init commit
This commit is contained in:
998
ultralytics/models/sam/modules/tiny_encoder.py
Normal file
998
ultralytics/models/sam/modules/tiny_encoder.py
Normal file
@@ -0,0 +1,998 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# --------------------------------------------------------
|
||||
# TinyViT Model Architecture
|
||||
# Copyright (c) 2022 Microsoft
|
||||
# Adapted from LeViT and Swin Transformer
|
||||
# LeViT: (https://github.com/facebookresearch/levit)
|
||||
# Swin: (https://github.com/microsoft/swin-transformer)
|
||||
# Build the TinyViT Model
|
||||
# --------------------------------------------------------
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.nn.modules import LayerNorm2d
|
||||
from ultralytics.utils.instance import to_2tuple
|
||||
|
||||
|
||||
class Conv2d_BN(torch.nn.Sequential):
|
||||
"""
|
||||
A sequential container that performs 2D convolution followed by batch normalization.
|
||||
|
||||
This module combines a 2D convolution layer with batch normalization, providing a common building block
|
||||
for convolutional neural networks. The batch normalization weights and biases are initialized to specific
|
||||
values for optimal training performance.
|
||||
|
||||
Attributes:
|
||||
c (torch.nn.Conv2d): 2D convolution layer.
|
||||
bn (torch.nn.BatchNorm2d): Batch normalization layer.
|
||||
|
||||
Examples:
|
||||
>>> conv_bn = Conv2d_BN(3, 64, ks=3, stride=1, pad=1)
|
||||
>>> input_tensor = torch.randn(1, 3, 224, 224)
|
||||
>>> output = conv_bn(input_tensor)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 64, 224, 224])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
a: int,
|
||||
b: int,
|
||||
ks: int = 1,
|
||||
stride: int = 1,
|
||||
pad: int = 0,
|
||||
dilation: int = 1,
|
||||
groups: int = 1,
|
||||
bn_weight_init: float = 1,
|
||||
):
|
||||
"""
|
||||
Initialize a sequential container with 2D convolution followed by batch normalization.
|
||||
|
||||
Args:
|
||||
a (int): Number of input channels.
|
||||
b (int): Number of output channels.
|
||||
ks (int, optional): Kernel size for the convolution.
|
||||
stride (int, optional): Stride for the convolution.
|
||||
pad (int, optional): Padding for the convolution.
|
||||
dilation (int, optional): Dilation factor for the convolution.
|
||||
groups (int, optional): Number of groups for the convolution.
|
||||
bn_weight_init (float, optional): Initial value for batch normalization weight.
|
||||
"""
|
||||
super().__init__()
|
||||
self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
|
||||
bn = torch.nn.BatchNorm2d(b)
|
||||
torch.nn.init.constant_(bn.weight, bn_weight_init)
|
||||
torch.nn.init.constant_(bn.bias, 0)
|
||||
self.add_module("bn", bn)
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
Embed images into patches and project them into a specified embedding dimension.
|
||||
|
||||
This module converts input images into patch embeddings using a sequence of convolutional layers,
|
||||
effectively downsampling the spatial dimensions while increasing the channel dimension.
|
||||
|
||||
Attributes:
|
||||
patches_resolution (tuple[int, int]): Resolution of the patches after embedding.
|
||||
num_patches (int): Total number of patches.
|
||||
in_chans (int): Number of input channels.
|
||||
embed_dim (int): Dimension of the embedding.
|
||||
seq (nn.Sequential): Sequence of convolutional and activation layers for patch embedding.
|
||||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> patch_embed = PatchEmbed(in_chans=3, embed_dim=96, resolution=224, activation=nn.GELU)
|
||||
>>> x = torch.randn(1, 3, 224, 224)
|
||||
>>> output = patch_embed(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 96, 56, 56])
|
||||
"""
|
||||
|
||||
def __init__(self, in_chans: int, embed_dim: int, resolution: int, activation):
|
||||
"""
|
||||
Initialize patch embedding with convolutional layers for image-to-patch conversion and projection.
|
||||
|
||||
Args:
|
||||
in_chans (int): Number of input channels.
|
||||
embed_dim (int): Dimension of the embedding.
|
||||
resolution (int): Input image resolution.
|
||||
activation (nn.Module): Activation function to use between convolutions.
|
||||
"""
|
||||
super().__init__()
|
||||
img_size: tuple[int, int] = to_2tuple(resolution)
|
||||
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
|
||||
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
|
||||
self.in_chans = in_chans
|
||||
self.embed_dim = embed_dim
|
||||
n = embed_dim
|
||||
self.seq = nn.Sequential(
|
||||
Conv2d_BN(in_chans, n // 2, 3, 2, 1),
|
||||
activation(),
|
||||
Conv2d_BN(n // 2, n, 3, 2, 1),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Process input tensor through patch embedding sequence, converting images to patch embeddings."""
