init commit

This commit is contained in:
2025-11-08 19:15:39 +01:00
parent ecffcb08e8
commit c7adacf53b
470 changed files with 73751 additions and 0 deletions

View File

@@ -0,0 +1,182 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Ultralytics neural network modules.
This module provides access to various neural network components used in Ultralytics models, including convolution
blocks, attention mechanisms, transformer components, and detection/segmentation heads.
Examples:
Visualize a module with Netron
>>> from ultralytics.nn.modules import Conv
>>> import torch
>>> import subprocess
>>> x = torch.ones(1, 128, 40, 40)
>>> m = Conv(128, 128)
>>> f = f"{m._get_name()}.onnx"
>>> torch.onnx.export(m, x, f)
>>> subprocess.run(f"onnxslim {f} {f} && open {f}", shell=True, check=True) # pip install onnxslim
"""
from .block import (
C1,
C2,
C2PSA,
C3,
C3TR,
CIB,
DFL,
ELAN1,
PSA,
SPP,
SPPELAN,
SPPF,
A2C2f,
AConv,
ADown,
Attention,
BNContrastiveHead,
Bottleneck,
BottleneckCSP,
C2f,
C2fAttn,
C2fCIB,
C2fPSA,
C3Ghost,
C3k2,
C3x,
CBFuse,
CBLinear,
ContrastiveHead,
GhostBottleneck,
HGBlock,
HGStem,
ImagePoolingAttn,
MaxSigmoidAttnBlock,
Proto,
RepC3,
RepNCSPELAN4,
RepVGGDW,
ResNetLayer,
SCDown,
TorchVision,
)
from .conv import (
CBAM,
ChannelAttention,
Concat,
Conv,
Conv2,
ConvTranspose,
DWConv,
DWConvTranspose2d,
Focus,
GhostConv,
Index,
LightConv,
RepConv,
SpatialAttention,
)
from .head import (
OBB,
Classify,
Detect,
LRPCHead,
Pose,
RTDETRDecoder,
Segment,
WorldDetect,
YOLOEDetect,
YOLOESegment,
v10Detect,
)
from .transformer import (
AIFI,
MLP,
DeformableTransformerDecoder,
DeformableTransformerDecoderLayer,
LayerNorm2d,
MLPBlock,
MSDeformAttn,
TransformerBlock,
TransformerEncoderLayer,
TransformerLayer,
)
__all__ = (
"Conv",
"Conv2",
"LightConv",
"RepConv",
"DWConv",
"DWConvTranspose2d",
"ConvTranspose",
"Focus",
"GhostConv",
"ChannelAttention",
"SpatialAttention",
"CBAM",
"Concat",
"TransformerLayer",
"TransformerBlock",
"MLPBlock",
"LayerNorm2d",
"DFL",
"HGBlock",
"HGStem",
"SPP",
"SPPF",
"C1",
"C2",
"C3",
"C2f",
"C3k2",
"SCDown",
"C2fPSA",
"C2PSA",
"C2fAttn",
"C3x",
"C3TR",
"C3Ghost",
"GhostBottleneck",
"Bottleneck",
"BottleneckCSP",
"Proto",
"Detect",
"Segment",
"Pose",
"Classify",
"TransformerEncoderLayer",
"RepC3",
"RTDETRDecoder",
"AIFI",
"DeformableTransformerDecoder",
"DeformableTransformerDecoderLayer",
"MSDeformAttn",
"MLP",
"ResNetLayer",
"OBB",
"WorldDetect",
"YOLOEDetect",
"YOLOESegment",
"v10Detect",
"LRPCHead",
"ImagePoolingAttn",
"MaxSigmoidAttnBlock",
"ContrastiveHead",
"BNContrastiveHead",
"RepNCSPELAN4",
"ADown",
"SPPELAN",
"CBFuse",
"CBLinear",
"AConv",
"ELAN1",
"RepVGGDW",
"CIB",
"C2fCIB",
"Attention",
"PSA",
"TorchVision",
"Index",
"A2C2f",
)

View File

@@ -0,0 +1,56 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Activation modules."""
import torch
import torch.nn as nn
class AGLU(nn.Module):
"""
Unified activation function module from AGLU.
This class implements a parameterized activation function with learnable parameters lambda and kappa, based on the
AGLU (Adaptive Gated Linear Unit) approach.
Attributes:
act (nn.Softplus): Softplus activation function with negative beta.
lambd (nn.Parameter): Learnable lambda parameter initialized with uniform distribution.
kappa (nn.Parameter): Learnable kappa parameter initialized with uniform distribution.
Methods:
forward: Compute the forward pass of the Unified activation function.
Examples:
>>> import torch
>>> m = AGLU()
>>> input = torch.randn(2)
>>> output = m(input)
>>> print(output.shape)
torch.Size([2])
References:
https://github.com/kostas1515/AGLU
"""
def __init__(self, device=None, dtype=None) -> None:
"""Initialize the Unified activation function with learnable parameters."""
super().__init__()
self.act = nn.Softplus(beta=-1.0)
self.lambd = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype))) # lambda parameter
self.kappa = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype))) # kappa parameter
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Apply the Adaptive Gated Linear Unit (AGLU) activation function.
