init commit
This commit is contained in:
182
ultralytics/nn/modules/__init__.py
Normal file
182
ultralytics/nn/modules/__init__.py
Normal file
@@ -0,0 +1,182 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
"""
|
||||
Ultralytics neural network modules.
|
||||
|
||||
This module provides access to various neural network components used in Ultralytics models, including convolution
|
||||
blocks, attention mechanisms, transformer components, and detection/segmentation heads.
|
||||
|
||||
Examples:
|
||||
Visualize a module with Netron
|
||||
>>> from ultralytics.nn.modules import Conv
|
||||
>>> import torch
|
||||
>>> import subprocess
|
||||
>>> x = torch.ones(1, 128, 40, 40)
|
||||
>>> m = Conv(128, 128)
|
||||
>>> f = f"{m._get_name()}.onnx"
|
||||
>>> torch.onnx.export(m, x, f)
|
||||
>>> subprocess.run(f"onnxslim {f} {f} && open {f}", shell=True, check=True) # pip install onnxslim
|
||||
"""
|
||||
|
||||
from .block import (
|
||||
C1,
|
||||
C2,
|
||||
C2PSA,
|
||||
C3,
|
||||
C3TR,
|
||||
CIB,
|
||||
DFL,
|
||||
ELAN1,
|
||||
PSA,
|
||||
SPP,
|
||||
SPPELAN,
|
||||
SPPF,
|
||||
A2C2f,
|
||||
AConv,
|
||||
ADown,
|
||||
Attention,
|
||||
BNContrastiveHead,
|
||||
Bottleneck,
|
||||
BottleneckCSP,
|
||||
C2f,
|
||||
C2fAttn,
|
||||
C2fCIB,
|
||||
C2fPSA,
|
||||
C3Ghost,
|
||||
C3k2,
|
||||
C3x,
|
||||
CBFuse,
|
||||
CBLinear,
|
||||
ContrastiveHead,
|
||||
GhostBottleneck,
|
||||
HGBlock,
|
||||
HGStem,
|
||||
ImagePoolingAttn,
|
||||
MaxSigmoidAttnBlock,
|
||||
Proto,
|
||||
RepC3,
|
||||
RepNCSPELAN4,
|
||||
RepVGGDW,
|
||||
ResNetLayer,
|
||||
SCDown,
|
||||
TorchVision,
|
||||
)
|
||||
from .conv import (
|
||||
CBAM,
|
||||
ChannelAttention,
|
||||
Concat,
|
||||
Conv,
|
||||
Conv2,
|
||||
ConvTranspose,
|
||||
DWConv,
|
||||
DWConvTranspose2d,
|
||||
Focus,
|
||||
GhostConv,
|
||||
Index,
|
||||
LightConv,
|
||||
RepConv,
|
||||
SpatialAttention,
|
||||
)
|
||||
from .head import (
|
||||
OBB,
|
||||
Classify,
|
||||
Detect,
|
||||
LRPCHead,
|
||||
Pose,
|
||||
RTDETRDecoder,
|
||||
Segment,
|
||||
WorldDetect,
|
||||
YOLOEDetect,
|
||||
YOLOESegment,
|
||||
v10Detect,
|
||||
)
|
||||
from .transformer import (
|
||||
AIFI,
|
||||
MLP,
|
||||
DeformableTransformerDecoder,
|
||||
DeformableTransformerDecoderLayer,
|
||||
LayerNorm2d,
|
||||
MLPBlock,
|
||||
MSDeformAttn,
|
||||
TransformerBlock,
|
||||
TransformerEncoderLayer,
|
||||
TransformerLayer,
|
||||
)
|
||||
|
||||
__all__ = (
|
||||
"Conv",
|
||||
"Conv2",
|
||||
"LightConv",
|
||||
"RepConv",
|
||||
"DWConv",
|
||||
"DWConvTranspose2d",
|
||||
"ConvTranspose",
|
||||
"Focus",
|
||||
"GhostConv",
|
||||
"ChannelAttention",
|
||||
"SpatialAttention",
|
||||
"CBAM",
|
||||
"Concat",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"DFL",
|
||||
"HGBlock",
|
||||
"HGStem",
|
||||
"SPP",
|
||||
"SPPF",
|
||||
"C1",
|
||||
"C2",
|
||||
"C3",
|
||||
"C2f",
|
||||
"C3k2",
|
||||
"SCDown",
|
||||
"C2fPSA",
|
||||
"C2PSA",
|
||||
"C2fAttn",
|
||||
"C3x",
|
||||
"C3TR",
|
||||
"C3Ghost",
|
||||
"GhostBottleneck",
|
||||
"Bottleneck",
|
||||
"BottleneckCSP",
|
||||
"Proto",
|
||||
"Detect",
|
||||
"Segment",
|
||||
"Pose",
|
||||
"Classify",
|
||||
"TransformerEncoderLayer",
|
||||
"RepC3",
|
||||
"RTDETRDecoder",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
"ResNetLayer",
|
||||
"OBB",
|
||||
"WorldDetect",
|
||||
"YOLOEDetect",
|
||||
"YOLOESegment",
|
||||
"v10Detect",
|
||||
"LRPCHead",
|
||||
"ImagePoolingAttn",
|
||||
"MaxSigmoidAttnBlock",
|
||||
"ContrastiveHead",
|
||||
"BNContrastiveHead",
|
||||
"RepNCSPELAN4",
|
||||
"ADown",
|
||||
"SPPELAN",
|
||||
"CBFuse",
|
||||
"CBLinear",
|
||||
"AConv",
|
||||
"ELAN1",
|
||||
"RepVGGDW",
|
||||
"CIB",
|
||||
"C2fCIB",
|
||||
"Attention",
|
||||
"PSA",
|
||||
"TorchVision",
|
||||
"Index",
|
||||
"A2C2f",
|
||||
)
|
||||
BIN
ultralytics/nn/modules/__pycache__/__init__.cpython-310.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/__init__.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/block.cpython-310.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/block.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/conv.cpython-310.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/conv.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/head.cpython-310.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/head.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/transformer.cpython-310.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/transformer.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/utils.cpython-310.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/utils.cpython-310.pyc
Normal file
Binary file not shown.