|
||||
return self.seq(x)
|
||||
|
||||
|
||||
class MBConv(nn.Module):
|
||||
"""
|
||||
Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture.
|
||||
|
||||
This module implements the mobile inverted bottleneck convolution with expansion, depthwise convolution,
|
||||
and projection phases, along with residual connections for improved gradient flow.
|
||||
|
||||
Attributes:
|
||||
in_chans (int): Number of input channels.
|
||||
hidden_chans (int): Number of hidden channels after expansion.
|
||||
out_chans (int): Number of output channels.
|
||||
conv1 (Conv2d_BN): First convolutional layer for channel expansion.
|
||||
act1 (nn.Module): First activation function.
|
||||
conv2 (Conv2d_BN): Depthwise convolutional layer.
|
||||
act2 (nn.Module): Second activation function.
|
||||
conv3 (Conv2d_BN): Final convolutional layer for projection.
|
||||
act3 (nn.Module): Third activation function.
|
||||
drop_path (nn.Module): Drop path layer (Identity for inference).
|
||||
|
||||
Examples:
|
||||
>>> in_chans, out_chans = 32, 64
|
||||
>>> mbconv = MBConv(in_chans, out_chans, expand_ratio=4, activation=nn.ReLU, drop_path=0.1)
|
||||
>>> x = torch.randn(1, in_chans, 56, 56)
|
||||
>>> output = mbconv(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 64, 56, 56])
|
||||
"""
|
||||
|
||||
def __init__(self, in_chans: int, out_chans: int, expand_ratio: float, activation, drop_path: float):
|
||||
"""
|
||||
Initialize the MBConv layer with specified input/output channels, expansion ratio, and activation.
|
||||
|
||||
Args:
|
||||
in_chans (int): Number of input channels.
|
||||
out_chans (int): Number of output channels.
|
||||
expand_ratio (float): Channel expansion ratio for the hidden layer.
|
||||
activation (nn.Module): Activation function to use.
|
||||
drop_path (float): Drop path rate for stochastic depth.
|
||||
"""
|
||||
super().__init__()
|
||||
self.in_chans = in_chans
|
||||
self.hidden_chans = int(in_chans * expand_ratio)
|
||||
self.out_chans = out_chans
|
||||
|
||||
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
|
||||
self.act1 = activation()
|
||||
|
||||
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans)
|
||||
self.act2 = activation()
|
||||
|
||||
self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
|
||||
self.act3 = activation()
|
||||
|
||||
# NOTE: `DropPath` is needed only for training.
|
||||
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.drop_path = nn.Identity()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Implement the forward pass of MBConv, applying convolutions and skip connection."""
|
||||
shortcut = x
|
||||
x = self.conv1(x)
|
||||
x = self.act1(x)
|
||||
x = self.conv2(x)
|
||||
x = self.act2(x)
|
||||
x = self.conv3(x)
|
||||
x = self.drop_path(x)
|
||||
x += shortcut
|
||||
return self.act3(x)
|
||||
|
||||
|
||||
class PatchMerging(nn.Module):
|
||||
"""
|
||||
Merge neighboring patches in the feature map and project to a new dimension.
|
||||
|
||||
This class implements a patch merging operation that combines spatial information and adjusts the feature
|
||||
dimension using a series of convolutional layers with batch normalization. It effectively reduces spatial
|
||||
resolution while potentially increasing channel dimensions.
|
||||
|
||||
Attributes:
|
||||
input_resolution (tuple[int, int]): The input resolution (height, width) of the feature map.
|
||||
dim (int): The input dimension of the feature map.
|
||||
out_dim (int): The output dimension after merging and projection.
|
||||
act (nn.Module): The activation function used between convolutions.
|
||||
conv1 (Conv2d_BN): The first convolutional layer for dimension projection.
|
||||
conv2 (Conv2d_BN): The second convolutional layer for spatial merging.
|
||||
conv3 (Conv2d_BN): The third convolutional layer for final projection.
|
||||
|
||||
Examples:
|
||||
>>> input_resolution = (56, 56)
|
||||
>>> patch_merging = PatchMerging(input_resolution, dim=64, out_dim=128, activation=nn.ReLU)
|
||||
>>> x = torch.randn(4, 64, 56, 56)
|
||||
>>> output = patch_merging(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([4, 3136, 128])
|
||||
"""
|
||||
|
||||
def __init__(self, input_resolution: tuple[int, int], dim: int, out_dim: int, activation):
|
||||
"""
|
||||
Initialize the PatchMerging module for merging and projecting neighboring patches in feature maps.
|
||||
|
||||
Args:
|
||||
input_resolution (tuple[int, int]): The input resolution (height, width) of the feature map.