This forward method implements the AGLU activation function with learnable parameters lambda and kappa.
The function applies a transformation that adaptively combines linear and non-linear components.
Args:
x (torch.Tensor): Input tensor to apply the activation function to.
Returns:
(torch.Tensor): Output tensor after applying the AGLU activation function, with the same shape as the input.
"""
lam = torch.clamp(self.lambd, min=0.0001) # Clamp lambda to avoid division by zero
return torch.exp((1 / lam) * self.act((self.kappa * x) - torch.log(lam)))

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,714 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Convolution modules."""
from __future__ import annotations
import math
import numpy as np
import torch
import torch.nn as nn
__all__ = (
"Conv",
"Conv2",
"LightConv",
"DWConv",
"DWConvTranspose2d",
"ConvTranspose",
"Focus",
"GhostConv",
"ChannelAttention",
"SpatialAttention",
"CBAM",
"Concat",
"RepConv",
"Index",
)
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""
Standard convolution module with batch normalization and activation.
Attributes:
conv (nn.Conv2d): Convolutional layer.
bn (nn.BatchNorm2d): Batch normalization layer.
act (nn.Module): Activation function layer.
default_act (nn.Module): Default activation function (SiLU).
"""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""
Initialize Conv layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int, optional): Padding.
g (int): Groups.
d (int): Dilation.
act (bool | nn.Module): Activation function.
"""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""
Apply convolution, batch normalization and activation to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""
Apply convolution and activation without batch normalization.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.conv(x))
class Conv2(Conv):
"""
Simplified RepConv module with Conv fusing.
Attributes:
conv (nn.Conv2d): Main 3x3 convolutional layer.
cv2 (nn.Conv2d): Additional 1x1 convolutional layer.
bn (nn.BatchNorm2d): Batch normalization layer.
act (nn.Module): Activation function layer.
"""
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
"""
Initialize Conv2 layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int, optional): Padding.
g (int): Groups.
d (int): Dilation.
act (bool | nn.Module): Activation function.
"""
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
def forward(self, x):
"""
Apply convolution, batch normalization and activation to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv(x) + self.cv2(x)))
def forward_fuse(self, x):
"""
Apply fused convolution, batch normalization and activation to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv(x)))
def fuse_convs(self):
"""Fuse parallel convolutions."""
w = torch.zeros_like(self.conv.weight.data)
i = [x // 2 for x in w.shape[2:]]
w[:, :, i[0] : i[0] + 1, i[1] : i[1] + 1] = self.cv2.weight.data.clone()
self.conv.weight.data += w
self.__delattr__("cv2")
self.forward = self.forward_fuse
class LightConv(nn.Module):
"""
Light convolution module with 1x1 and depthwise convolutions.
This implementation is based on the PaddleDetection HGNetV2 backbone.
Attributes:
conv1 (Conv): 1x1 convolution layer.
conv2 (DWConv): Depthwise convolution layer.
"""
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
"""
Initialize LightConv layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size for depthwise convolution.
act (nn.Module): Activation function.
"""
super().__init__()
self.conv1 = Conv(c1, c2, 1, act=False)
self.conv2 = DWConv(c2, c2, k, act=act)
def forward(self, x):
"""
Apply 2 convolutions to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.conv2(self.conv1(x))
class DWConv(Conv):
"""Depth-wise convolution module."""
def __init__(self, c1, c2, k=1, s=1, d=1, act=True):
"""
Initialize depth-wise convolution with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
d (int): Dilation.
act (bool | nn.Module): Activation function.
"""
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
class DWConvTranspose2d(nn.ConvTranspose2d):
"""Depth-wise transpose convolution module."""
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):
"""
Initialize depth-wise transpose convolution with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p1 (int): Padding.
p2 (int): Output padding.
"""
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
class ConvTranspose(nn.Module):
"""
Convolution transpose module with optional batch normalization and activation.
Attributes:
conv_transpose (nn.ConvTranspose2d): Transposed convolution layer.
bn (nn.BatchNorm2d | nn.Identity): Batch normalization layer.
act (nn.Module): Activation function layer.
default_act (nn.Module): Default activation function (SiLU).
"""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
"""
Initialize ConvTranspose layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int): Padding.
bn (bool): Use batch normalization.
act (bool | nn.Module): Activation function.
"""
super().__init__()
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""
Apply transposed convolution, batch normalization and activation to input.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv_transpose(x)))
def forward_fuse(self, x):
"""
Apply activation and convolution transpose operation to input.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.conv_transpose(x))
class Focus(nn.Module):
"""
Focus module for concentrating feature information.
Slices input tensor into 4 parts and concatenates them in the channel dimension.
Attributes:
conv (Conv): Convolution layer.
"""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
"""
Initialize Focus module with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int, optional): Padding.
g (int): Groups.
act (bool | nn.Module): Activation function.
"""
super().__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
# self.contract = Contract(gain=2)
def forward(self, x):
"""
Apply Focus operation and convolution to input tensor.
