init commit
This commit is contained in:
312
ultralytics/models/sam/modules/memory_attention.py
Normal file
312
ultralytics/models/sam/modules/memory_attention.py
Normal file
@@ -0,0 +1,312 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .blocks import RoPEAttention
|
||||
|
||||
|
||||
class MemoryAttentionLayer(nn.Module):
|
||||
"""
|
||||
Implements a memory attention layer with self-attention and cross-attention mechanisms for neural networks.
|
||||
|
||||
This class combines self-attention, cross-attention, and feedforward components to process input tensors and
|
||||
generate memory-based attention outputs.
|
||||
|
||||
Attributes:
|
||||
d_model (int): Dimensionality of the model.
|
||||
dim_feedforward (int): Dimensionality of the feedforward network.
|
||||
dropout_value (float): Dropout rate for regularization.
|
||||
self_attn (RoPEAttention): Self-attention mechanism using RoPE (Rotary Position Embedding).
|
||||
cross_attn_image (RoPEAttention): Cross-attention mechanism for image processing.
|
||||
linear1 (nn.Linear): First linear layer of the feedforward network.
|
||||
linear2 (nn.Linear): Second linear layer of the feedforward network.
|
||||
norm1 (nn.LayerNorm): Layer normalization for self-attention output.
|
||||
norm2 (nn.LayerNorm): Layer normalization for cross-attention output.
|
||||
norm3 (nn.LayerNorm): Layer normalization for feedforward network output.
|
||||
dropout1 (nn.Dropout): Dropout layer after self-attention.
|
||||
dropout2 (nn.Dropout): Dropout layer after cross-attention.
|
||||
dropout3 (nn.Dropout): Dropout layer after feedforward network.
|
||||
activation (nn.ReLU): Activation function for the feedforward network.
|
||||
pos_enc_at_attn (bool): Flag to add positional encoding at attention.
|
||||
pos_enc_at_cross_attn_queries (bool): Flag to add positional encoding to cross-attention queries.
|
||||
pos_enc_at_cross_attn_keys (bool): Flag to add positional encoding to cross-attention keys.
|
||||
|
||||
Methods:
|
||||
forward: Performs the full memory attention operation on input tensors.
|
||||
_forward_sa: Performs self-attention on input tensor.
|
||||
_forward_ca: Performs cross-attention between target and memory tensors.
|
||||
|
||||
Examples:
|
||||
>>> layer = MemoryAttentionLayer(d_model=256, dim_feedforward=2048, dropout=0.1)
|
||||
>>> tgt = torch.randn(1, 100, 256)
|
||||
>>> memory = torch.randn(1, 100, 64)
|
||||
>>> pos = torch.randn(1, 100, 256)
|
||||
>>> query_pos = torch.randn(1, 100, 256)
|
||||
>>> output = layer(tgt, memory, pos, query_pos)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 100, 256])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = 256,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
pos_enc_at_attn: bool = False,
|
||||
pos_enc_at_cross_attn_keys: bool = True,
|
||||
pos_enc_at_cross_attn_queries: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize a memory attention layer with self-attention, cross-attention, and feedforward components.
|
||||
|
||||
Args:
|
||||
d_model (int): Dimensionality of the model.
|
||||
dim_feedforward (int): Dimensionality of the feedforward network.
|
||||
dropout (float): Dropout rate for regularization.
|
||||
pos_enc_at_attn (bool): Whether to add positional encoding at attention.
|
||||
pos_enc_at_cross_attn_keys (bool): Whether to add positional encoding to cross-attention keys.
|
||||
pos_enc_at_cross_attn_queries (bool): Whether to add positional encoding to cross-attention queries.
|
||||
"""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.dim_feedforward = dim_feedforward
|
||||
self.dropout_value = dropout
|
||||
self.self_attn = RoPEAttention(embedding_dim=256, num_heads=1, downsample_rate=1)
|
||||
self.cross_attn_image = RoPEAttention(
|
||||
rope_k_repeat=True,
|
||||
embedding_dim=256,
|
||||
num_heads=1,
|
||||
downsample_rate=1,
|
||||
kv_in_dim=64,
|
||||
)
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = nn.ReLU()
|
||||
|
||||
# Where to add pos enc
|
||||
self.pos_enc_at_attn = pos_enc_at_attn
|
||||
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
||||
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
||||
|
||||
def _forward_sa(self, tgt: torch.Tensor, query_pos: torch.Tensor | None) -> torch.Tensor:
|
||||
"""Perform self-attention on input tensor using positional encoding and RoPE attention mechanism."""