|
||||
dim (int): The input dimension of the feature map.
|
||||
out_dim (int): The output dimension after merging and projection.
|
||||
activation (nn.Module): The activation function used between convolutions.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.input_resolution = input_resolution
|
||||
self.dim = dim
|
||||
self.out_dim = out_dim
|
||||
self.act = activation()
|
||||
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
|
||||
stride_c = 1 if out_dim in {320, 448, 576} else 2
|
||||
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
|
||||
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Apply patch merging and dimension projection to the input feature map."""
|
||||
if x.ndim == 3:
|
||||
H, W = self.input_resolution
|
||||
B = len(x)
|
||||
# (B, C, H, W)
|
||||
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
|
||||
|
||||
x = self.conv1(x)
|
||||
x = self.act(x)
|
||||
|
||||
x = self.conv2(x)
|
||||
x = self.act(x)
|
||||
x = self.conv3(x)
|
||||
return x.flatten(2).transpose(1, 2)
|
||||
|
||||
|
||||
class ConvLayer(nn.Module):
|
||||
"""
|
||||
Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv).
|
||||
|
||||
This layer optionally applies downsample operations to the output and supports gradient checkpointing
|
||||
for memory efficiency during training.
|
||||
|
||||
Attributes:
|
||||
dim (int): Dimensionality of the input and output.
|
||||
input_resolution (tuple[int, int]): Resolution of the input image.
|
||||
depth (int): Number of MBConv layers in the block.
|
||||
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
|
||||
blocks (nn.ModuleList): List of MBConv layers.
|
||||
downsample (Optional[nn.Module]): Function for downsampling the output.
|
||||
|
||||
Examples:
|
||||
>>> input_tensor = torch.randn(1, 64, 56, 56)
|
||||
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
|
||||
>>> output = conv_layer(input_tensor)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 3136, 128])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
input_resolution: tuple[int, int],
|
||||
depth: int,
|
||||
activation,
|
||||
drop_path: float | list[float] = 0.0,
|
||||
downsample: nn.Module | None = None,
|
||||
use_checkpoint: bool = False,
|
||||
out_dim: int | None = None,
|
||||
conv_expand_ratio: float = 4.0,
|
||||
):
|
||||
"""
|
||||
Initialize the ConvLayer with the given dimensions and settings.
|
||||
|
||||
This layer consists of multiple MobileNetV3-style inverted bottleneck convolutions (MBConv) and
|
||||
optionally applies downsampling to the output.
|
||||
|
||||
Args:
|
||||
dim (int): The dimensionality of the input and output.
|
||||
input_resolution (tuple[int, int]): The resolution of the input image.
|
||||
depth (int): The number of MBConv layers in the block.
|
||||
activation (nn.Module): Activation function applied after each convolution.
|
||||
drop_path (float | list[float], optional): Drop path rate. Single float or a list of floats for each MBConv.
|
||||
downsample (Optional[nn.Module], optional): Function for downsampling the output. None to skip downsampling.
|
||||
use_checkpoint (bool, optional): Whether to use gradient checkpointing to save memory.
|
||||
out_dim (Optional[int], optional): The dimensionality of the output. None means it will be the same as `dim`.
|
||||
conv_expand_ratio (float, optional): Expansion ratio for the MBConv layers.
|
||||
"""
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.depth = depth
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
# Build blocks
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
MBConv(
|
||||
dim,
|
||||
dim,
|
||||
conv_expand_ratio,
|
||||
activation,
|
||||
drop_path[i] if isinstance(drop_path, list) else drop_path,
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
# Patch merging layer
|
||||
self.downsample = (
|
||||
None
|
||||
if downsample is None
|
||||
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Process input through convolutional layers, applying MBConv blocks and optional downsampling."""
|
||||
for blk in self.blocks:
|
||||
x = torch.utils.checkpoint(blk, x) if self.use_checkpoint else blk(x) # warn: checkpoint is slow import
|
||||
return x if self.downsample is None else self.downsample(x)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""
|
||||
Multi-layer Perceptron (MLP) module for transformer architectures.
|
||||
|
||||
This module applies layer normalization, two fully-connected layers with an activation function in between,
|
||||
and dropout. It is commonly used in transformer-based architectures for processing token embeddings.
|
||||
|
||||
Attributes:
|
||||
norm (nn.LayerNorm): Layer normalization applied to the input.
|
||||
fc1 (nn.Linear): First fully-connected layer.
|
||||
fc2 (nn.Linear): Second fully-connected layer.
|
||||
act (nn.Module): Activation function applied after the first fully-connected layer.
|
||||
drop (nn.Dropout): Dropout layer applied after the activation function.