Input shape is (B, C, W, H) and output shape is (B, 4C, W/2, H/2).
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
# return self.conv(self.contract(x))
class GhostConv(nn.Module):
"""
Ghost Convolution module.
Generates more features with fewer parameters by using cheap operations.
Attributes:
cv1 (Conv): Primary convolution.
cv2 (Conv): Cheap operation convolution.
References:
https://github.com/huawei-noah/Efficient-AI-Backbones
"""
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
"""
Initialize Ghost Convolution module with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
g (int): Groups.
act (bool | nn.Module): Activation function.
"""
super().__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
def forward(self, x):
"""
Apply Ghost Convolution to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor with concatenated features.
"""
y = self.cv1(x)
return torch.cat((y, self.cv2(y)), 1)
class RepConv(nn.Module):
"""
RepConv module with training and deploy modes.
This module is used in RT-DETR and can fuse convolutions during inference for efficiency.
Attributes:
conv1 (Conv): 3x3 convolution.
conv2 (Conv): 1x1 convolution.
bn (nn.BatchNorm2d, optional): Batch normalization for identity branch.
act (nn.Module): Activation function.
default_act (nn.Module): Default activation function (SiLU).
References:
https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
"""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
"""
Initialize RepConv module with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int): Padding.
g (int): Groups.
d (int): Dilation.
act (bool | nn.Module): Activation function.
bn (bool): Use batch normalization for identity branch.
deploy (bool): Deploy mode for inference.
"""
super().__init__()
assert k == 3 and p == 1
self.g = g
self.c1 = c1
self.c2 = c2
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
def forward_fuse(self, x):
"""
Forward pass for deploy mode.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.conv(x))
def forward(self, x):
"""
Forward pass for training mode.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
id_out = 0 if self.bn is None else self.bn(x)
return self.act(self.conv1(x) + self.conv2(x) + id_out)
def get_equivalent_kernel_bias(self):
"""
Calculate equivalent kernel and bias by fusing convolutions.
Returns:
(torch.Tensor): Equivalent kernel
(torch.Tensor): Equivalent bias
"""
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
kernelid, biasid = self._fuse_bn_tensor(self.bn)
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
@staticmethod
def _pad_1x1_to_3x3_tensor(kernel1x1):
"""
Pad a 1x1 kernel to 3x3 size.
Args:
kernel1x1 (torch.Tensor): 1x1 convolution kernel.
Returns:
(torch.Tensor): Padded 3x3 kernel.
"""
if kernel1x1 is None:
return 0
else:
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch):
"""
Fuse batch normalization with convolution weights.
Args:
branch (Conv | nn.BatchNorm2d | None): Branch to fuse.
Returns:
kernel (torch.Tensor): Fused kernel.
bias (torch.Tensor): Fused bias.
"""
if branch is None:
return 0, 0
if isinstance(branch, Conv):
kernel = branch.conv.weight
running_mean = branch.bn.running_mean
running_var = branch.bn.running_var
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn.eps
elif isinstance(branch, nn.BatchNorm2d):
if not hasattr(self, "id_tensor"):
input_dim = self.c1 // self.g
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
for i in range(self.c1):
kernel_value[i, i % input_dim, 1, 1] = 1
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
kernel = self.id_tensor
running_mean = branch.running_mean
running_var = branch.running_var
gamma = branch.weight
beta = branch.bias
eps = branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def fuse_convs(self):
"""Fuse convolutions for inference by creating a single equivalent convolution."""
if hasattr(self, "conv"):
return
kernel, bias = self.get_equivalent_kernel_bias()
self.conv = nn.Conv2d(
in_channels=self.conv1.conv.in_channels,
out_channels=self.conv1.conv.out_channels,
kernel_size=self.conv1.conv.kernel_size,
stride=self.conv1.conv.stride,
padding=self.conv1.conv.padding,
dilation=self.conv1.conv.dilation,
groups=self.conv1.conv.groups,
bias=True,
).requires_grad_(False)
self.conv.weight.data = kernel
self.conv.bias.data = bias
for para in self.parameters():
para.detach_()
self.__delattr__("conv1")
self.__delattr__("conv2")
if hasattr(self, "nm"):
self.__delattr__("nm")
if hasattr(self, "bn"):
self.__delattr__("bn")
if hasattr(self, "id_tensor"):
self.__delattr__("id_tensor")
class ChannelAttention(nn.Module):
"""
Channel-attention module for feature recalibration.
Applies attention weights to channels based on global average pooling.
Attributes:
pool (nn.AdaptiveAvgPool2d): Global average pooling.
fc (nn.Conv2d): Fully connected layer implemented as 1x1 convolution.
act (nn.Sigmoid): Sigmoid activation for attention weights.
References:
https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet
"""
def __init__(self, channels: int) -> None:
"""
Initialize Channel-attention module.
Args:
channels (int): Number of input channels.
"""
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
self.act = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Apply channel attention to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Channel-attended output tensor.
"""
return x * self.act(self.fc(self.pool(x)))
class SpatialAttention(nn.Module):
"""
Spatial-attention module for feature recalibration.
Applies attention weights to spatial dimensions based on channel statistics.
