init commit
This commit is contained in:
851
ultralytics/models/sam/modules/encoders.py
Normal file
851
ultralytics/models/sam/modules/encoders.py
Normal file
@@ -0,0 +1,851 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.nn.modules import LayerNorm2d
|
||||
|
||||
from .blocks import (
|
||||
Block,
|
||||
CXBlock,
|
||||
Fuser,
|
||||
MaskDownSampler,
|
||||
MultiScaleBlock,
|
||||
PatchEmbed,
|
||||
PositionEmbeddingRandom,
|
||||
PositionEmbeddingSine,
|
||||
)
|
||||
|
||||
|
||||
class ImageEncoderViT(nn.Module):
|
||||
"""
|
||||
An image encoder using Vision Transformer (ViT) architecture for encoding images into a compact latent space.
|
||||
|
||||
This class processes images by splitting them into patches, applying transformer blocks, and generating a final
|
||||
encoded representation through a neck module.
|
||||
|
||||
Attributes:
|
||||
img_size (int): Dimension of input images, assumed to be square.
|
||||
patch_embed (PatchEmbed): Module for patch embedding.
|
||||
pos_embed (nn.Parameter | None): Absolute positional embedding for patches.
|
||||
blocks (nn.ModuleList): List of transformer blocks for processing patch embeddings.
|
||||
neck (nn.Sequential): Neck module to further process the output.
|
||||
|
||||
Methods:
|
||||
forward: Process input through patch embedding, positional embedding, blocks, and neck.
|
||||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
|
||||
>>> input_image = torch.randn(1, 3, 224, 224)
|
||||
>>> output = encoder(input_image)
|
||||
>>> print(output.shape)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int = 1024,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
depth: int = 12,
|
||||
num_heads: int = 12,
|
||||
mlp_ratio: float = 4.0,
|
||||
out_chans: int = 256,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: type[nn.Module] = nn.GELU,
|
||||
use_abs_pos: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
global_attn_indexes: tuple[int, ...] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Initialize an ImageEncoderViT instance for encoding images using Vision Transformer architecture.
|
||||
|
||||
Args:
|
||||
img_size (int): Input image size, assumed to be square.
|
||||
patch_size (int): Size of image patches.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): Dimension of patch embeddings.
|
||||
depth (int): Number of transformer blocks.
|
||||
num_heads (int): Number of attention heads in each block.
|
||||
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
||||
out_chans (int): Number of output channels from the neck module.
|
||||
qkv_bias (bool): If True, adds learnable bias to query, key, value projections.
|
||||
norm_layer (Type[nn.Module]): Type of normalization layer to use.
|
||||
act_layer (Type[nn.Module]): Type of activation layer to use.
|
||||
use_abs_pos (bool): If True, uses absolute positional embeddings.
|
||||
use_rel_pos (bool): If True, adds relative positional embeddings to attention maps.
|
||||
rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero.
|
||||
window_size (int): Size of attention window for windowed attention blocks.
|
||||
global_attn_indexes (tuple[int, ...]): Indices of blocks that use global attention.
|
||||
|
||||
Examples:
|
||||
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
|
||||
>>> input_image = torch.randn(1, 3, 224, 224)
|
||||
>>> output = encoder(input_image)
|
||||
>>> print(output.shape)
|
||||
"""
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
kernel_size=(patch_size, patch_size),
|
||||
stride=(patch_size, patch_size),
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
|
||||
self.pos_embed: nn.Parameter | None = None
|
||||
if use_abs_pos:
|
||||
# Initialize absolute positional embedding with pretrain image size
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
|
||||
|
||||
self.blocks = nn.ModuleList()
|
||||
for i in range(depth):
|
||||
block = Block(
|
||||
dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
act_layer=act_layer,
|
||||
use_rel_pos=use_rel_pos,
|
||||
rel_pos_zero_init=rel_pos_zero_init,
|
||||
window_size=window_size if i not in global_attn_indexes else 0,
|
||||
input_size=(img_size // patch_size, img_size // patch_size),
|
||||
)
|
||||
self.blocks.append(block)
|
||||
|
||||
self.neck = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
embed_dim,
|
||||
out_chans,
|
||||
kernel_size=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
nn.Conv2d(
|
||||
out_chans,
|
||||
out_chans,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Process input through patch embedding, positional embedding, transformer blocks, and neck module."""