|
||||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> from torch import nn
|
||||
>>> mlp = MLP(in_features=256, hidden_features=512, out_features=256, activation=nn.GELU, drop=0.1)
|
||||
>>> x = torch.randn(32, 100, 256)
|
||||
>>> output = mlp(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([32, 100, 256])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_features: int | None = None,
|
||||
out_features: int | None = None,
|
||||
activation=nn.GELU,
|
||||
drop: float = 0.0,
|
||||
):
|
||||
"""
|
||||
Initialize a multi-layer perceptron with configurable input, hidden, and output dimensions.
|
||||
|
||||
Args:
|
||||
in_features (int): Number of input features.
|
||||
hidden_features (Optional[int], optional): Number of hidden features.
|
||||
out_features (Optional[int], optional): Number of output features.
|
||||
activation (nn.Module): Activation function applied after the first fully-connected layer.
|
||||
drop (float, optional): Dropout probability.
|
||||
"""
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.norm = nn.LayerNorm(in_features)
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.act = activation()
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Apply MLP operations: layer norm, FC layers, activation, and dropout to the input tensor."""
|
||||
x = self.norm(x)
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
return self.drop(x)
|
||||
|
||||
|
||||
class Attention(torch.nn.Module):
|
||||
"""
|
||||
Multi-head attention module with spatial awareness and trainable attention biases.
|
||||
|
||||
This module implements a multi-head attention mechanism with support for spatial awareness, applying
|
||||
attention biases based on spatial resolution. It includes trainable attention biases for each unique
|
||||
offset between spatial positions in the resolution grid.
|
||||
|
||||
Attributes:
|
||||
num_heads (int): Number of attention heads.
|
||||
scale (float): Scaling factor for attention scores.
|
||||
key_dim (int): Dimensionality of the keys and queries.
|
||||
nh_kd (int): Product of num_heads and key_dim.
|
||||
d (int): Dimensionality of the value vectors.
|
||||
dh (int): Product of d and num_heads.
|
||||
attn_ratio (float): Attention ratio affecting the dimensions of the value vectors.
|
||||
norm (nn.LayerNorm): Layer normalization applied to input.
|
||||
qkv (nn.Linear): Linear layer for computing query, key, and value projections.
|
||||
proj (nn.Linear): Linear layer for final projection.
|
||||
attention_biases (nn.Parameter): Learnable attention biases.
|
||||
attention_bias_idxs (torch.Tensor): Indices for attention biases.
|
||||
ab (torch.Tensor): Cached attention biases for inference, deleted during training.
|
||||
|
||||
Examples:
|
||||
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
|
||||
>>> x = torch.randn(1, 196, 256)
|
||||
>>> output = attn(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 196, 256])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
key_dim: int,
|
||||
num_heads: int = 8,
|
||||
attn_ratio: float = 4,
|
||||
resolution: tuple[int, int] = (14, 14),
|
||||
):
|
||||
"""
|
||||
Initialize the Attention module for multi-head attention with spatial awareness.
|
||||
|
||||
This module implements a multi-head attention mechanism with support for spatial awareness, applying
|
||||
attention biases based on spatial resolution. It includes trainable attention biases for each unique
|
||||
offset between spatial positions in the resolution grid.
|
||||
|
||||
Args:
|
||||
dim (int): The dimensionality of the input and output.
|
||||
key_dim (int): The dimensionality of the keys and queries.
|
||||
num_heads (int, optional): Number of attention heads.
|
||||
attn_ratio (float, optional): Attention ratio, affecting the dimensions of the value vectors.
|
||||
resolution (tuple[int, int], optional): Spatial resolution of the input feature map.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert isinstance(resolution, tuple) and len(resolution) == 2, "'resolution' argument not tuple of length 2"
|
||||
self.num_heads = num_heads
|
||||
self.scale = key_dim**-0.5
|
||||
self.key_dim = key_dim
|
||||
self.nh_kd = nh_kd = key_dim * num_heads
|
||||
self.d = int(attn_ratio * key_dim)
|
||||
self.dh = int(attn_ratio * key_dim) * num_heads
|
||||
self.attn_ratio = attn_ratio
|
||||
h = self.dh + nh_kd * 2
|
||||
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.qkv = nn.Linear(dim, h)
|
||||
self.proj = nn.Linear(self.dh, dim)
|
||||
|
||||
points = list(itertools.product(range(resolution[0]), range(resolution[1])))
|
||||
N = len(points)
|
||||
attention_offsets = {}
|
||||
idxs = []
|
||||
for p1 in points:
|
||||
for p2 in points:
|
||||
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
|
||||
if offset not in attention_offsets:
|
||||
attention_offsets[offset] = len(attention_offsets)
|
||||
idxs.append(attention_offsets[offset])
|
||||
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
|
||||
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False)
|
||||
|
||||
@torch.no_grad()
|
||||
def train(self, mode: bool = True):
|
||||
"""Set the module in training mode and handle the 'ab' attribute for cached attention biases."""