56
ultralytics/nn/modules/activation.py
Normal file
56
ultralytics/nn/modules/activation.py
Normal file
@@ -0,0 +1,56 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
"""Activation modules."""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class AGLU(nn.Module):
|
||||
"""
|
||||
Unified activation function module from AGLU.
|
||||
|
||||
This class implements a parameterized activation function with learnable parameters lambda and kappa, based on the
|
||||
AGLU (Adaptive Gated Linear Unit) approach.
|
||||
|
||||
Attributes:
|
||||
act (nn.Softplus): Softplus activation function with negative beta.
|
||||
lambd (nn.Parameter): Learnable lambda parameter initialized with uniform distribution.
|
||||
kappa (nn.Parameter): Learnable kappa parameter initialized with uniform distribution.
|
||||
|
||||
Methods:
|
||||
forward: Compute the forward pass of the Unified activation function.
|
||||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> m = AGLU()
|
||||
>>> input = torch.randn(2)
|
||||
>>> output = m(input)
|
||||
>>> print(output.shape)
|
||||
torch.Size([2])
|
||||
|
||||
References:
|
||||
https://github.com/kostas1515/AGLU
|
||||
"""
|
||||
|
||||
def __init__(self, device=None, dtype=None) -> None:
|
||||
"""Initialize the Unified activation function with learnable parameters."""
|
||||
super().__init__()
|
||||
self.act = nn.Softplus(beta=-1.0)
|
||||
self.lambd = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype))) # lambda parameter
|
||||
self.kappa = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype))) # kappa parameter
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply the Adaptive Gated Linear Unit (AGLU) activation function.
|
||||
|
||||
This forward method implements the AGLU activation function with learnable parameters lambda and kappa.
|
||||
The function applies a transformation that adaptively combines linear and non-linear components.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor to apply the activation function to.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after applying the AGLU activation function, with the same shape as the input.
|
||||
"""
|
||||
lam = torch.clamp(self.lambd, min=0.0001) # Clamp lambda to avoid division by zero
|
||||
return torch.exp((1 / lam) * self.act((self.kappa * x) - torch.log(lam)))
|
||||
2031
ultralytics/nn/modules/block.py
Normal file
2031
ultralytics/nn/modules/block.py
Normal file
File diff suppressed because it is too large
Load Diff
714
ultralytics/nn/modules/conv.py
Normal file
714
ultralytics/nn/modules/conv.py
Normal file
@@ -0,0 +1,714 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
"""Convolution modules."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = (
|
||||
"Conv",
|
||||
"Conv2",
|
||||
"LightConv",
|
||||
"DWConv",
|
||||
"DWConvTranspose2d",
|
||||
"ConvTranspose",
|
||||
"Focus",
|
||||
"GhostConv",
|
||||
"ChannelAttention",
|
||||
"SpatialAttention",
|
||||
"CBAM",
|
||||
"Concat",
|
||||
"RepConv",
|
||||
"Index",
|
||||
)
|
||||
|
||||
|
||||
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||
"""Pad to 'same' shape outputs."""
|
||||
if d > 1:
|
||||
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
||||
if p is None:
|
||||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||
return p
|
||||
|
||||
|
||||
class Conv(nn.Module):
|
||||
"""
|
||||
Standard convolution module with batch normalization and activation.
|
||||
|
||||
Attributes:
|
||||
conv (nn.Conv2d): Convolutional layer.
|
||||
bn (nn.BatchNorm2d): Batch normalization layer.
|
||||
act (nn.Module): Activation function layer.
|
||||
default_act (nn.Module): Default activation function (SiLU).
|
||||
"""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
||||
"""
|
||||
Initialize Conv layer with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
p (int, optional): Padding.
|
||||
g (int): Groups.
|
||||
d (int): Dilation.
|
||||
act (bool | nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply convolution, batch normalization and activation to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""
|
||||
Apply convolution and activation without batch normalization.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.act(self.conv(x))
|
||||
|
||||
|
||||
class Conv2(Conv):
|
||||
"""
|
||||
Simplified RepConv module with Conv fusing.
|
||||
|
||||
Attributes:
|
||||
conv (nn.Conv2d): Main 3x3 convolutional layer.
|
||||
cv2 (nn.Conv2d): Additional 1x1 convolutional layer.
|
||||
bn (nn.BatchNorm2d): Batch normalization layer.
|
||||
act (nn.Module): Activation function layer.
|
||||
"""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
|
||||
"""
|
||||
Initialize Conv2 layer with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
p (int, optional): Padding.
|
||||
g (int): Groups.
|
||||
d (int): Dilation.
|
||||
act (bool | nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
|
||||
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply convolution, batch normalization and activation to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.act(self.bn(self.conv(x) + self.cv2(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""
|
||||
Apply fused convolution, batch normalization and activation to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def fuse_convs(self):
|
||||
"""Fuse parallel convolutions."""
|
||||
w = torch.zeros_like(self.conv.weight.data)
|
||||
i = [x // 2 for x in w.shape[2:]]
|
||||
w[:, :, i[0] : i[0] + 1, i[1] : i[1] + 1] = self.cv2.weight.data.clone()
|
||||
self.conv.weight.data += w
|
||||
self.__delattr__("cv2")
|
||||
self.forward = self.forward_fuse
|
||||
|
||||
|
||||
class LightConv(nn.Module):
|
||||
"""
|
||||
Light convolution module with 1x1 and depthwise convolutions.
|
||||
|
||||
This implementation is based on the PaddleDetection HGNetV2 backbone.
|
||||
|
||||
Attributes:
|
||||
conv1 (Conv): 1x1 convolution layer.
|
||||
conv2 (DWConv): Depthwise convolution layer.
|
||||
"""
|
||||
|
||||
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
|
||||
"""
|
||||
Initialize LightConv layer with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size for depthwise convolution.
|
||||
act (nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
self.conv1 = Conv(c1, c2, 1, act=False)
|
||||
self.conv2 = DWConv(c2, c2, k, act=act)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply 2 convolutions to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.conv2(self.conv1(x))
|
||||
|
||||
|
||||
class DWConv(Conv):
|
||||
"""Depth-wise convolution module."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, d=1, act=True):
|
||||
"""
|
||||
Initialize depth-wise convolution with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
d (int): Dilation.
|
||||
act (bool | nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
||||
|
||||
|
||||
class DWConvTranspose2d(nn.ConvTranspose2d):
|
||||
"""Depth-wise transpose convolution module."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):
|
||||
"""
|
||||
Initialize depth-wise transpose convolution with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
p1 (int): Padding.
|
||||
p2 (int): Output padding.
|
||||
"""
|
||||
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
||||
|
||||
|
||||
class ConvTranspose(nn.Module):
|
||||
"""
|
||||
Convolution transpose module with optional batch normalization and activation.
|
||||
|
||||
Attributes:
|
||||
conv_transpose (nn.ConvTranspose2d): Transposed convolution layer.
|
||||
bn (nn.BatchNorm2d | nn.Identity): Batch normalization layer.
|
||||
act (nn.Module): Activation function layer.
|
||||
default_act (nn.Module): Default activation function (SiLU).
|
||||
"""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
|
||||
"""
|
||||
Initialize ConvTranspose layer with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
p (int): Padding.
|
||||
bn (bool): Use batch normalization.
|
||||
act (bool | nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
|
||||
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply transposed convolution, batch normalization and activation to input.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.act(self.bn(self.conv_transpose(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""
|
||||
Apply activation and convolution transpose operation to input.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.act(self.conv_transpose(x))
|
||||
|
||||
|
||||
class Focus(nn.Module):
|
||||
"""
|
||||
Focus module for concentrating feature information.
|
||||
|
||||
Slices input tensor into 4 parts and concatenates them in the channel dimension.
|
||||
|
||||
Attributes:
|
||||
conv (Conv): Convolution layer.
|
||||
"""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
|
||||
"""
|
||||
Initialize Focus module with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
p (int, optional): Padding.
|
||||
g (int): Groups.
|
||||
act (bool | nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
||||
# self.contract = Contract(gain=2)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply Focus operation and convolution to input tensor.
|
||||
|
||||
Input shape is (B, C, W, H) and output shape is (B, 4C, W/2, H/2).