Attributes:
cv1 (nn.Conv2d): Convolution layer for spatial attention.
act (nn.Sigmoid): Sigmoid activation for attention weights.
"""
def __init__(self, kernel_size=7):
"""
Initialize Spatial-attention module.
Args:
kernel_size (int): Size of the convolutional kernel (3 or 7).
"""
super().__init__()
assert kernel_size in {3, 7}, "kernel size must be 3 or 7"
padding = 3 if kernel_size == 7 else 1
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.act = nn.Sigmoid()
def forward(self, x):
"""
Apply spatial attention to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Spatial-attended output tensor.
"""
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
class CBAM(nn.Module):
"""
Convolutional Block Attention Module.
Combines channel and spatial attention mechanisms for comprehensive feature refinement.
Attributes:
channel_attention (ChannelAttention): Channel attention module.
spatial_attention (SpatialAttention): Spatial attention module.
"""
def __init__(self, c1, kernel_size=7):
"""
Initialize CBAM with given parameters.
Args:
c1 (int): Number of input channels.
kernel_size (int): Size of the convolutional kernel for spatial attention.
"""
super().__init__()
self.channel_attention = ChannelAttention(c1)
self.spatial_attention = SpatialAttention(kernel_size)
def forward(self, x):
"""
Apply channel and spatial attention sequentially to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Attended output tensor.
"""
return self.spatial_attention(self.channel_attention(x))
class Concat(nn.Module):
"""
Concatenate a list of tensors along specified dimension.
Attributes:
d (int): Dimension along which to concatenate tensors.
"""
def __init__(self, dimension=1):
"""
Initialize Concat module.
Args:
dimension (int): Dimension along which to concatenate tensors.
"""
super().__init__()
self.d = dimension
def forward(self, x: list[torch.Tensor]):
"""
Concatenate input tensors along specified dimension.
Args:
x (list[torch.Tensor]): List of input tensors.
Returns:
(torch.Tensor): Concatenated tensor.
"""
return torch.cat(x, self.d)
class Index(nn.Module):
"""
Returns a particular index of the input.
Attributes:
index (int): Index to select from input.
"""
def __init__(self, index=0):
"""
Initialize Index module.
Args:
index (int): Index to select from input.
"""
super().__init__()
self.index = index
def forward(self, x: list[torch.Tensor]):
"""
Select and return a particular index from input.
Args:
x (list[torch.Tensor]): List of input tensors.
Returns:
(torch.Tensor): Selected tensor.
"""
return x[self.index]

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,805 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Transformer modules."""
from __future__ import annotations
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import constant_, xavier_uniform_
from ultralytics.utils.torch_utils import TORCH_1_11
from .conv import Conv
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
__all__ = (
"TransformerEncoderLayer",
"TransformerLayer",
"TransformerBlock",
"MLPBlock",
"LayerNorm2d",
"AIFI",
"DeformableTransformerDecoder",
"DeformableTransformerDecoderLayer",
"MSDeformAttn",
"MLP",
)
class TransformerEncoderLayer(nn.Module):
"""
A single layer of the transformer encoder.
This class implements a standard transformer encoder layer with multi-head attention and feedforward network,
supporting both pre-normalization and post-normalization configurations.
Attributes:
ma (nn.MultiheadAttention): Multi-head attention module.
fc1 (nn.Linear): First linear layer in the feedforward network.
fc2 (nn.Linear): Second linear layer in the feedforward network.
norm1 (nn.LayerNorm): Layer normalization after attention.
norm2 (nn.LayerNorm): Layer normalization after feedforward network.
dropout (nn.Dropout): Dropout layer for the feedforward network.
dropout1 (nn.Dropout): Dropout layer after attention.
dropout2 (nn.Dropout): Dropout layer after feedforward network.
act (nn.Module): Activation function.
normalize_before (bool): Whether to apply normalization before attention and feedforward.
"""
def __init__(
self,
c1: int,
cm: int = 2048,
num_heads: int = 8,
dropout: float = 0.0,
act: nn.Module = nn.GELU(),
normalize_before: bool = False,
):
"""
Initialize the TransformerEncoderLayer with specified parameters.
Args:
c1 (int): Input dimension.
cm (int): Hidden dimension in the feedforward network.
num_heads (int): Number of attention heads.
dropout (float): Dropout probability.
act (nn.Module): Activation function.
normalize_before (bool): Whether to apply normalization before attention and feedforward.
"""
super().__init__()
from ...utils.torch_utils import TORCH_1_9
if not TORCH_1_9:
raise ModuleNotFoundError(
"TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
)
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
# Implementation of Feedforward model
self.fc1 = nn.Linear(c1, cm)
self.fc2 = nn.Linear(cm, c1)
self.norm1 = nn.LayerNorm(c1)
self.norm2 = nn.LayerNorm(c1)
self.dropout = nn.Dropout(dropout)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.act = act
self.normalize_before = normalize_before
@staticmethod
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None = None) -> torch.Tensor:
"""Add position embeddings to the tensor if provided."""
return tensor if pos is None else tensor + pos
def forward_post(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Perform forward pass with post-normalization.