|
||||
super().train(mode)
|
||||
if mode and hasattr(self, "ab"):
|
||||
del self.ab
|
||||
else:
|
||||
self.ab = self.attention_biases[:, self.attention_bias_idxs]
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Apply multi-head attention with spatial awareness and trainable attention biases."""
|
||||
B, N, _ = x.shape # B, N, C
|
||||
|
||||
# Normalization
|
||||
x = self.norm(x)
|
||||
|
||||
qkv = self.qkv(x)
|
||||
# (B, N, num_heads, d)
|
||||
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
|
||||
# (B, num_heads, N, d)
|
||||
q = q.permute(0, 2, 1, 3)
|
||||
k = k.permute(0, 2, 1, 3)
|
||||
v = v.permute(0, 2, 1, 3)
|
||||
self.ab = self.ab.to(self.attention_biases.device)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale + (
|
||||
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
|
||||
)
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
|
||||
return self.proj(x)
|
||||
|
||||
|
||||
class TinyViTBlock(nn.Module):
|
||||
"""
|
||||
TinyViT Block that applies self-attention and a local convolution to the input.
|
||||
|
||||
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
|
||||
local convolutions to process input features efficiently. It supports windowed attention for
|
||||
computational efficiency and includes residual connections.
|
||||
|
||||
Attributes:
|
||||
dim (int): The dimensionality of the input and output.
|
||||
input_resolution (tuple[int, int]): Spatial resolution of the input feature map.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): Size of the attention window.
|
||||
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
||||
drop_path (nn.Module): Stochastic depth layer, identity function during inference.
|
||||
attn (Attention): Self-attention module.
|
||||
mlp (MLP): Multi-layer perceptron module.
|
||||
local_conv (Conv2d_BN): Depth-wise local convolution layer.
|
||||
|
||||
Examples:
|
||||
>>> input_tensor = torch.randn(1, 196, 192)
|
||||
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
|
||||
>>> output = block(input_tensor)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 196, 192])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
input_resolution: tuple[int, int],
|
||||
num_heads: int,
|
||||
window_size: int = 7,
|
||||
mlp_ratio: float = 4.0,
|
||||
drop: float = 0.0,
|
||||
drop_path: float = 0.0,
|
||||
local_conv_size: int = 3,
|
||||
activation=nn.GELU,
|
||||
):
|
||||
"""
|
||||
Initialize a TinyViT block with self-attention and local convolution.
|
||||
|
||||
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
|
||||
local convolutions to process input features efficiently.
|
||||
|
||||
Args:
|
||||
dim (int): Dimensionality of the input and output features.
|
||||
input_resolution (tuple[int, int]): Spatial resolution of the input feature map (height, width).
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int, optional): Size of the attention window. Must be greater than 0.
|
||||
mlp_ratio (float, optional): Ratio of MLP hidden dimension to embedding dimension.
|
||||
drop (float, optional): Dropout rate.
|
||||
drop_path (float, optional): Stochastic depth rate.
|
||||
local_conv_size (int, optional): Kernel size of the local convolution.
|
||||
activation (nn.Module): Activation function for MLP.
|
||||
"""
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.num_heads = num_heads
|
||||
assert window_size > 0, "window_size must be greater than 0"
|
||||
self.window_size = window_size
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
# NOTE: `DropPath` is needed only for training.
|
||||
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.drop_path = nn.Identity()
|
||||
|
||||
assert dim % num_heads == 0, "dim must be divisible by num_heads"
|
||||
head_dim = dim // num_heads
|
||||
|
||||
window_resolution = (window_size, window_size)
|
||||
self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution)
|
||||
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
mlp_activation = activation
|
||||
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, activation=mlp_activation, drop=drop)
|
||||
|
||||
pad = local_conv_size // 2
|
||||
self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Apply self-attention, local convolution, and MLP operations to the input tensor."""