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
||||
# return self.conv(self.contract(x))
|
||||
|
||||
|
||||
class GhostConv(nn.Module):
|
||||
"""
|
||||
Ghost Convolution module.
|
||||
|
||||
Generates more features with fewer parameters by using cheap operations.
|
||||
|
||||
Attributes:
|
||||
cv1 (Conv): Primary convolution.
|
||||
cv2 (Conv): Cheap operation convolution.
|
||||
|
||||
References:
|
||||
https://github.com/huawei-noah/Efficient-AI-Backbones
|
||||
"""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
|
||||
"""
|
||||
Initialize Ghost Convolution module with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
g (int): Groups.
|
||||
act (bool | nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = c2 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
||||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply Ghost Convolution to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor with concatenated features.
|
||||
"""
|
||||
y = self.cv1(x)
|
||||
return torch.cat((y, self.cv2(y)), 1)
|
||||
|
||||
|
||||
class RepConv(nn.Module):
|
||||
"""
|
||||
RepConv module with training and deploy modes.
|
||||
|
||||
This module is used in RT-DETR and can fuse convolutions during inference for efficiency.
|
||||
|
||||
Attributes:
|
||||
conv1 (Conv): 3x3 convolution.
|
||||
conv2 (Conv): 1x1 convolution.
|
||||
bn (nn.BatchNorm2d, optional): Batch normalization for identity branch.
|
||||
act (nn.Module): Activation function.
|
||||
default_act (nn.Module): Default activation function (SiLU).
|
||||
|
||||
References:
|
||||
https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
||||
"""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
|
||||
"""
|
||||
Initialize RepConv module with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
c2 (int): Number of output channels.
|
||||
k (int): Kernel size.
|
||||
s (int): Stride.
|
||||
p (int): Padding.
|
||||
g (int): Groups.
|
||||
d (int): Dilation.
|
||||
act (bool | nn.Module): Activation function.
|
||||
bn (bool): Use batch normalization for identity branch.
|
||||
deploy (bool): Deploy mode for inference.
|
||||
"""
|
||||
super().__init__()
|
||||
assert k == 3 and p == 1
|
||||
self.g = g
|
||||
self.c1 = c1
|
||||
self.c2 = c2
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
|
||||
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
|
||||
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""
|
||||
Forward pass for deploy mode.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
return self.act(self.conv(x))
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass for training mode.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor.
|
||||
"""
|
||||
id_out = 0 if self.bn is None else self.bn(x)
|
||||
return self.act(self.conv1(x) + self.conv2(x) + id_out)
|
||||
|
||||
def get_equivalent_kernel_bias(self):
|
||||
"""
|
||||
Calculate equivalent kernel and bias by fusing convolutions.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Equivalent kernel
|
||||
(torch.Tensor): Equivalent bias
|
||||
"""
|
||||
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
|
||||
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
|
||||
kernelid, biasid = self._fuse_bn_tensor(self.bn)
|
||||
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
||||
|
||||
@staticmethod
|
||||
def _pad_1x1_to_3x3_tensor(kernel1x1):
|
||||
"""
|
||||
Pad a 1x1 kernel to 3x3 size.
|
||||
|
||||
Args:
|
||||
kernel1x1 (torch.Tensor): 1x1 convolution kernel.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Padded 3x3 kernel.
|
||||
"""
|
||||
if kernel1x1 is None:
|
||||
return 0
|
||||
else:
|
||||
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
||||
|
||||
def _fuse_bn_tensor(self, branch):
|
||||
"""
|
||||
Fuse batch normalization with convolution weights.
|
||||
|
||||
Args:
|
||||
branch (Conv | nn.BatchNorm2d | None): Branch to fuse.
|
||||
|
||||
Returns:
|
||||
kernel (torch.Tensor): Fused kernel.
|
||||
bias (torch.Tensor): Fused bias.
|
||||
"""
|
||||
if branch is None:
|
||||
return 0, 0
|
||||
if isinstance(branch, Conv):
|
||||
kernel = branch.conv.weight
|
||||
running_mean = branch.bn.running_mean
|
||||
running_var = branch.bn.running_var
|
||||
gamma = branch.bn.weight
|
||||
beta = branch.bn.bias
|
||||
eps = branch.bn.eps
|
||||
elif isinstance(branch, nn.BatchNorm2d):
|
||||
if not hasattr(self, "id_tensor"):
|
||||
input_dim = self.c1 // self.g
|
||||
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
|
||||
for i in range(self.c1):
|
||||
kernel_value[i, i % input_dim, 1, 1] = 1
|
||||
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
||||
kernel = self.id_tensor
|
||||
running_mean = branch.running_mean
|
||||
running_var = branch.running_var
|
||||
gamma = branch.weight
|
||||
beta = branch.bias
|
||||
eps = branch.eps
|
||||
std = (running_var + eps).sqrt()
|
||||
t = (gamma / std).reshape(-1, 1, 1, 1)
|
||||
return kernel * t, beta - running_mean * gamma / std
|
||||
|
||||
def fuse_convs(self):
|
||||
"""Fuse convolutions for inference by creating a single equivalent convolution."""
|
||||
if hasattr(self, "conv"):
|
||||
return
|
||||
kernel, bias = self.get_equivalent_kernel_bias()
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=self.conv1.conv.in_channels,
|
||||
out_channels=self.conv1.conv.out_channels,
|
||||
kernel_size=self.conv1.conv.kernel_size,
|
||||
stride=self.conv1.conv.stride,
|
||||
padding=self.conv1.conv.padding,
|
||||
dilation=self.conv1.conv.dilation,
|
||||
groups=self.conv1.conv.groups,
|
||||
bias=True,
|
||||
).requires_grad_(False)
|
||||
self.conv.weight.data = kernel
|
||||
self.conv.bias.data = bias
|
||||
for para in self.parameters():
|
||||
para.detach_()
|
||||
self.__delattr__("conv1")
|
||||
self.__delattr__("conv2")
|
||||
if hasattr(self, "nm"):
|
||||
self.__delattr__("nm")
|
||||
if hasattr(self, "bn"):
|
||||
self.__delattr__("bn")
|
||||
if hasattr(self, "id_tensor"):
|
||||
self.__delattr__("id_tensor")
|
||||
|
||||
|
||||
class ChannelAttention(nn.Module):
|
||||
"""
|
||||
Channel-attention module for feature recalibration.