|
||||
x = self.patch_embed(x)
|
||||
if self.pos_embed is not None:
|
||||
pos_embed = (
|
||||
F.interpolate(self.pos_embed.permute(0, 3, 1, 2), scale_factor=self.img_size / 1024).permute(0, 2, 3, 1)
|
||||
if self.img_size != 1024
|
||||
else self.pos_embed
|
||||
)
|
||||
x = x + pos_embed
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
return self.neck(x.permute(0, 3, 1, 2))
|
||||
|
||||
|
||||
class PromptEncoder(nn.Module):
|
||||
"""
|
||||
Encode different types of prompts for input to SAM's mask decoder, producing sparse and dense embeddings.
|
||||
|
||||
Attributes:
|
||||
embed_dim (int): Dimension of the embeddings.
|
||||
input_image_size (tuple[int, int]): Size of the input image as (H, W).
|
||||
image_embedding_size (tuple[int, int]): Spatial size of the image embedding as (H, W).
|
||||
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
|
||||
num_point_embeddings (int): Number of point embeddings for different types of points.
|
||||
point_embeddings (nn.ModuleList): List of point embeddings.
|
||||
not_a_point_embed (nn.Embedding): Embedding for points that are not part of any label.
|
||||
mask_input_size (tuple[int, int]): Size of the input mask.
|
||||
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
|
||||
no_mask_embed (nn.Embedding): Embedding for cases where no mask is provided.
|
||||
|
||||
Methods:
|
||||
get_dense_pe: Return the positional encoding used to encode point prompts.
|
||||
forward: Embed different types of prompts, returning both sparse and dense embeddings.
|
||||
|
||||
Examples:
|
||||
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||||
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
|
||||
>>> boxes = torch.rand(1, 2, 2)
|
||||
>>> masks = torch.rand(1, 1, 256, 256)
|
||||
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
|
||||
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
|
||||
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
image_embedding_size: tuple[int, int],
|
||||
input_image_size: tuple[int, int],
|
||||
mask_in_chans: int,
|
||||
activation: type[nn.Module] = nn.GELU,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the PromptEncoder module for encoding various types of prompts.
|
||||
|
||||
Args:
|
||||
embed_dim (int): The dimension of the embeddings.
|
||||
image_embedding_size (tuple[int, int]): The spatial size of the image embedding as (H, W).
|
||||
input_image_size (tuple[int, int]): The padded size of the input image as (H, W).
|
||||
mask_in_chans (int): The number of hidden channels used for encoding input masks.
|
||||
activation (Type[nn.Module]): The activation function to use when encoding input masks.
|
||||
|
||||
Examples:
|
||||
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||||
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
|
||||
>>> boxes = torch.rand(1, 2, 2)
|
||||
>>> masks = torch.rand(1, 1, 256, 256)
|
||||
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
|
||||
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
|
||||
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
|
||||
"""
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.input_image_size = input_image_size
|
||||
self.image_embedding_size = image_embedding_size
|
||||
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||||
|
||||
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||||
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
|
||||
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||||
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
||||
self.mask_downscaling = nn.Sequential(
|
||||
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans // 4),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||||
)
|
||||
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
def get_dense_pe(self) -> torch.Tensor:
|
||||
"""
|
||||
Return the dense positional encoding used for encoding point prompts.
|
||||
|
||||
Generate a positional encoding for a dense set of points matching the shape of the image
|
||||
encoding. The encoding is used to provide spatial information to the model when processing point prompts.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Positional encoding tensor with shape (1, embed_dim, H, W), where H and W are the
|
||||
height and width of the image embedding size, respectively.