Args:
src (torch.Tensor): Input tensor.
src_mask (torch.Tensor, optional): Mask for the src sequence.
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
pos (torch.Tensor, optional): Positional encoding.
Returns:
(torch.Tensor): Output tensor after attention and feedforward.
"""
q = k = self.with_pos_embed(src, pos)
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
src = src + self.dropout2(src2)
return self.norm2(src)
def forward_pre(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Perform forward pass with pre-normalization.
Args:
src (torch.Tensor): Input tensor.
src_mask (torch.Tensor, optional): Mask for the src sequence.
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
pos (torch.Tensor, optional): Positional encoding.
Returns:
(torch.Tensor): Output tensor after attention and feedforward.
"""
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
return src + self.dropout2(src2)
def forward(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Forward propagate the input through the encoder module.
Args:
src (torch.Tensor): Input tensor.
src_mask (torch.Tensor, optional): Mask for the src sequence.
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
pos (torch.Tensor, optional): Positional encoding.
Returns:
(torch.Tensor): Output tensor after transformer encoder layer.
"""
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
class AIFI(TransformerEncoderLayer):
"""
AIFI transformer layer for 2D data with positional embeddings.
This class extends TransformerEncoderLayer to work with 2D feature maps by adding 2D sine-cosine positional
embeddings and handling the spatial dimensions appropriately.
"""
def __init__(
self,
c1: int,
cm: int = 2048,
num_heads: int = 8,
dropout: float = 0,
act: nn.Module = nn.GELU(),
normalize_before: bool = False,
):
"""
Initialize the AIFI instance with specified parameters.
Args:
c1 (int): Input dimension.
cm (int): Hidden dimension in the feedforward network.
num_heads (int): Number of attention heads.
dropout (float): Dropout probability.
act (nn.Module): Activation function.
normalize_before (bool): Whether to apply normalization before attention and feedforward.
"""
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the AIFI transformer layer.
Args:
x (torch.Tensor): Input tensor with shape [B, C, H, W].
Returns:
(torch.Tensor): Output tensor with shape [B, C, H, W].
"""
c, h, w = x.shape[1:]
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
# Flatten [B, C, H, W] to [B, HxW, C]
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
@staticmethod
def build_2d_sincos_position_embedding(
w: int, h: int, embed_dim: int = 256, temperature: float = 10000.0
) -> torch.Tensor:
"""
Build 2D sine-cosine position embedding.
Args:
w (int): Width of the feature map.
h (int): Height of the feature map.
embed_dim (int): Embedding dimension.
temperature (float): Temperature for the sine/cosine functions.
Returns:
(torch.Tensor): Position embedding with shape [1, embed_dim, h*w].
"""
assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij") if TORCH_1_11 else torch.meshgrid(grid_w, grid_h)
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1.0 / (temperature**omega)
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
class TransformerLayer(nn.Module):
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
def __init__(self, c: int, num_heads: int):
"""
Initialize a self-attention mechanism using linear transformations and multi-head attention.
Args:
c (int): Input and output channel dimension.
num_heads (int): Number of attention heads.
"""
super().__init__()
self.q = nn.Linear(c, c, bias=False)
self.k = nn.Linear(c, c, bias=False)
self.v = nn.Linear(c, c, bias=False)
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
self.fc1 = nn.Linear(c, c, bias=False)
self.fc2 = nn.Linear(c, c, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Apply a transformer block to the input x and return the output.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after transformer layer.
"""
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
return self.fc2(self.fc1(x)) + x
class TransformerBlock(nn.Module):
"""
Vision Transformer block based on https://arxiv.org/abs/2010.11929.
This class implements a complete transformer block with optional convolution layer for channel adjustment,
learnable position embedding, and multiple transformer layers.
Attributes:
conv (Conv, optional): Convolution layer if input and output channels differ.
linear (nn.Linear): Learnable position embedding.
tr (nn.Sequential): Sequential container of transformer layers.
c2 (int): Output channel dimension.
"""
def __init__(self, c1: int, c2: int, num_heads: int, num_layers: int):
"""
Initialize a Transformer module with position embedding and specified number of heads and layers.
Args:
c1 (int): Input channel dimension.
c2 (int): Output channel dimension.
num_heads (int): Number of attention heads.
num_layers (int): Number of transformer layers.
"""
super().__init__()
self.conv = None
if c1 != c2:
self.conv = Conv(c1, c2)
self.linear = nn.Linear(c2, c2) # learnable position embedding
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
self.c2 = c2
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward propagate the input through the transformer block.
Args:
x (torch.Tensor): Input tensor with shape [b, c1, w, h].
Returns:
(torch.Tensor): Output tensor with shape [b, c2, w, h].
"""
if self.conv is not None:
x = self.conv(x)
b, _, w, h = x.shape
p = x.flatten(2).permute(2, 0, 1)
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
class MLPBlock(nn.Module):
"""A single block of a multi-layer perceptron."""
def __init__(self, embedding_dim: int, mlp_dim: int, act=nn.GELU):
"""
Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function.