|
||||
|
||||
Applies attention weights to channels based on global average pooling.
|
||||
|
||||
Attributes:
|
||||
pool (nn.AdaptiveAvgPool2d): Global average pooling.
|
||||
fc (nn.Conv2d): Fully connected layer implemented as 1x1 convolution.
|
||||
act (nn.Sigmoid): Sigmoid activation for attention weights.
|
||||
|
||||
References:
|
||||
https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet
|
||||
"""
|
||||
|
||||
def __init__(self, channels: int) -> None:
|
||||
"""
|
||||
Initialize Channel-attention module.
|
||||
|
||||
Args:
|
||||
channels (int): Number of input channels.
|
||||
"""
|
||||
super().__init__()
|
||||
self.pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
|
||||
self.act = nn.Sigmoid()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply channel attention to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Channel-attended output tensor.
|
||||
"""
|
||||
return x * self.act(self.fc(self.pool(x)))
|
||||
|
||||
|
||||
class SpatialAttention(nn.Module):
|
||||
"""
|
||||
Spatial-attention module for feature recalibration.
|
||||
|
||||
Applies attention weights to spatial dimensions based on channel statistics.
|
||||
|
||||
Attributes:
|
||||
cv1 (nn.Conv2d): Convolution layer for spatial attention.
|
||||
act (nn.Sigmoid): Sigmoid activation for attention weights.
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size=7):
|
||||
"""
|
||||
Initialize Spatial-attention module.
|
||||
|
||||
Args:
|
||||
kernel_size (int): Size of the convolutional kernel (3 or 7).
|
||||
"""
|
||||
super().__init__()
|
||||
assert kernel_size in {3, 7}, "kernel size must be 3 or 7"
|
||||
padding = 3 if kernel_size == 7 else 1
|
||||
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
||||
self.act = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply spatial attention to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Spatial-attended output tensor.
|
||||
"""
|
||||
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
|
||||
|
||||
|
||||
class CBAM(nn.Module):
|
||||
"""
|
||||
Convolutional Block Attention Module.
|
||||
|
||||
Combines channel and spatial attention mechanisms for comprehensive feature refinement.
|
||||
|
||||
Attributes:
|
||||
channel_attention (ChannelAttention): Channel attention module.
|
||||
spatial_attention (SpatialAttention): Spatial attention module.
|
||||
"""
|
||||
|
||||
def __init__(self, c1, kernel_size=7):
|
||||
"""
|
||||
Initialize CBAM with given parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Number of input channels.
|
||||
kernel_size (int): Size of the convolutional kernel for spatial attention.
|
||||
"""
|
||||
super().__init__()
|
||||
self.channel_attention = ChannelAttention(c1)
|
||||
self.spatial_attention = SpatialAttention(kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Apply channel and spatial attention sequentially to input tensor.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Attended output tensor.
|
||||
"""
|
||||
return self.spatial_attention(self.channel_attention(x))
|
||||
|
||||
|
||||
class Concat(nn.Module):
|
||||
"""
|
||||
Concatenate a list of tensors along specified dimension.
|
||||
|
||||
Attributes:
|
||||
d (int): Dimension along which to concatenate tensors.
|
||||
"""
|
||||
|
||||
def __init__(self, dimension=1):
|
||||
"""
|
||||
Initialize Concat module.
|
||||
|
||||
Args:
|
||||
dimension (int): Dimension along which to concatenate tensors.
|
||||
"""
|
||||
super().__init__()
|
||||
self.d = dimension
|
||||
|
||||
def forward(self, x: list[torch.Tensor]):
|
||||
"""
|
||||
Concatenate input tensors along specified dimension.
|
||||
|
||||
Args:
|
||||
x (list[torch.Tensor]): List of input tensors.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Concatenated tensor.
|
||||
"""
|
||||
return torch.cat(x, self.d)
|
||||
|
||||
|
||||
class Index(nn.Module):
|
||||
"""
|
||||
Returns a particular index of the input.
|
||||
|
||||
Attributes:
|
||||
index (int): Index to select from input.
|
||||
"""
|
||||
|
||||
def __init__(self, index=0):
|
||||
"""
|
||||
Initialize Index module.
|
||||
|
||||
Args:
|
||||
index (int): Index to select from input.
|
||||
"""
|
||||
super().__init__()
|
||||
self.index = index
|
||||
|
||||
def forward(self, x: list[torch.Tensor]):
|
||||
"""
|
||||
Select and return a particular index from input.
|
||||
|
||||
Args:
|
||||
x (list[torch.Tensor]): List of input tensors.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Selected tensor.
|
||||
"""
|
||||
return x[self.index]
|
||||
1230
ultralytics/nn/modules/head.py
Normal file
1230
ultralytics/nn/modules/head.py
Normal file
File diff suppressed because it is too large
Load Diff
805
ultralytics/nn/modules/transformer.py
Normal file
805
ultralytics/nn/modules/transformer.py
Normal file
@@ -0,0 +1,805 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
"""Transformer modules."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import constant_, xavier_uniform_
|
||||
|
||||
from ultralytics.utils.torch_utils import TORCH_1_11
|
||||
|
||||
from .conv import Conv
|
||||
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
||||
|
||||
__all__ = (
|
||||
"TransformerEncoderLayer",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
A single layer of the transformer encoder.
|
||||
|
||||
This class implements a standard transformer encoder layer with multi-head attention and feedforward network,
|
||||
supporting both pre-normalization and post-normalization configurations.
|
||||
|
||||
Attributes:
|
||||
ma (nn.MultiheadAttention): Multi-head attention module.
|
||||
fc1 (nn.Linear): First linear layer in the feedforward network.
|
||||
fc2 (nn.Linear): Second linear layer in the feedforward network.
|
||||
norm1 (nn.LayerNorm): Layer normalization after attention.
|
||||
norm2 (nn.LayerNorm): Layer normalization after feedforward network.
|
||||
dropout (nn.Dropout): Dropout layer for the feedforward network.
|
||||
dropout1 (nn.Dropout): Dropout layer after attention.
|
||||
dropout2 (nn.Dropout): Dropout layer after feedforward network.
|
||||
act (nn.Module): Activation function.
|
||||
normalize_before (bool): Whether to apply normalization before attention and feedforward.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
c1: int,
|
||||
cm: int = 2048,
|
||||
num_heads: int = 8,
|
||||
dropout: float = 0.0,
|
||||
act: nn.Module = nn.GELU(),
|
||||
normalize_before: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the TransformerEncoderLayer with specified parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Input dimension.
|
||||
cm (int): Hidden dimension in the feedforward network.
|
||||
num_heads (int): Number of attention heads.
|
||||
dropout (float): Dropout probability.
|
||||
act (nn.Module): Activation function.