|
||||
h, w = self.input_resolution
|
||||
b, hw, c = x.shape # batch, height*width, channels
|
||||
assert hw == h * w, "input feature has wrong size"
|
||||
res_x = x
|
||||
if h == self.window_size and w == self.window_size:
|
||||
x = self.attn(x)
|
||||
else:
|
||||
x = x.view(b, h, w, c)
|
||||
pad_b = (self.window_size - h % self.window_size) % self.window_size
|
||||
pad_r = (self.window_size - w % self.window_size) % self.window_size
|
||||
padding = pad_b > 0 or pad_r > 0
|
||||
if padding:
|
||||
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
|
||||
|
||||
pH, pW = h + pad_b, w + pad_r
|
||||
nH = pH // self.window_size
|
||||
nW = pW // self.window_size
|
||||
|
||||
# Window partition
|
||||
x = (
|
||||
x.view(b, nH, self.window_size, nW, self.window_size, c)
|
||||
.transpose(2, 3)
|
||||
.reshape(b * nH * nW, self.window_size * self.window_size, c)
|
||||
)
|
||||
x = self.attn(x)
|
||||
|
||||
# Window reverse
|
||||
x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c)
|
||||
if padding:
|
||||
x = x[:, :h, :w].contiguous()
|
||||
|
||||
x = x.view(b, hw, c)
|
||||
|
||||
x = res_x + self.drop_path(x)
|
||||
x = x.transpose(1, 2).reshape(b, c, h, w)
|
||||
x = self.local_conv(x)
|
||||
x = x.view(b, c, hw).transpose(1, 2)
|
||||
|
||||
return x + self.drop_path(self.mlp(x))
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
"""
|
||||
Return a string representation of the TinyViTBlock's parameters.
|
||||
|
||||
This method provides a formatted string containing key information about the TinyViTBlock, including its
|
||||
dimension, input resolution, number of attention heads, window size, and MLP ratio.
|
||||
|
||||
Returns:
|
||||
(str): A formatted string containing the block's parameters.
|
||||
|
||||
Examples:
|
||||
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0)
|
||||
>>> print(block.extra_repr())
|
||||
dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0
|
||||
"""
|
||||
return (
|
||||
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
|
||||
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
||||
)
|
||||
|
||||
|
||||
class BasicLayer(nn.Module):
|
||||
"""
|
||||
A basic TinyViT layer for one stage in a TinyViT architecture.
|
||||
|
||||
This class represents a single layer in the TinyViT model, consisting of multiple TinyViT blocks
|
||||
and an optional downsampling operation. It processes features at a specific resolution and
|
||||
dimensionality within the overall architecture.
|
||||
|
||||
Attributes:
|
||||
dim (int): The dimensionality of the input and output features.
|
||||
input_resolution (tuple[int, int]): Spatial resolution of the input feature map.
|
||||
depth (int): Number of TinyViT blocks in this layer.
|
||||
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
|
||||
blocks (nn.ModuleList): List of TinyViT blocks that make up this layer.
|
||||
downsample (nn.Module | None): Downsample layer at the end of the layer, if specified.
|
||||
|
||||
Examples:
|
||||
>>> input_tensor = torch.randn(1, 3136, 192)
|
||||
>>> layer = BasicLayer(dim=192, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
|
||||
>>> output = layer(input_tensor)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 784, 384])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
input_resolution: tuple[int, int],
|
||||
depth: int,
|
||||
num_heads: int,
|
||||
window_size: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
drop: float = 0.0,
|
||||
drop_path: float | list[float] = 0.0,
|
||||
downsample: nn.Module | None = None,
|
||||
use_checkpoint: bool = False,
|
||||
local_conv_size: int = 3,
|
||||
activation=nn.GELU,
|
||||
out_dim: int | None = None,
|
||||
):
|
||||
"""
|
||||
Initialize a BasicLayer in the TinyViT architecture.
|
||||
|
||||
This layer consists of multiple TinyViT blocks and an optional downsampling operation. It is designed to
|
||||
process feature maps at a specific resolution and dimensionality within the TinyViT model.
|
||||
|
||||
Args:
|
||||
dim (int): Dimensionality of the input and output features.
|
||||
input_resolution (tuple[int, int]): Spatial resolution of the input feature map (height, width).
|
||||
depth (int): Number of TinyViT blocks in this layer.
|
||||
num_heads (int): Number of attention heads in each TinyViT block.
|
||||
window_size (int): Size of the local window for attention computation.
|
||||
mlp_ratio (float, optional): Ratio of MLP hidden dimension to embedding dimension.
|
||||
drop (float, optional): Dropout rate.
|
||||
drop_path (float | list[float], optional): Stochastic depth rate. Can be a float or a list of floats for each block.
|
||||
downsample (nn.Module | None, optional): Downsampling layer at the end of the layer. None to skip downsampling.
|
||||
use_checkpoint (bool, optional): Whether to use gradient checkpointing to save memory.
|
||||
local_conv_size (int, optional): Kernel size for the local convolution in each TinyViT block.
|
||||
activation (nn.Module): Activation function used in the MLP.
|
||||
out_dim (int | None, optional): Output dimension after downsampling. None means it will be the same as `dim`.
|
||||
"""
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.depth = depth
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
# Build blocks
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
TinyViTBlock(
|
||||
dim=dim,
|
||||
input_resolution=input_resolution,
|
||||
num_heads=num_heads,
|
||||
window_size=window_size,
|
||||
mlp_ratio=mlp_ratio,
|
||||
drop=drop,
|
||||
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
||||
local_conv_size=local_conv_size,
|
||||
activation=activation,
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
# Patch merging layer
|
||||
self.downsample = (
|
||||
None
|
||||
if downsample is None
|
||||
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Process input through TinyViT blocks and optional downsampling."""