|
||||
|
||||
Examples:
|
||||
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||||
>>> dense_pe = prompt_encoder.get_dense_pe()
|
||||
>>> print(dense_pe.shape)
|
||||
torch.Size([1, 256, 64, 64])
|
||||
"""
|
||||
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||||
|
||||
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
|
||||
"""Embed point prompts by applying positional encoding and label-specific embeddings."""
|
||||
points = points + 0.5 # Shift to center of pixel
|
||||
if pad:
|
||||
padding_point = torch.zeros((points.shape[0], 1, 2), dtype=points.dtype, device=points.device)
|
||||
padding_label = -torch.ones((labels.shape[0], 1), dtype=labels.dtype, device=labels.device)
|
||||
points = torch.cat([points, padding_point], dim=1)
|
||||
labels = torch.cat([labels, padding_label], dim=1)
|
||||
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
||||
point_embedding[labels == -1] = 0.0
|
||||
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||||
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||||
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||||
point_embedding[labels == 2] += self.point_embeddings[2].weight
|
||||
point_embedding[labels == 3] += self.point_embeddings[3].weight
|
||||
return point_embedding
|
||||
|
||||
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||||
"""Embed box prompts by applying positional encoding and adding corner embeddings."""
|
||||
boxes = boxes + 0.5 # Shift to center of pixel
|
||||
coords = boxes.reshape(-1, 2, 2)
|
||||
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
||||
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||||
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||||
return corner_embedding
|
||||
|
||||
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||||
"""Embed mask inputs by downscaling and processing through convolutional layers."""
|
||||
return self.mask_downscaling(masks)
|
||||
|
||||
@staticmethod
|
||||
def _get_batch_size(
|
||||
points: tuple[torch.Tensor, torch.Tensor] | None,
|
||||
boxes: torch.Tensor | None,
|
||||
masks: torch.Tensor | None,
|
||||
) -> int:
|
||||
"""Get the batch size of the output given the batch size of the input prompts."""
|
||||
if points is not None:
|
||||
return points[0].shape[0]
|
||||
elif boxes is not None:
|
||||
return boxes.shape[0]
|
||||
elif masks is not None:
|
||||
return masks.shape[0]
|
||||
else:
|
||||
return 1
|
||||
|
||||
def forward(
|
||||
self,
|
||||
points: tuple[torch.Tensor, torch.Tensor] | None,
|
||||
boxes: torch.Tensor | None,
|
||||
masks: torch.Tensor | None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Embed different types of prompts, returning both sparse and dense embeddings.
|
||||
|
||||
Args:
|
||||
points (tuple[torch.Tensor, torch.Tensor] | None): Point coordinates and labels to embed. The first
|
||||
tensor contains coordinates with shape (B, N, 2), and the second tensor contains labels with
|
||||
shape (B, N).
|
||||
boxes (torch.Tensor | None): Boxes to embed with shape (B, M, 2, 2), where M is the number of boxes.
|
||||
masks (torch.Tensor | None): Masks to embed with shape (B, 1, H, W).
|
||||
|
||||
Returns:
|
||||
sparse_embeddings (torch.Tensor): Sparse embeddings for points and boxes with shape (B, N, embed_dim).
|
||||
dense_embeddings (torch.Tensor): Dense embeddings for masks of shape (B, embed_dim, embed_H, embed_W).