|
||||
normalize_before (bool): Whether to apply normalization before attention and feedforward.
|
||||
"""
|
||||
super().__init__()
|
||||
from ...utils.torch_utils import TORCH_1_9
|
||||
|
||||
if not TORCH_1_9:
|
||||
raise ModuleNotFoundError(
|
||||
"TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
|
||||
)
|
||||
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
|
||||
# Implementation of Feedforward model
|
||||
self.fc1 = nn.Linear(c1, cm)
|
||||
self.fc2 = nn.Linear(cm, c1)
|
||||
|
||||
self.norm1 = nn.LayerNorm(c1)
|
||||
self.norm2 = nn.LayerNorm(c1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.act = act
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None = None) -> torch.Tensor:
|
||||
"""Add position embeddings to the tensor if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: torch.Tensor | None = None,
|
||||
src_key_padding_mask: torch.Tensor | None = None,
|
||||
pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass with post-normalization.
|
||||
|
||||
Args:
|
||||
src (torch.Tensor): Input tensor.
|
||||
src_mask (torch.Tensor, optional): Mask for the src sequence.
|
||||
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
|
||||
pos (torch.Tensor, optional): Positional encoding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after attention and feedforward.
|
||||
"""
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
|
||||
src = src + self.dropout2(src2)
|
||||
return self.norm2(src)
|
||||
|
||||
def forward_pre(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: torch.Tensor | None = None,
|
||||
src_key_padding_mask: torch.Tensor | None = None,
|
||||
pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass with pre-normalization.
|
||||
|
||||
Args:
|
||||
src (torch.Tensor): Input tensor.
|
||||
src_mask (torch.Tensor, optional): Mask for the src sequence.
|
||||
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
|
||||
pos (torch.Tensor, optional): Positional encoding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after attention and feedforward.
|
||||
"""
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src2 = self.norm2(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
|
||||
return src + self.dropout2(src2)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: torch.Tensor | None = None,
|
||||
src_key_padding_mask: torch.Tensor | None = None,
|
||||
pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Forward propagate the input through the encoder module.
|
||||
|
||||
Args:
|
||||
src (torch.Tensor): Input tensor.
|
||||
src_mask (torch.Tensor, optional): Mask for the src sequence.
|
||||
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
|
||||
pos (torch.Tensor, optional): Positional encoding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after transformer encoder layer.
|
||||
"""
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||
|
||||
|
||||
class AIFI(TransformerEncoderLayer):
|
||||
"""
|
||||
AIFI transformer layer for 2D data with positional embeddings.
|
||||
|
||||
This class extends TransformerEncoderLayer to work with 2D feature maps by adding 2D sine-cosine positional
|
||||
embeddings and handling the spatial dimensions appropriately.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
c1: int,
|
||||
cm: int = 2048,
|
||||
num_heads: int = 8,
|
||||
dropout: float = 0,
|
||||
act: nn.Module = nn.GELU(),
|
||||
normalize_before: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the AIFI instance with specified parameters.
|
||||
|
||||
Args:
|
||||
c1 (int): Input dimension.
|
||||
cm (int): Hidden dimension in the feedforward network.
|
||||
num_heads (int): Number of attention heads.
|
||||
dropout (float): Dropout probability.
|
||||
act (nn.Module): Activation function.
|
||||
normalize_before (bool): Whether to apply normalization before attention and feedforward.
|
||||
"""
|
||||
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for the AIFI transformer layer.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor with shape [B, C, H, W].
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor with shape [B, C, H, W].
|
||||
"""
|
||||
c, h, w = x.shape[1:]
|
||||
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
|
||||
# Flatten [B, C, H, W] to [B, HxW, C]
|
||||
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
|
||||
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
|
||||
|
||||
@staticmethod
|
||||
def build_2d_sincos_position_embedding(
|
||||
w: int, h: int, embed_dim: int = 256, temperature: float = 10000.0
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Build 2D sine-cosine position embedding.
|
||||
|
||||
Args:
|
||||
w (int): Width of the feature map.
|
||||
h (int): Height of the feature map.
|
||||
embed_dim (int): Embedding dimension.
|
||||
temperature (float): Temperature for the sine/cosine functions.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Position embedding with shape [1, embed_dim, h*w].
|
||||
"""
|
||||
assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
|
||||
grid_w = torch.arange(w, dtype=torch.float32)
|
||||
grid_h = torch.arange(h, dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij") if TORCH_1_11 else torch.meshgrid(grid_w, grid_h)
|
||||
pos_dim = embed_dim // 4
|
||||
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
||||
omega = 1.0 / (temperature**omega)
|
||||
|
||||
out_w = grid_w.flatten()[..., None] @ omega[None]
|
||||
out_h = grid_h.flatten()[..., None] @ omega[None]
|
||||
|
||||
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
|
||||
|
||||
|
||||
class TransformerLayer(nn.Module):
|
||||
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
|
||||
|
||||
def __init__(self, c: int, num_heads: int):
|
||||
"""
|
||||
Initialize a self-attention mechanism using linear transformations and multi-head attention.
|
||||
|
||||
Args:
|
||||
c (int): Input and output channel dimension.
|
||||
num_heads (int): Number of attention heads.
|
||||
"""
|
||||
super().__init__()
|
||||
self.q = nn.Linear(c, c, bias=False)
|
||||
self.k = nn.Linear(c, c, bias=False)
|
||||
self.v = nn.Linear(c, c, bias=False)
|
||||
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
||||
self.fc1 = nn.Linear(c, c, bias=False)
|
||||
self.fc2 = nn.Linear(c, c, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply a transformer block to the input x and return the output.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after transformer layer.
|
||||
"""
|
||||
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
||||
return self.fc2(self.fc1(x)) + x
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
"""
|
||||
Vision Transformer block based on https://arxiv.org/abs/2010.11929.
|
||||
|
||||
This class implements a complete transformer block with optional convolution layer for channel adjustment,
|
||||
learnable position embedding, and multiple transformer layers.
|
||||
|
||||
Attributes:
|
||||
conv (Conv, optional): Convolution layer if input and output channels differ.
|
||||
linear (nn.Linear): Learnable position embedding.
|
||||
tr (nn.Sequential): Sequential container of transformer layers.
|
||||
c2 (int): Output channel dimension.
|
||||
"""
|
||||
|
||||
def __init__(self, c1: int, c2: int, num_heads: int, num_layers: int):
|
||||
"""
|
||||
Initialize a Transformer module with position embedding and specified number of heads and layers.
|
||||
|
||||
Args:
|
||||
c1 (int): Input channel dimension.
|
||||
c2 (int): Output channel dimension.
|
||||
num_heads (int): Number of attention heads.
|
||||
num_layers (int): Number of transformer layers.
|
||||
"""
|
||||
super().__init__()
|
||||
self.conv = None
|
||||
if c1 != c2:
|
||||
self.conv = Conv(c1, c2)
|
||||
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
||||
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
||||
self.c2 = c2
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward propagate the input through the transformer block.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor with shape [b, c1, w, h].