|
||||
for blk in self.blocks:
|
||||
x = torch.utils.checkpoint(blk, x) if self.use_checkpoint else blk(x) # warn: checkpoint is slow import
|
||||
return x if self.downsample is None else self.downsample(x)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
"""Return a string with the layer's parameters for printing."""
|
||||
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
||||
|
||||
|
||||
class TinyViT(nn.Module):
|
||||
"""
|
||||
TinyViT: A compact vision transformer architecture for efficient image classification and feature extraction.
|
||||
|
||||
This class implements the TinyViT model, which combines elements of vision transformers and convolutional
|
||||
neural networks for improved efficiency and performance on vision tasks. It features hierarchical processing
|
||||
with patch embedding, multiple stages of attention and convolution blocks, and a feature refinement neck.
|
||||
|
||||
Attributes:
|
||||
img_size (int): Input image size.
|
||||
num_classes (int): Number of classification classes.
|
||||
depths (tuple[int, int, int, int]): Number of blocks in each stage.
|
||||
num_layers (int): Total number of layers in the network.
|
||||
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
||||
patch_embed (PatchEmbed): Module for patch embedding.
|
||||
patches_resolution (tuple[int, int]): Resolution of embedded patches.
|
||||
layers (nn.ModuleList): List of network layers.
|
||||
norm_head (nn.LayerNorm): Layer normalization for the classifier head.
|
||||
head (nn.Linear): Linear layer for final classification.
|
||||
neck (nn.Sequential): Neck module for feature refinement.
|
||||
|
||||
Examples:
|
||||
>>> model = TinyViT(img_size=224, num_classes=1000)
|
||||
>>> x = torch.randn(1, 3, 224, 224)
|
||||
>>> features = model.forward_features(x)
|
||||
>>> print(features.shape)
|
||||
torch.Size([1, 256, 56, 56])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int = 224,
|
||||
in_chans: int = 3,
|
||||
num_classes: int = 1000,
|
||||
embed_dims: tuple[int, int, int, int] = (96, 192, 384, 768),
|
||||
depths: tuple[int, int, int, int] = (2, 2, 6, 2),
|
||||
num_heads: tuple[int, int, int, int] = (3, 6, 12, 24),
|
||||
window_sizes: tuple[int, int, int, int] = (7, 7, 14, 7),
|
||||
mlp_ratio: float = 4.0,
|
||||
drop_rate: float = 0.0,
|
||||
drop_path_rate: float = 0.1,
|
||||
use_checkpoint: bool = False,
|
||||
mbconv_expand_ratio: float = 4.0,
|
||||
local_conv_size: int = 3,
|
||||
layer_lr_decay: float = 1.0,
|
||||
):
|
||||
"""
|
||||
Initialize the TinyViT model.
|
||||
|
||||
This constructor sets up the TinyViT architecture, including patch embedding, multiple layers of
|
||||
attention and convolution blocks, and a classification head.
|
||||
|
||||
Args:
|
||||
img_size (int, optional): Size of the input image.
|
||||
in_chans (int, optional): Number of input channels.
|
||||
num_classes (int, optional): Number of classes for classification.
|
||||
embed_dims (tuple[int, int, int, int], optional): Embedding dimensions for each stage.
|
||||
depths (tuple[int, int, int, int], optional): Number of blocks in each stage.
|
||||
num_heads (tuple[int, int, int, int], optional): Number of attention heads in each stage.
|
||||
window_sizes (tuple[int, int, int, int], optional): Window sizes for each stage.
|
||||
mlp_ratio (float, optional): Ratio of MLP hidden dim to embedding dim.
|
||||
drop_rate (float, optional): Dropout rate.
|
||||
drop_path_rate (float, optional): Stochastic depth rate.
|
||||
use_checkpoint (bool, optional): Whether to use checkpointing to save memory.
|
||||
mbconv_expand_ratio (float, optional): Expansion ratio for MBConv layer.
|
||||
local_conv_size (int, optional): Kernel size for local convolutions.
|
||||
layer_lr_decay (float, optional): Layer-wise learning rate decay factor.