|
||||
|
||||
Examples:
|
||||
>>> encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
|
||||
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
|
||||
>>> boxes = torch.rand(1, 2, 2, 2)
|
||||
>>> masks = torch.rand(1, 1, 256, 256)
|
||||
>>> sparse_emb, dense_emb = encoder(points, boxes, masks)
|
||||
>>> print(sparse_emb.shape, dense_emb.shape)
|
||||
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
|
||||
"""
|
||||
bs = self._get_batch_size(points, boxes, masks)
|
||||
sparse_embeddings = torch.empty(
|
||||
(bs, 0, self.embed_dim),
|
||||
dtype=self.point_embeddings[0].weight.dtype,
|
||||
device=self.point_embeddings[0].weight.device,
|
||||
)
|
||||
if points is not None:
|
||||
coords, labels = points
|
||||
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||||
if boxes is not None:
|
||||
box_embeddings = self._embed_boxes(boxes)
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||||
|
||||
if masks is not None:
|
||||
dense_embeddings = self._embed_masks(masks)
|
||||
else:
|
||||
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
||||
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
||||
)
|
||||
|
||||
return sparse_embeddings, dense_embeddings
|
||||
|
||||
|
||||
class MemoryEncoder(nn.Module):
|
||||
"""
|
||||
Encode pixel features and masks into a memory representation for efficient image segmentation.
|
||||
|
||||
This class processes pixel-level features and masks, fusing them to generate encoded memory representations
|
||||
suitable for downstream tasks in image segmentation models like SAM (Segment Anything Model).
|
||||
|
||||
Attributes:
|
||||
mask_downsampler (MaskDownSampler): Module for downsampling input masks.
|
||||
pix_feat_proj (nn.Conv2d): Convolutional layer for projecting pixel features.
|
||||
fuser (Fuser): Module for fusing pixel features and masks.
|
||||
position_encoding (PositionEmbeddingSine): Module for adding positional encoding to features.
|
||||
out_proj (nn.Module): Output projection layer, either nn.Identity or nn.Conv2d.
|
||||
|
||||
Methods:
|
||||
forward: Process input pixel features and masks to generate encoded memory representations.
|
||||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> encoder = MemoryEncoder(out_dim=256, in_dim=256)
|
||||
>>> pix_feat = torch.randn(1, 256, 64, 64)
|
||||
>>> masks = torch.randn(1, 1, 64, 64)
|
||||
>>> encoded_feat, pos = encoder(pix_feat, masks)
|
||||
>>> print(encoded_feat.shape, pos.shape)
|
||||
torch.Size([1, 256, 64, 64]) torch.Size([1, 128, 64, 64])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
out_dim,
|
||||
in_dim=256, # in_dim of pix_feats
|
||||
):
|
||||
"""
|
||||
Initialize the MemoryEncoder for encoding pixel features and masks into memory representations.
|
||||
|
||||
This encoder processes pixel-level features and masks, fusing them to generate encoded memory representations
|
||||
suitable for downstream tasks in image segmentation models like SAM (Segment Anything Model).
|
||||
|
||||
Args:
|
||||
out_dim (int): Output dimension of the encoded features.
|
||||
in_dim (int): Input dimension of the pixel features.
|
||||
|
||||
Examples:
|
||||
>>> encoder = MemoryEncoder(out_dim=256, in_dim=256)
|
||||
>>> pix_feat = torch.randn(1, 256, 64, 64)
|
||||
>>> masks = torch.randn(1, 1, 64, 64)
|
||||
>>> encoded_feat, pos = encoder(pix_feat, masks)
|
||||
>>> print(encoded_feat.shape, pos.shape)
|
||||
torch.Size([1, 256, 64, 64]) torch.Size([1, 128, 64, 64])
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.mask_downsampler = MaskDownSampler(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
||||
self.fuser = Fuser(CXBlock(dim=256), num_layers=2)
|
||||
self.position_encoding = PositionEmbeddingSine(num_pos_feats=64)
|
||||
self.out_proj = nn.Identity()
|
||||
if out_dim != in_dim:
|
||||
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pix_feat: torch.Tensor,
|
||||
masks: torch.Tensor,
|
||||
skip_mask_sigmoid: bool = False,
|
||||
) -> dict:
|
||||
"""Process pixel features and masks to generate encoded memory representations for segmentation."""