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor with shape [b, c2, w, h].
|
||||
"""
|
||||
if self.conv is not None:
|
||||
x = self.conv(x)
|
||||
b, _, w, h = x.shape
|
||||
p = x.flatten(2).permute(2, 0, 1)
|
||||
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
"""A single block of a multi-layer perceptron."""
|
||||
|
||||
def __init__(self, embedding_dim: int, mlp_dim: int, act=nn.GELU):
|
||||
"""
|
||||
Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function.
|
||||
|
||||
Args:
|
||||
embedding_dim (int): Input and output dimension.
|
||||
mlp_dim (int): Hidden dimension.
|
||||
act (nn.Module): Activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for the MLPBlock.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after MLP block.
|
||||
"""
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""
|
||||
A simple multi-layer perceptron (also called FFN).
|
||||
|
||||
This class implements a configurable MLP with multiple linear layers, activation functions, and optional
|
||||
sigmoid output activation.
|
||||
|
||||
Attributes:
|
||||
num_layers (int): Number of layers in the MLP.
|
||||
layers (nn.ModuleList): List of linear layers.
|
||||
sigmoid (bool): Whether to apply sigmoid to the output.
|
||||
act (nn.Module): Activation function.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, act=nn.ReLU, sigmoid: bool = False
|
||||
):
|
||||
"""
|
||||
Initialize the MLP with specified input, hidden, output dimensions and number of layers.
|
||||
|
||||
Args:
|
||||
input_dim (int): Input dimension.
|
||||
hidden_dim (int): Hidden dimension.
|
||||
output_dim (int): Output dimension.
|
||||
num_layers (int): Number of layers.
|
||||
act (nn.Module): Activation function.
|
||||
sigmoid (bool): Whether to apply sigmoid to the output.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
self.sigmoid = sigmoid
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for the entire MLP.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after MLP.
|
||||
"""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = getattr(self, "act", nn.ReLU())(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x.sigmoid() if getattr(self, "sigmoid", False) else x
|
||||
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
"""
|
||||
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
|
||||
|
||||
This class implements layer normalization for 2D feature maps, normalizing across the channel dimension
|
||||
while preserving spatial dimensions.
|
||||
|
||||
Attributes:
|
||||
weight (nn.Parameter): Learnable scale parameter.
|
||||
bias (nn.Parameter): Learnable bias parameter.
|
||||
eps (float): Small constant for numerical stability.
|
||||
|
||||
References:
|
||||
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
|
||||
"""
|
||||
|
||||
def __init__(self, num_channels: int, eps: float = 1e-6):
|
||||
"""
|
||||
Initialize LayerNorm2d with the given parameters.
|
||||
|
||||
Args:
|
||||
num_channels (int): Number of channels in the input.
|
||||
eps (float): Small constant for numerical stability.
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass for 2D layer normalization.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Normalized output tensor.
|
||||
"""
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
return self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
|
||||
|
||||
class MSDeformAttn(nn.Module):
|
||||
"""
|
||||
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
||||
|
||||
This module implements multiscale deformable attention that can attend to features at multiple scales
|
||||
with learnable sampling locations and attention weights.
|
||||
|
||||
Attributes:
|
||||
im2col_step (int): Step size for im2col operations.
|
||||
d_model (int): Model dimension.
|
||||
n_levels (int): Number of feature levels.
|
||||
n_heads (int): Number of attention heads.
|
||||
n_points (int): Number of sampling points per attention head per feature level.
|
||||
sampling_offsets (nn.Linear): Linear layer for generating sampling offsets.
|
||||
attention_weights (nn.Linear): Linear layer for generating attention weights.
|
||||
value_proj (nn.Linear): Linear layer for projecting values.
|
||||
output_proj (nn.Linear): Linear layer for projecting output.
|
||||
|
||||
References:
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int = 256, n_levels: int = 4, n_heads: int = 8, n_points: int = 4):
|
||||
"""
|
||||
Initialize MSDeformAttn with the given parameters.
|
||||
|
||||
Args:
|
||||
d_model (int): Model dimension.
|
||||
n_levels (int): Number of feature levels.
|
||||
n_heads (int): Number of attention heads.
|
||||
n_points (int): Number of sampling points per attention head per feature level.
|
||||
"""
|
||||
super().__init__()
|
||||
if d_model % n_heads != 0:
|
||||
raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
|
||||
_d_per_head = d_model // n_heads
|
||||
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"
|
||||
|
||||
self.im2col_step = 64
|
||||
|
||||
self.d_model = d_model
|
||||
self.n_levels = n_levels
|
||||
self.n_heads = n_heads
|
||||
self.n_points = n_points
|
||||
|
||||
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
||||
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
||||
self.value_proj = nn.Linear(d_model, d_model)
|
||||
self.output_proj = nn.Linear(d_model, d_model)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
"""Reset module parameters."""
|
||||
constant_(self.sampling_offsets.weight.data, 0.0)
|
||||
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
||||
grid_init = (
|
||||
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
||||
.view(self.n_heads, 1, 1, 2)
|
||||
.repeat(1, self.n_levels, self.n_points, 1)
|
||||
)
|
||||
for i in range(self.n_points):
|
||||
grid_init[:, :, i, :] *= i + 1
|
||||
with torch.no_grad():
|
||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
||||
constant_(self.attention_weights.weight.data, 0.0)
|
||||
constant_(self.attention_weights.bias.data, 0.0)
|
||||
xavier_uniform_(self.value_proj.weight.data)
|
||||
constant_(self.value_proj.bias.data, 0.0)
|
||||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.0)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
refer_bbox: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
value_shapes: list,
|
||||
value_mask: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass for multiscale deformable attention.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor with shape [bs, query_length, C].
|
||||
refer_bbox (torch.Tensor): Reference bounding boxes with shape [bs, query_length, n_levels, 2],
|
||||
range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area.
|
||||
value (torch.Tensor): Value tensor with shape [bs, value_length, C].
|
||||
value_shapes (list): List with shape [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})].
|
||||
value_mask (torch.Tensor, optional): Mask tensor with shape [bs, value_length], True for non-padding
|
||||
elements, False for padding elements.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor with shape [bs, Length_{query}, C].
|
||||
|
||||
References:
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
bs, len_q = query.shape[:2]
|
||||
len_v = value.shape[1]
|
||||
assert sum(s[0] * s[1] for s in value_shapes) == len_v
|
||||
|
||||
value = self.value_proj(value)
|
||||
if value_mask is not None:
|
||||
value = value.masked_fill(value_mask[..., None], float(0))
|
||||
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
|
||||
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
||||
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
|
||||
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
|
||||
# N, Len_q, n_heads, n_levels, n_points, 2
|
||||
num_points = refer_bbox.shape[-1]
|
||||
if num_points == 2:
|
||||
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
|
||||
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
|
||||
elif num_points == 4:
|
||||
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
||||
else:
|
||||
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
||||
return self.output_proj(output)
|
||||
|
||||
|
||||
class DeformableTransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
|
||||
|
||||
This class implements a single decoder layer with self-attention, cross-attention using multiscale deformable
|
||||
attention, and a feedforward network.