|
||||
"""
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.num_classes = num_classes
|
||||
self.depths = depths
|
||||
self.num_layers = len(depths)
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
activation = nn.GELU
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation
|
||||
)
|
||||
|
||||
patches_resolution = self.patch_embed.patches_resolution
|
||||
self.patches_resolution = patches_resolution
|
||||
|
||||
# Stochastic depth
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
||||
|
||||
# Build layers
|
||||
self.layers = nn.ModuleList()
|
||||
for i_layer in range(self.num_layers):
|
||||
kwargs = dict(
|
||||
dim=embed_dims[i_layer],
|
||||
input_resolution=(
|
||||
patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
|
||||
patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
|
||||
),
|
||||
# input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
||||
# patches_resolution[1] // (2 ** i_layer)),
|
||||
depth=depths[i_layer],
|
||||
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
||||
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
||||
use_checkpoint=use_checkpoint,
|
||||
out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)],
|
||||
activation=activation,
|
||||
)
|
||||
if i_layer == 0:
|
||||
layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs)
|
||||
else:
|
||||
layer = BasicLayer(
|
||||
num_heads=num_heads[i_layer],
|
||||
window_size=window_sizes[i_layer],
|
||||
mlp_ratio=self.mlp_ratio,
|
||||
drop=drop_rate,
|
||||
local_conv_size=local_conv_size,
|
||||
**kwargs,
|
||||
)
|
||||
self.layers.append(layer)
|
||||
|
||||
# Classifier head
|
||||
self.norm_head = nn.LayerNorm(embed_dims[-1])
|
||||
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
|
||||
|
||||
# Init weights
|
||||
self.apply(self._init_weights)
|
||||
self.set_layer_lr_decay(layer_lr_decay)
|
||||
self.neck = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
embed_dims[-1],
|
||||
256,
|
||||
kernel_size=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(256),
|
||||
nn.Conv2d(
|
||||
256,
|
||||
256,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(256),
|
||||
)
|
||||
|
||||
def set_layer_lr_decay(self, layer_lr_decay: float):
|
||||
"""Set layer-wise learning rate decay for the TinyViT model based on depth."""
|
||||
decay_rate = layer_lr_decay
|
||||
|
||||
# Layers -> blocks (depth)
|
||||
depth = sum(self.depths)
|
||||
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
|
||||
|
||||
def _set_lr_scale(m, scale):
|
||||
"""Set the learning rate scale for each layer in the model based on the layer's depth."""
|
||||
for p in m.parameters():
|
||||
p.lr_scale = scale
|
||||
|
||||
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
|
||||
i = 0
|
||||
for layer in self.layers:
|
||||
for block in layer.blocks:
|
||||
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
|
||||
i += 1
|
||||
if layer.downsample is not None:
|
||||
layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1]))
|
||||
assert i == depth
|
||||
for m in {self.norm_head, self.head}:
|
||||
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
|
||||
|
||||
for k, p in self.named_parameters():
|
||||
p.param_name = k
|
||||
|
||||
def _check_lr_scale(m):
|
||||
"""Check if the learning rate scale attribute is present in module's parameters."""
|
||||
for p in m.parameters():
|
||||
assert hasattr(p, "lr_scale"), p.param_name
|
||||
|
||||
self.apply(_check_lr_scale)
|
||||
|
||||
@staticmethod
|
||||
def _init_weights(m):
|
||||
"""Initialize weights for linear and normalization layers in the TinyViT model."""
|
||||
if isinstance(m, nn.Linear):
|
||||
# NOTE: This initialization is needed only for training.
|
||||
# trunc_normal_(m.weight, std=.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay_keywords(self):
|
||||
"""Return a set of keywords for parameters that should not use weight decay."""
|
||||
return {"attention_biases"}
|
||||
|
||||
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Process input through feature extraction layers, returning spatial features."""
|
||||
x = self.patch_embed(x) # x input is (N, C, H, W)
|
||||
|
||||
x = self.layers[0](x)
|
||||
start_i = 1
|
||||
|
||||
for i in range(start_i, len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
x = layer(x)
|
||||
batch, _, channel = x.shape
|
||||
x = x.view(batch, self.patches_resolution[0] // 4, self.patches_resolution[1] // 4, channel)
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
return self.neck(x)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Perform the forward pass through the TinyViT model, extracting features from the input image."""
|
||||
return self.forward_features(x)
|
||||
|
||||
def set_imgsz(self, imgsz: list[int] = [1024, 1024]):
|
||||
"""Set image size to make model compatible with different image sizes."""
|
||||
imgsz = [s // 4 for s in imgsz]
|
||||
self.patches_resolution = imgsz
|
||||
for i, layer in enumerate(self.layers):
|
||||
input_resolution = (
|
||||
imgsz[0] // (2 ** (i - 1 if i == 3 else i)),
|
||||
imgsz[1] // (2 ** (i - 1 if i == 3 else i)),
|
||||
)
|
||||
layer.input_resolution = input_resolution
|
||||
if layer.downsample is not None:
|
||||
layer.downsample.input_resolution = input_resolution
|
||||
if isinstance(layer, BasicLayer):
|
||||
for b in layer.blocks:
|
||||
b.input_resolution = input_resolution
|
||||
Reference in New Issue
Block a user