|
||||
if not skip_mask_sigmoid:
|
||||
masks = F.sigmoid(masks)
|
||||
masks = self.mask_downsampler(masks)
|
||||
|
||||
# Fuse pix_feats and downsampled masks, in case the visual features are on CPU, cast them to CUDA
|
||||
pix_feat = pix_feat.to(masks.device)
|
||||
|
||||
x = self.pix_feat_proj(pix_feat)
|
||||
x = x + masks
|
||||
x = self.fuser(x)
|
||||
x = self.out_proj(x)
|
||||
|
||||
pos = self.position_encoding(x).to(x.dtype)
|
||||
|
||||
return {"vision_features": x, "vision_pos_enc": [pos]}
|
||||
|
||||
|
||||
class ImageEncoder(nn.Module):
|
||||
"""
|
||||
Encode images using a trunk-neck architecture, producing multiscale features and positional encodings.
|
||||
|
||||
This class combines a trunk network for feature extraction with a neck network for feature refinement
|
||||
and positional encoding generation. It can optionally discard the lowest resolution features.
|
||||
|
||||
Attributes:
|
||||
trunk (nn.Module): The trunk network for initial feature extraction.
|
||||
neck (nn.Module): The neck network for feature refinement and positional encoding generation.
|
||||
scalp (int): Number of lowest resolution feature levels to discard.
|
||||
|
||||
Methods:
|
||||
forward: Process the input image through the trunk and neck networks.
|
||||
|
||||
Examples:
|
||||
>>> trunk = SomeTrunkNetwork()
|
||||
>>> neck = SomeNeckNetwork()
|
||||
>>> encoder = ImageEncoder(trunk, neck, scalp=1)
|
||||
>>> image = torch.randn(1, 3, 224, 224)
|
||||
>>> output = encoder(image)
|
||||
>>> print(output.keys())
|
||||
dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
trunk: nn.Module,
|
||||
neck: nn.Module,
|
||||
scalp: int = 0,
|
||||
):
|
||||
"""
|
||||
Initialize the ImageEncoder with trunk and neck networks for feature extraction and refinement.
|
||||
|
||||
This encoder combines a trunk network for feature extraction with a neck network for feature refinement
|
||||
and positional encoding generation. It can optionally discard the lowest resolution features.
|
||||
|
||||
Args:
|
||||
trunk (nn.Module): The trunk network for initial feature extraction.
|
||||
neck (nn.Module): The neck network for feature refinement and positional encoding generation.
|
||||
scalp (int): Number of lowest resolution feature levels to discard.
|
||||
|
||||
Examples:
|
||||
>>> trunk = SomeTrunkNetwork()
|
||||
>>> neck = SomeNeckNetwork()
|
||||
>>> encoder = ImageEncoder(trunk, neck, scalp=1)
|
||||
>>> image = torch.randn(1, 3, 224, 224)
|
||||
>>> output = encoder(image)
|
||||
>>> print(output.keys())
|
||||
dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
|
||||
"""
|
||||
super().__init__()
|
||||
self.trunk = trunk
|
||||
self.neck = neck
|
||||
self.scalp = scalp
|
||||
assert self.trunk.channel_list == self.neck.backbone_channel_list, (
|
||||
f"Channel dims of trunk {self.trunk.channel_list} and neck {self.neck.backbone_channel_list} do not match."
|
||||
)
|
||||
|
||||
def forward(self, sample: torch.Tensor):
|
||||
"""Encode input through trunk and neck networks, returning multiscale features and positional encodings."""
|
||||
features, pos = self.neck(self.trunk(sample))
|
||||
if self.scalp > 0:
|
||||
# Discard the lowest resolution features
|
||||
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
||||
|
||||
src = features[-1]
|
||||
return {
|
||||
"vision_features": src,
|
||||
"vision_pos_enc": pos,
|
||||
"backbone_fpn": features,
|
||||
}
|
||||
|
||||
|
||||
class FpnNeck(nn.Module):
|
||||
"""
|
||||
A Feature Pyramid Network (FPN) neck variant for multiscale feature fusion in object detection models.