|
||||
|
||||
Attributes:
|
||||
self_attn (nn.MultiheadAttention): Self-attention module.
|
||||
dropout1 (nn.Dropout): Dropout after self-attention.
|
||||
norm1 (nn.LayerNorm): Layer normalization after self-attention.
|
||||
cross_attn (MSDeformAttn): Cross-attention module.
|
||||
dropout2 (nn.Dropout): Dropout after cross-attention.
|
||||
norm2 (nn.LayerNorm): Layer normalization after cross-attention.
|
||||
linear1 (nn.Linear): First linear layer in the feedforward network.
|
||||
act (nn.Module): Activation function.
|
||||
dropout3 (nn.Dropout): Dropout in the feedforward network.
|
||||
linear2 (nn.Linear): Second linear layer in the feedforward network.
|
||||
dropout4 (nn.Dropout): Dropout after the feedforward network.
|
||||
norm3 (nn.LayerNorm): Layer normalization after the feedforward network.
|
||||
|
||||
References:
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = 256,
|
||||
n_heads: int = 8,
|
||||
d_ffn: int = 1024,
|
||||
dropout: float = 0.0,
|
||||
act: nn.Module = nn.ReLU(),
|
||||
n_levels: int = 4,
|
||||
n_points: int = 4,
|
||||
):
|
||||
"""
|
||||
Initialize the DeformableTransformerDecoderLayer with the given parameters.
|
||||
|
||||
Args:
|
||||
d_model (int): Model dimension.
|
||||
n_heads (int): Number of attention heads.
|
||||
d_ffn (int): Dimension of the feedforward network.
|
||||
dropout (float): Dropout probability.
|
||||
act (nn.Module): Activation function.
|
||||
n_levels (int): Number of feature levels.
|
||||
n_points (int): Number of sampling points.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# Self attention
|
||||
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
|
||||
# Cross attention
|
||||
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
# FFN
|
||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
||||
self.act = act
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(d_ffn, d_model)
|
||||
self.dropout4 = nn.Dropout(dropout)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None) -> torch.Tensor:
|
||||
"""Add positional embeddings to the input tensor, if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_ffn(self, tgt: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Perform forward pass through the Feed-Forward Network part of the layer.
|
||||
|
||||
Args:
|
||||
tgt (torch.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after FFN.
|
||||
"""
|
||||
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout4(tgt2)
|
||||
return self.norm3(tgt)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed: torch.Tensor,
|
||||
refer_bbox: torch.Tensor,
|
||||
feats: torch.Tensor,
|
||||
shapes: list,
|
||||
padding_mask: torch.Tensor | None = None,
|
||||
attn_mask: torch.Tensor | None = None,
|
||||
query_pos: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform the forward pass through the entire decoder layer.
|
||||
|
||||
Args:
|
||||
embed (torch.Tensor): Input embeddings.
|
||||
refer_bbox (torch.Tensor): Reference bounding boxes.
|
||||
feats (torch.Tensor): Feature maps.
|
||||
shapes (list): Feature shapes.
|
||||
padding_mask (torch.Tensor, optional): Padding mask.
|
||||
attn_mask (torch.Tensor, optional): Attention mask.
|
||||
query_pos (torch.Tensor, optional): Query position embeddings.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Output tensor after decoder layer.
|
||||
"""
|
||||
# Self attention
|
||||
q = k = self.with_pos_embed(embed, query_pos)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
|
||||
0
|
||||
].transpose(0, 1)
|
||||
embed = embed + self.dropout1(tgt)
|
||||
embed = self.norm1(embed)
|
||||
|
||||
# Cross attention
|
||||
tgt = self.cross_attn(
|
||||
self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
|
||||
)
|
||||
embed = embed + self.dropout2(tgt)
|
||||
embed = self.norm2(embed)
|
||||
|
||||
# FFN
|
||||
return self.forward_ffn(embed)
|
||||
|
||||
|
||||
class DeformableTransformerDecoder(nn.Module):
|
||||
"""
|
||||
Deformable Transformer Decoder based on PaddleDetection implementation.
|
||||
|
||||
This class implements a complete deformable transformer decoder with multiple decoder layers and prediction
|
||||
heads for bounding box regression and classification.
|
||||
|
||||
Attributes:
|
||||
layers (nn.ModuleList): List of decoder layers.
|
||||
num_layers (int): Number of decoder layers.
|
||||
hidden_dim (int): Hidden dimension.
|
||||
eval_idx (int): Index of the layer to use during evaluation.
|
||||
|
||||
References:
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim: int, decoder_layer: nn.Module, num_layers: int, eval_idx: int = -1):
|
||||
"""
|
||||
Initialize the DeformableTransformerDecoder with the given parameters.
|
||||
|
||||
Args:
|
||||
hidden_dim (int): Hidden dimension.
|
||||
decoder_layer (nn.Module): Decoder layer module.
|
||||
num_layers (int): Number of decoder layers.
|
||||
eval_idx (int): Index of the layer to use during evaluation.
|
||||
"""
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.hidden_dim = hidden_dim
|
||||
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed: torch.Tensor, # decoder embeddings
|
||||
refer_bbox: torch.Tensor, # anchor
|
||||
feats: torch.Tensor, # image features
|
||||
shapes: list, # feature shapes
|
||||
bbox_head: nn.Module,
|
||||
score_head: nn.Module,
|
||||
pos_mlp: nn.Module,
|
||||
attn_mask: torch.Tensor | None = None,
|
||||
padding_mask: torch.Tensor | None = None,
|
||||
):
|
||||
"""
|
||||
Perform the forward pass through the entire decoder.
|
||||
|
||||
Args:
|
||||
embed (torch.Tensor): Decoder embeddings.
|
||||
refer_bbox (torch.Tensor): Reference bounding boxes.
|
||||
feats (torch.Tensor): Image features.
|
||||
shapes (list): Feature shapes.
|
||||
bbox_head (nn.Module): Bounding box prediction head.
|
||||
score_head (nn.Module): Score prediction head.
|
||||
pos_mlp (nn.Module): Position MLP.
|
||||
attn_mask (torch.Tensor, optional): Attention mask.
|
||||
padding_mask (torch.Tensor, optional): Padding mask.
|
||||
|
||||
Returns:
|
||||
dec_bboxes (torch.Tensor): Decoded bounding boxes.
|
||||
dec_cls (torch.Tensor): Decoded classification scores.