Args:
embedding_dim (int): Input and output dimension.
mlp_dim (int): Hidden dimension.
act (nn.Module): Activation function.
"""
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MLPBlock.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after MLP block.
"""
return self.lin2(self.act(self.lin1(x)))
class MLP(nn.Module):
"""
A simple multi-layer perceptron (also called FFN).
This class implements a configurable MLP with multiple linear layers, activation functions, and optional
sigmoid output activation.
Attributes:
num_layers (int): Number of layers in the MLP.
layers (nn.ModuleList): List of linear layers.
sigmoid (bool): Whether to apply sigmoid to the output.
act (nn.Module): Activation function.
"""
def __init__(
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, act=nn.ReLU, sigmoid: bool = False
):
"""
Initialize the MLP with specified input, hidden, output dimensions and number of layers.
Args:
input_dim (int): Input dimension.
hidden_dim (int): Hidden dimension.
output_dim (int): Output dimension.
num_layers (int): Number of layers.
act (nn.Module): Activation function.
sigmoid (bool): Whether to apply sigmoid to the output.
"""
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.sigmoid = sigmoid
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the entire MLP.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after MLP.
"""
for i, layer in enumerate(self.layers):
x = getattr(self, "act", nn.ReLU())(layer(x)) if i < self.num_layers - 1 else layer(x)
return x.sigmoid() if getattr(self, "sigmoid", False) else x
class LayerNorm2d(nn.Module):
"""
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
This class implements layer normalization for 2D feature maps, normalizing across the channel dimension
while preserving spatial dimensions.
Attributes:
weight (nn.Parameter): Learnable scale parameter.
bias (nn.Parameter): Learnable bias parameter.
eps (float): Small constant for numerical stability.
References:
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
"""
def __init__(self, num_channels: int, eps: float = 1e-6):
"""
Initialize LayerNorm2d with the given parameters.
Args:
num_channels (int): Number of channels in the input.
eps (float): Small constant for numerical stability.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Perform forward pass for 2D layer normalization.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Normalized output tensor.
"""
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
return self.weight[:, None, None] * x + self.bias[:, None, None]
class MSDeformAttn(nn.Module):
"""
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
This module implements multiscale deformable attention that can attend to features at multiple scales
with learnable sampling locations and attention weights.
Attributes:
im2col_step (int): Step size for im2col operations.
d_model (int): Model dimension.
n_levels (int): Number of feature levels.
n_heads (int): Number of attention heads.
n_points (int): Number of sampling points per attention head per feature level.
sampling_offsets (nn.Linear): Linear layer for generating sampling offsets.
attention_weights (nn.Linear): Linear layer for generating attention weights.
value_proj (nn.Linear): Linear layer for projecting values.
output_proj (nn.Linear): Linear layer for projecting output.
References:
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
"""
def __init__(self, d_model: int = 256, n_levels: int = 4, n_heads: int = 8, n_points: int = 4):
"""
Initialize MSDeformAttn with the given parameters.
Args:
d_model (int): Model dimension.
n_levels (int): Number of feature levels.
n_heads (int): Number of attention heads.
n_points (int): Number of sampling points per attention head per feature level.
"""
super().__init__()
if d_model % n_heads != 0:
raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
_d_per_head = d_model // n_heads
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"
self.im2col_step = 64
self.d_model = d_model
self.n_levels = n_levels
self.n_heads = n_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
self.value_proj = nn.Linear(d_model, d_model)
self.output_proj = nn.Linear(d_model, d_model)
self._reset_parameters()
def _reset_parameters(self):
"""Reset module parameters."""
constant_(self.sampling_offsets.weight.data, 0.0)
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(self.n_heads, 1, 1, 2)
.repeat(1, self.n_levels, self.n_points, 1)
)
for i in range(self.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
constant_(self.attention_weights.weight.data, 0.0)
constant_(self.attention_weights.bias.data, 0.0)
xavier_uniform_(self.value_proj.weight.data)
constant_(self.value_proj.bias.data, 0.0)
xavier_uniform_(self.output_proj.weight.data)
constant_(self.output_proj.bias.data, 0.0)
def forward(
self,
query: torch.Tensor,
refer_bbox: torch.Tensor,
value: torch.Tensor,
value_shapes: list,
value_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Perform forward pass for multiscale deformable attention.
Args:
query (torch.Tensor): Query tensor with shape [bs, query_length, C].
refer_bbox (torch.Tensor): Reference bounding boxes with shape [bs, query_length, n_levels, 2],
range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area.
value (torch.Tensor): Value tensor with shape [bs, value_length, C].
value_shapes (list): List with shape [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})].
value_mask (torch.Tensor, optional): Mask tensor with shape [bs, value_length], True for non-padding
elements, False for padding elements.
Returns:
(torch.Tensor): Output tensor with shape [bs, Length_{query}, C].
