,
|
||||
padding_mask: torch.Tensor | None = None,
|
||||
):
|
||||
"""
|
||||
Perform the forward pass through the entire decoder.
|
||||
|
||||
Args:
|
||||
embed (torch.Tensor): Decoder embeddings.
|
||||
refer_bbox (torch.Tensor): Reference bounding boxes.
|
||||
feats (torch.Tensor): Image features.
|
||||
shapes (list): Feature shapes.
|
||||
bbox_head (nn.Module): Bounding box prediction head.
|
||||
score_head (nn.Module): Score prediction head.
|
||||
pos_mlp (nn.Module): Position MLP.
|
||||
attn_mask (torch.Tensor, optional): Attention mask.
|
||||
padding_mask (torch.Tensor, optional): Padding mask.
|
||||
|
||||
Returns:
|
||||
dec_bboxes (torch.Tensor): Decoded bounding boxes.
|
||||
dec_cls (torch.Tensor): Decoded classification scores.
|
||||
"""
|
||||
output = embed
|
||||
dec_bboxes = []
|
||||
dec_cls = []
|
||||
last_refined_bbox = None
|
||||
refer_bbox = refer_bbox.sigmoid()
|
||||
for i, layer in enumerate(self.layers):
|
||||
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
|
||||
|
||||
bbox = bbox_head[i](output)
|
||||
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))
|
||||
|
||||
if self.training:
|
||||
dec_cls.append(score_head[i](output))
|
||||
if i == 0:
|
||||
dec_bboxes.append(refined_bbox)
|
||||
else:
|
||||
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
|
||||
elif i == self.eval_idx:
|
||||
dec_cls.append(score_head[i](output))
|
||||
dec_bboxes.append(refined_bbox)
|
||||
break
|
||||
|
||||
last_refined_bbox = refined_bbox
|
||||
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
|
||||
|
||||
return torch.stack(dec_bboxes), torch.stack(dec_cls)
|
||||
Reference in New Issue
Block a user