|
||||
tgt2 = self.norm1(tgt)
|
||||
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
||||
tgt2 = self.self_attn(q, k, v=tgt2)
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
return tgt
|
||||
|
||||
def _forward_ca(
|
||||
self,
|
||||
tgt: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
query_pos: torch.Tensor | None,
|
||||
pos: torch.Tensor | None,
|
||||
num_k_exclude_rope: int = 0,
|
||||
) -> torch.Tensor:
|
||||
"""Perform cross-attention between target and memory tensors using RoPEAttention mechanism."""
|
||||
kwds = {}
|
||||
if num_k_exclude_rope > 0:
|
||||
assert isinstance(self.cross_attn_image, RoPEAttention)
|
||||
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
||||
|
||||
# Cross-Attention
|
||||
tgt2 = self.norm2(tgt)
|
||||
tgt2 = self.cross_attn_image(
|
||||
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
||||
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
||||
v=memory,
|
||||
**kwds,
|
||||
)
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
return tgt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
pos: torch.Tensor | None = None,
|
||||
query_pos: torch.Tensor | None = None,
|
||||
num_k_exclude_rope: int = 0,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Process input tensors through self-attention, cross-attention, and feedforward network layers.
|
||||
|
||||
Args:
|
||||
tgt (torch.Tensor): Target tensor for self-attention with shape (N, L, D).
|
||||
memory (torch.Tensor): Memory tensor for cross-attention with shape (N, S, D).
|
||||
pos (Optional[torch.Tensor]): Positional encoding for memory tensor.
|
||||
query_pos (Optional[torch.Tensor]): Positional encoding for target tensor.
|
||||
num_k_exclude_rope (int): Number of keys to exclude from rotary position embedding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Processed tensor after attention and feedforward layers with shape (N, L, D).
|
||||
"""
|
||||
tgt = self._forward_sa(tgt, query_pos)
|
||||
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
||||
# MLP
|
||||
tgt2 = self.norm3(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
return tgt
|
||||
|
||||
|
||||
class MemoryAttention(nn.Module):
|
||||
"""
|
||||
Memory attention module for processing sequential data with self and cross-attention mechanisms.
|
||||
|
||||
This class implements a multi-layer attention mechanism that combines self-attention and cross-attention
|
||||
for processing sequential data, particularly useful in transformer-like architectures.
|
||||
|
||||
Attributes:
|
||||
d_model (int): The dimension of the model's hidden state.
|
||||
layers (nn.ModuleList): A list of MemoryAttentionLayer modules.
|
||||
num_layers (int): The number of attention layers.
|
||||
norm (nn.LayerNorm): Layer normalization applied to the output.
|
||||
pos_enc_at_input (bool): Whether to apply positional encoding at the input.
|
||||
batch_first (bool): Whether the input tensors are in batch-first format.
|
||||
|
||||
Methods:
|
||||
forward: Processes input tensors through the attention layers.
|
||||
|
||||
Examples:
|
||||
>>> d_model = 256
|
||||
>>> layer = MemoryAttentionLayer(d_model)
|
||||
>>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
|
||||
>>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
|
||||
>>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
|
||||
>>> curr_pos = torch.randn(10, 32, d_model)
|
||||
>>> memory_pos = torch.randn(20, 32, d_model)
|
||||
>>> output = attention(curr, memory, curr_pos, memory_pos)
|
||||
>>> print(output.shape)
|
||||
torch.Size([10, 32, 256])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
pos_enc_at_input: bool,
|
||||
layer: nn.Module,
|
||||
num_layers: int,
|
||||
batch_first: bool = True, # Do layers expect batch first input?
|
||||
):
|
||||
"""
|
||||
Initialize MemoryAttention with specified layers and normalization for sequential data processing.
|
||||
|
||||
This class implements a multi-layer attention mechanism that combines self-attention and cross-attention
|
||||
for processing sequential data, particularly useful in transformer-like architectures.
|
||||
|
||||
Args:
|
||||
d_model (int): The dimension of the model's hidden state.