|
||||
"""
|
||||
output = embed
|
||||
dec_bboxes = []
|
||||
dec_cls = []
|
||||
last_refined_bbox = None
|
||||
refer_bbox = refer_bbox.sigmoid()
|
||||
for i, layer in enumerate(self.layers):
|
||||
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
|
||||
|
||||
bbox = bbox_head[i](output)
|
||||
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))
|
||||
|
||||
if self.training:
|
||||
dec_cls.append(score_head[i](output))
|
||||
if i == 0:
|
||||
dec_bboxes.append(refined_bbox)
|
||||
else:
|
||||
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
|
||||
elif i == self.eval_idx:
|
||||
dec_cls.append(score_head[i](output))
|
||||
dec_bboxes.append(refined_bbox)
|
||||
break
|
||||
|
||||
last_refined_bbox = refined_bbox
|
||||
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
|
||||
|
||||
return torch.stack(dec_bboxes), torch.stack(dec_cls)
|
||||
164
ultralytics/nn/modules/utils.py
Normal file
164
ultralytics/nn/modules/utils.py
Normal file
@@ -0,0 +1,164 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import uniform_
|
||||
|
||||
__all__ = "multi_scale_deformable_attn_pytorch", "inverse_sigmoid"
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
"""
|
||||
Create a list of cloned modules from the given module.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The module to be cloned.
|
||||
n (int): Number of clones to create.
|
||||
|
||||
Returns:
|
||||
(nn.ModuleList): A ModuleList containing n clones of the input module.
|
||||
|
||||
Examples:
|
||||
>>> import torch.nn as nn
|
||||
>>> layer = nn.Linear(10, 10)
|
||||
>>> clones = _get_clones(layer, 3)
|
||||
>>> len(clones)
|
||||
3
|
||||
"""
|
||||
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
||||
|
||||
|
||||
def bias_init_with_prob(prior_prob=0.01):
|
||||
"""
|
||||
Initialize conv/fc bias value according to a given probability value.
|
||||
|
||||
This function calculates the bias initialization value based on a prior probability using the inverse error function.
|
||||
It's commonly used in object detection models to initialize classification layers with a specific positive prediction
|
||||
probability.
|
||||
|
||||
Args:
|
||||
prior_prob (float, optional): Prior probability for bias initialization.
|
||||
|
||||
Returns:
|
||||
(float): Bias initialization value calculated from the prior probability.
|
||||
|
||||
Examples:
|
||||
>>> bias = bias_init_with_prob(0.01)
|
||||
>>> print(f"Bias initialization value: {bias:.4f}")
|
||||
Bias initialization value: -4.5951
|
||||
"""
|
||||
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
|
||||
|
||||
|
||||
def linear_init(module):
|
||||
"""
|
||||
Initialize the weights and biases of a linear module.
|
||||
|
||||
This function initializes the weights of a linear module using a uniform distribution within bounds calculated
|
||||
from the input dimension. If the module has a bias, it is also initialized.
|
||||
|
||||
Args:
|
||||
module (nn.Module): Linear module to initialize.
|
||||
|
||||
Returns:
|
||||
(nn.Module): The initialized module.
|
||||
|
||||
Examples:
|
||||
>>> import torch.nn as nn
|
||||
>>> linear = nn.Linear(10, 5)
|
||||
>>> initialized_linear = linear_init(linear)
|
||||
"""
|
||||
bound = 1 / math.sqrt(module.weight.shape[0])
|
||||
uniform_(module.weight, -bound, bound)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
uniform_(module.bias, -bound, bound)
|
||||
|
||||
|
||||
def inverse_sigmoid(x, eps=1e-5):
|
||||
"""
|
||||
Calculate the inverse sigmoid function for a tensor.
|
||||
|
||||
This function applies the inverse of the sigmoid function to a tensor, which is useful in various neural network
|
||||
operations, particularly in attention mechanisms and coordinate transformations.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor with values in range [0, 1].
|
||||
eps (float, optional): Small epsilon value to prevent numerical instability.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Tensor after applying the inverse sigmoid function.
|
||||
|
||||
Examples:
|
||||
>>> x = torch.tensor([0.2, 0.5, 0.8])
|
||||
>>> inverse_sigmoid(x)
|
||||
tensor([-1.3863, 0.0000, 1.3863])
|
||||
"""
|
||||
x = x.clamp(min=0, max=1)
|
||||
x1 = x.clamp(min=eps)
|
||||
x2 = (1 - x).clamp(min=eps)
|
||||
return torch.log(x1 / x2)
|
||||
|
||||
|
||||
def multi_scale_deformable_attn_pytorch(
|
||||
value: torch.Tensor,
|
||||
value_spatial_shapes: torch.Tensor,
|
||||
sampling_locations: torch.Tensor,
|
||||
attention_weights: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Implement multi-scale deformable attention in PyTorch.
|
||||
|
||||
This function performs deformable attention across multiple feature map scales, allowing the model to attend to
|
||||
different spatial locations with learned offsets.
|
||||
|
||||
Args:
|
||||
value (torch.Tensor): The value tensor with shape (bs, num_keys, num_heads, embed_dims).
|
||||
value_spatial_shapes (torch.Tensor): Spatial shapes of the value tensor with shape (num_levels, 2).
|
||||
sampling_locations (torch.Tensor): The sampling locations with shape
|
||||
(bs, num_queries, num_heads, num_levels, num_points, 2).
|
||||
attention_weights (torch.Tensor): The attention weights with shape
|
||||
(bs, num_queries, num_heads, num_levels, num_points).
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The output tensor with shape (bs, num_queries, embed_dims).
|
||||
|
||||
References:
|
||||
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
|
||||
"""
|
||||
bs, _, num_heads, embed_dims = value.shape
|
||||
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
||||
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
||||
sampling_grids = 2 * sampling_locations - 1
|
||||
sampling_value_list = []
|
||||
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
||||
# bs, H_*W_, num_heads, embed_dims ->
|
||||
# bs, H_*W_, num_heads*embed_dims ->
|
||||
# bs, num_heads*embed_dims, H_*W_ ->
|
||||
# bs*num_heads, embed_dims, H_, W_
|
||||
value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
||||
# bs, num_queries, num_heads, num_points, 2 ->
|
||||
# bs, num_heads, num_queries, num_points, 2 ->
|
||||
# bs*num_heads, num_queries, num_points, 2
|
||||
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
||||
# bs*num_heads, embed_dims, num_queries, num_points
|
||||
sampling_value_l_ = F.grid_sample(
|
||||
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
||||
)
|
||||
sampling_value_list.append(sampling_value_l_)
|
||||
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
||||
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
||||
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
||||
attention_weights = attention_weights.transpose(1, 2).reshape(
|
||||
bs * num_heads, 1, num_queries, num_levels * num_points
|
||||
)
|
||||
output = (
|
||||
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
||||
.sum(-1)
|
||||
.view(bs, num_heads * embed_dims, num_queries)
|
||||
)
|
||||
return output.transpose(1, 2).contiguous()
|
||||
Reference in New Issue
Block a user