References:
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
"""
bs, len_q = query.shape[:2]
len_v = value.shape[1]
assert sum(s[0] * s[1] for s in value_shapes) == len_v
value = self.value_proj(value)
if value_mask is not None:
value = value.masked_fill(value_mask[..., None], float(0))
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
# N, Len_q, n_heads, n_levels, n_points, 2
num_points = refer_bbox.shape[-1]
if num_points == 2:
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
elif num_points == 4:
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
return self.output_proj(output)
class DeformableTransformerDecoderLayer(nn.Module):
"""
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
This class implements a single decoder layer with self-attention, cross-attention using multiscale deformable
attention, and a feedforward network.
Attributes:
self_attn (nn.MultiheadAttention): Self-attention module.
dropout1 (nn.Dropout): Dropout after self-attention.
norm1 (nn.LayerNorm): Layer normalization after self-attention.
cross_attn (MSDeformAttn): Cross-attention module.
dropout2 (nn.Dropout): Dropout after cross-attention.
norm2 (nn.LayerNorm): Layer normalization after cross-attention.
linear1 (nn.Linear): First linear layer in the feedforward network.
act (nn.Module): Activation function.
dropout3 (nn.Dropout): Dropout in the feedforward network.
linear2 (nn.Linear): Second linear layer in the feedforward network.
dropout4 (nn.Dropout): Dropout after the feedforward network.
norm3 (nn.LayerNorm): Layer normalization after the feedforward network.
References:
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
"""
def __init__(
self,
d_model: int = 256,
n_heads: int = 8,
d_ffn: int = 1024,
dropout: float = 0.0,
act: nn.Module = nn.ReLU(),
n_levels: int = 4,
n_points: int = 4,
):
"""
Initialize the DeformableTransformerDecoderLayer with the given parameters.
Args:
d_model (int): Model dimension.
n_heads (int): Number of attention heads.
d_ffn (int): Dimension of the feedforward network.
dropout (float): Dropout probability.
act (nn.Module): Activation function.
n_levels (int): Number of feature levels.
n_points (int): Number of sampling points.
"""
super().__init__()
# Self attention
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# Cross attention
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# FFN
self.linear1 = nn.Linear(d_model, d_ffn)
self.act = act
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None) -> torch.Tensor:
"""Add positional embeddings to the input tensor, if provided."""
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt: torch.Tensor) -> torch.Tensor:
"""
Perform forward pass through the Feed-Forward Network part of the layer.
Args:
tgt (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after FFN.
"""
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2)
return self.norm3(tgt)
def forward(
self,
embed: torch.Tensor,
refer_bbox: torch.Tensor,
feats: torch.Tensor,
shapes: list,
padding_mask: torch.Tensor | None = None,
attn_mask: torch.Tensor | None = None,
query_pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Perform the forward pass through the entire decoder layer.
Args:
embed (torch.Tensor): Input embeddings.
refer_bbox (torch.Tensor): Reference bounding boxes.
feats (torch.Tensor): Feature maps.
shapes (list): Feature shapes.
padding_mask (torch.Tensor, optional): Padding mask.
attn_mask (torch.Tensor, optional): Attention mask.
query_pos (torch.Tensor, optional): Query position embeddings.
Returns:
(torch.Tensor): Output tensor after decoder layer.
"""
# Self attention
q = k = self.with_pos_embed(embed, query_pos)
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
0
].transpose(0, 1)
embed = embed + self.dropout1(tgt)
embed = self.norm1(embed)
# Cross attention
tgt = self.cross_attn(
self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
)
embed = embed + self.dropout2(tgt)
embed = self.norm2(embed)
# FFN
return self.forward_ffn(embed)
class DeformableTransformerDecoder(nn.Module):
"""
Deformable Transformer Decoder based on PaddleDetection implementation.
This class implements a complete deformable transformer decoder with multiple decoder layers and prediction
heads for bounding box regression and classification.
Attributes:
layers (nn.ModuleList): List of decoder layers.
num_layers (int): Number of decoder layers.
hidden_dim (int): Hidden dimension.
eval_idx (int): Index of the layer to use during evaluation.
References:
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
"""
def __init__(self, hidden_dim: int, decoder_layer: nn.Module, num_layers: int, eval_idx: int = -1):
"""
Initialize the DeformableTransformerDecoder with the given parameters.
Args:
hidden_dim (int): Hidden dimension.
decoder_layer (nn.Module): Decoder layer module.
num_layers (int): Number of decoder layers.
eval_idx (int): Index of the layer to use during evaluation.
"""
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
def forward(
self,
embed: torch.Tensor, # decoder embeddings
refer_bbox: torch.Tensor, # anchor
feats: torch.Tensor, # image features
shapes: list, # feature shapes
bbox_head: nn.Module,
score_head: nn.Module,
pos_mlp: nn.Module,
attn_mask: torch.Tensor | None = None,
padding_mask: torch.Tensor | None = None,
):
"""
Perform the forward pass through the entire decoder.
Args:
embed (torch.Tensor): Decoder embeddings.
refer_bbox (torch.Tensor): Reference bounding boxes.
feats (torch.Tensor): Image features.
shapes (list): Feature shapes.
bbox_head (nn.Module): Bounding box prediction head.
score_head (nn.Module): Score prediction head.
pos_mlp (nn.Module): Position MLP.
attn_mask (torch.Tensor, optional): Attention mask.
padding_mask (torch.Tensor, optional): Padding mask.