|
||||
pos_enc_at_input (bool): Whether to apply positional encoding at the input.
|
||||
layer (nn.Module): The attention layer to be used in the module.
|
||||
num_layers (int): The number of attention layers.
|
||||
batch_first (bool): Whether the input tensors are in batch-first format.
|
||||
|
||||
Examples:
|
||||
>>> d_model = 256
|
||||
>>> layer = MemoryAttentionLayer(d_model)
|
||||
>>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
|
||||
>>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
|
||||
>>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
|
||||
>>> curr_pos = torch.randn(10, 32, d_model)
|
||||
>>> memory_pos = torch.randn(20, 32, d_model)
|
||||
>>> output = attention(curr, memory, curr_pos, memory_pos)
|
||||
>>> print(output.shape)
|
||||
torch.Size([10, 32, 256])
|
||||
"""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])
|
||||
self.num_layers = num_layers
|
||||
self.norm = nn.LayerNorm(d_model)
|
||||
self.pos_enc_at_input = pos_enc_at_input
|
||||
self.batch_first = batch_first
|
||||
|
||||
def forward(
|
||||
self,
|
||||
curr: torch.Tensor, # self-attention inputs
|
||||
memory: torch.Tensor, # cross-attention inputs
|
||||
curr_pos: torch.Tensor | None = None, # pos_enc for self-attention inputs
|
||||
memory_pos: torch.Tensor | None = None, # pos_enc for cross-attention inputs
|
||||
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Process inputs through attention layers, applying self and cross-attention with positional encoding.
|
||||
|
||||
Args:
|
||||
curr (torch.Tensor): Self-attention input tensor, representing the current state.
|
||||
memory (torch.Tensor): Cross-attention input tensor, representing memory information.
|
||||
curr_pos (Optional[torch.Tensor]): Positional encoding for self-attention inputs.
|
||||
memory_pos (Optional[torch.Tensor]): Positional encoding for cross-attention inputs.
|
||||
num_obj_ptr_tokens (int): Number of object pointer tokens to exclude from rotary position embedding.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Processed output tensor after applying attention layers and normalization.
|
||||
|
||||
Examples:
|
||||
>>> d_model = 256
|
||||
>>> layer = MemoryAttentionLayer(d_model)
|
||||
>>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
|
||||
>>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
|
||||
>>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
|
||||
>>> curr_pos = torch.randn(10, 32, d_model)
|
||||
>>> memory_pos = torch.randn(20, 32, d_model)
|
||||
>>> output = attention(curr, memory, curr_pos, memory_pos)
|
||||
>>> print(output.shape)
|
||||
torch.Size([10, 32, 256])
|
||||
"""
|
||||
if isinstance(curr, list):
|
||||
assert isinstance(curr_pos, list)
|
||||
assert len(curr) == len(curr_pos) == 1
|
||||
curr, curr_pos = curr[0], curr_pos[0]
|
||||
|
||||
assert curr.shape[1] == memory.shape[1], "Batch size must be the same for curr and memory"
|
||||
|
||||
output = curr
|
||||
if self.pos_enc_at_input and curr_pos is not None:
|
||||
output = output + 0.1 * curr_pos
|
||||
|
||||
if self.batch_first:
|
||||
# Convert to batch first
|
||||
output = output.transpose(0, 1)
|
||||
curr_pos = curr_pos.transpose(0, 1)
|
||||
memory = memory.transpose(0, 1)
|
||||
memory_pos = memory_pos.transpose(0, 1)
|
||||
|
||||
for layer in self.layers:
|
||||
kwds = {}
|
||||
if isinstance(layer.cross_attn_image, RoPEAttention):
|
||||
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
||||
|
||||
output = layer(
|
||||
tgt=output,
|
||||
memory=memory,
|
||||
pos=memory_pos,
|
||||
query_pos=curr_pos,
|
||||
**kwds,
|
||||
)
|
||||
normed_output = self.norm(output)
|
||||
|
||||
if self.batch_first:
|
||||
# Convert back to seq first
|
||||
normed_output = normed_output.transpose(0, 1)
|
||||
curr_pos = curr_pos.transpose(0, 1)
|
||||
|
||||
return normed_output
|
||||
Reference in New Issue
Block a user