init commit
This commit is contained in:
93
ultralytics/models/yolo/classify/predict.py
Normal file
93
ultralytics/models/yolo/classify/predict.py
Normal file
@@ -0,0 +1,93 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.data.augment import classify_transforms
|
||||
from ultralytics.engine.predictor import BasePredictor
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.utils import DEFAULT_CFG, ops
|
||||
|
||||
|
||||
class ClassificationPredictor(BasePredictor):
|
||||
"""
|
||||
A class extending the BasePredictor class for prediction based on a classification model.
|
||||
|
||||
This predictor handles the specific requirements of classification models, including preprocessing images
|
||||
and postprocessing predictions to generate classification results.
|
||||
|
||||
Attributes:
|
||||
args (dict): Configuration arguments for the predictor.
|
||||
|
||||
Methods:
|
||||
preprocess: Convert input images to model-compatible format.
|
||||
postprocess: Process model predictions into Results objects.
|
||||
|
||||
Notes:
|
||||
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
|
||||
|
||||
Examples:
|
||||
>>> from ultralytics.utils import ASSETS
|
||||
>>> from ultralytics.models.yolo.classify import ClassificationPredictor
|
||||
>>> args = dict(model="yolo11n-cls.pt", source=ASSETS)
|
||||
>>> predictor = ClassificationPredictor(overrides=args)
|
||||
>>> predictor.predict_cli()
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""
|
||||
Initialize the ClassificationPredictor with the specified configuration and set task to 'classify'.
|
||||
|
||||
This constructor initializes a ClassificationPredictor instance, which extends BasePredictor for classification
|
||||
tasks. It ensures the task is set to 'classify' regardless of input configuration.
|
||||
|
||||
Args:
|
||||
cfg (dict): Default configuration dictionary containing prediction settings.
|
||||
overrides (dict, optional): Configuration overrides that take precedence over cfg.
|
||||
_callbacks (list, optional): List of callback functions to be executed during prediction.
|
||||
"""
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = "classify"
|
||||
|
||||
def setup_source(self, source):
|
||||
"""Set up source and inference mode and classify transforms."""
|
||||
super().setup_source(source)
|
||||
updated = (
|
||||
self.model.model.transforms.transforms[0].size != max(self.imgsz)
|
||||
if hasattr(self.model.model, "transforms") and hasattr(self.model.model.transforms.transforms[0], "size")
|
||||
else False
|
||||
)
|
||||
self.transforms = (
|
||||
classify_transforms(self.imgsz) if updated or not self.model.pt else self.model.model.transforms
|
||||
)
|
||||
|
||||
def preprocess(self, img):
|
||||
"""Convert input images to model-compatible tensor format with appropriate normalization."""
|
||||
if not isinstance(img, torch.Tensor):
|
||||
img = torch.stack(
|
||||
[self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0
|
||||
)
|
||||
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
||||
return img.half() if self.model.fp16 else img.float() # Convert uint8 to fp16/32
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""
|
||||
Process predictions to return Results objects with classification probabilities.
|
||||
|
||||
Args:
|
||||
preds (torch.Tensor): Raw predictions from the model.
|
||||
img (torch.Tensor): Input images after preprocessing.
|
||||
orig_imgs (list[np.ndarray] | torch.Tensor): Original images before preprocessing.
|
||||
|
||||
Returns:
|
||||
(list[Results]): List of Results objects containing classification results for each image.
|
||||
"""
|
||||
if not isinstance(orig_imgs, list): # Input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
preds = preds[0] if isinstance(preds, (list, tuple)) else preds
|
||||
return [
|
||||
Results(orig_img, path=img_path, names=self.model.names, probs=pred)
|
||||
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
|
||||
]
|
||||
Reference in New Issue
Block a user