Returns:
dec_bboxes (torch.Tensor): Decoded bounding boxes.
dec_cls (torch.Tensor): Decoded classification scores.
"""
output = embed
dec_bboxes = []
dec_cls = []
last_refined_bbox = None
refer_bbox = refer_bbox.sigmoid()
for i, layer in enumerate(self.layers):
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
bbox = bbox_head[i](output)
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))
if self.training:
dec_cls.append(score_head[i](output))
if i == 0:
dec_bboxes.append(refined_bbox)
else:
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
elif i == self.eval_idx:
dec_cls.append(score_head[i](output))
dec_bboxes.append(refined_bbox)
break
last_refined_bbox = refined_bbox
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
return torch.stack(dec_bboxes), torch.stack(dec_cls)

View File

@@ -0,0 +1,164 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import copy
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import uniform_
__all__ = "multi_scale_deformable_attn_pytorch", "inverse_sigmoid"
def _get_clones(module, n):
"""
Create a list of cloned modules from the given module.
Args:
module (nn.Module): The module to be cloned.
n (int): Number of clones to create.
Returns:
(nn.ModuleList): A ModuleList containing n clones of the input module.
Examples:
>>> import torch.nn as nn
>>> layer = nn.Linear(10, 10)
>>> clones = _get_clones(layer, 3)
>>> len(clones)
3
"""
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
def bias_init_with_prob(prior_prob=0.01):
"""
Initialize conv/fc bias value according to a given probability value.
This function calculates the bias initialization value based on a prior probability using the inverse error function.
It's commonly used in object detection models to initialize classification layers with a specific positive prediction
probability.
Args:
prior_prob (float, optional): Prior probability for bias initialization.
Returns:
(float): Bias initialization value calculated from the prior probability.
Examples:
>>> bias = bias_init_with_prob(0.01)
>>> print(f"Bias initialization value: {bias:.4f}")
Bias initialization value: -4.5951
"""
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
def linear_init(module):
"""
Initialize the weights and biases of a linear module.
This function initializes the weights of a linear module using a uniform distribution within bounds calculated
from the input dimension. If the module has a bias, it is also initialized.
Args:
module (nn.Module): Linear module to initialize.
Returns:
(nn.Module): The initialized module.
Examples:
>>> import torch.nn as nn
>>> linear = nn.Linear(10, 5)
>>> initialized_linear = linear_init(linear)
"""
bound = 1 / math.sqrt(module.weight.shape[0])
uniform_(module.weight, -bound, bound)
if hasattr(module, "bias") and module.bias is not None:
uniform_(module.bias, -bound, bound)
def inverse_sigmoid(x, eps=1e-5):
"""
Calculate the inverse sigmoid function for a tensor.
This function applies the inverse of the sigmoid function to a tensor, which is useful in various neural network
operations, particularly in attention mechanisms and coordinate transformations.
Args:
x (torch.Tensor): Input tensor with values in range [0, 1].
eps (float, optional): Small epsilon value to prevent numerical instability.
Returns:
(torch.Tensor): Tensor after applying the inverse sigmoid function.
Examples:
>>> x = torch.tensor([0.2, 0.5, 0.8])
>>> inverse_sigmoid(x)
tensor([-1.3863, 0.0000, 1.3863])
"""
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def multi_scale_deformable_attn_pytorch(
value: torch.Tensor,
value_spatial_shapes: torch.Tensor,
sampling_locations: torch.Tensor,
attention_weights: torch.Tensor,
) -> torch.Tensor:
"""
Implement multi-scale deformable attention in PyTorch.
This function performs deformable attention across multiple feature map scales, allowing the model to attend to
different spatial locations with learned offsets.
Args:
value (torch.Tensor): The value tensor with shape (bs, num_keys, num_heads, embed_dims).
value_spatial_shapes (torch.Tensor): Spatial shapes of the value tensor with shape (num_levels, 2).
sampling_locations (torch.Tensor): The sampling locations with shape
(bs, num_queries, num_heads, num_levels, num_points, 2).
attention_weights (torch.Tensor): The attention weights with shape
(bs, num_queries, num_heads, num_levels, num_points).
Returns:
(torch.Tensor): The output tensor with shape (bs, num_queries, embed_dims).
References:
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
"""
bs, _, num_heads, embed_dims = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level, (H_, W_) in enumerate(value_spatial_shapes):
# bs, H_*W_, num_heads, embed_dims ->
# bs, H_*W_, num_heads*embed_dims ->
# bs, num_heads*embed_dims, H_*W_ ->
# bs*num_heads, embed_dims, H_, W_
value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
# bs, num_queries, num_heads, num_points, 2 ->
# bs, num_heads, num_queries, num_points, 2 ->
# bs*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
# bs*num_heads, embed_dims, num_queries, num_points
sampling_value_l_ = F.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (bs, num_queries, num_heads, num_levels, num_points) ->
# (bs, num_heads, num_queries, num_levels, num_points) ->
# (bs, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
bs * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(bs, num_heads * embed_dims, num_queries)
)
return output.transpose(1, 2).contiguous()