|
||||
|
||||
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
|
||||
similar to ViT positional embedding interpolation.
|
||||
|
||||
Attributes:
|
||||
position_encoding (PositionEmbeddingSine): Sinusoidal positional encoding module.
|
||||
convs (nn.ModuleList): List of convolutional layers for each backbone level.
|
||||
backbone_channel_list (list[int]): List of channel dimensions from the backbone.
|
||||
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
||||
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
|
||||
fpn_top_down_levels (list[int]): Levels to have top-down features in outputs.
|
||||
|
||||
Methods:
|
||||
forward: Perform forward pass through the FPN neck.
|
||||
|
||||
Examples:
|
||||
>>> backbone_channels = [64, 128, 256, 512]
|
||||
>>> fpn_neck = FpnNeck(256, backbone_channels)
|
||||
>>> inputs = [torch.rand(1, c, 32, 32) for c in backbone_channels]
|
||||
>>> outputs, positions = fpn_neck(inputs)
|
||||
>>> print(len(outputs), len(positions))
|
||||
4 4
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
backbone_channel_list: list[int],
|
||||
kernel_size: int = 1,
|
||||
stride: int = 1,
|
||||
padding: int = 0,
|
||||
fpn_interp_model: str = "bilinear",
|
||||
fuse_type: str = "sum",
|
||||
fpn_top_down_levels: list[int] | None = None,
|
||||
):
|
||||
"""
|
||||
Initialize a modified Feature Pyramid Network (FPN) neck.
|
||||
|
||||
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
|
||||
similar to ViT positional embedding interpolation.
|
||||
|
||||
Args:
|
||||
d_model (int): Dimension of the model.
|
||||
backbone_channel_list (list[int]): List of channel dimensions from the backbone.
|
||||
kernel_size (int): Kernel size for the convolutional layers.
|
||||
stride (int): Stride for the convolutional layers.
|
||||
padding (int): Padding for the convolutional layers.
|
||||
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
||||
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
|
||||
fpn_top_down_levels (Optional[list[int]]): Levels to have top-down features in outputs.
|
||||
|
||||
Examples:
|
||||
>>> backbone_channels = [64, 128, 256, 512]
|
||||
>>> fpn_neck = FpnNeck(256, backbone_channels)
|
||||
>>> print(fpn_neck)
|
||||
"""
|
||||
super().__init__()
|
||||
self.position_encoding = PositionEmbeddingSine(num_pos_feats=256)
|
||||
self.convs = nn.ModuleList()
|
||||
self.backbone_channel_list = backbone_channel_list
|
||||
for dim in backbone_channel_list:
|
||||
current = nn.Sequential()
|
||||
current.add_module(
|
||||
"conv",
|
||||
nn.Conv2d(
|
||||
in_channels=dim,
|
||||
out_channels=d_model,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
),
|
||||
)
|
||||
|
||||
self.convs.append(current)
|
||||
self.fpn_interp_model = fpn_interp_model
|
||||
assert fuse_type in {"sum", "avg"}
|
||||
self.fuse_type = fuse_type
|
||||
|
||||
# Levels to have top-down features in its outputs
|
||||
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
||||
# have top-down propagation, while outputs of level 0 and level 1 have only
|
||||
# lateral features from the same backbone level
|
||||
if fpn_top_down_levels is None:
|
||||
# Default is to have top-down features on all levels
|
||||
fpn_top_down_levels = range(len(self.convs))
|
||||
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
||||
|
||||
def forward(self, xs: list[torch.Tensor]):
|
||||
"""
|
||||
Perform forward pass through the Feature Pyramid Network (FPN) neck.
|
||||
|
||||
This method processes a list of input tensors from the backbone through the FPN, applying lateral connections
|
||||
and top-down feature fusion. It generates output feature maps and corresponding positional encodings.
|
||||
|
||||
Args:
|
||||
xs (list[torch.Tensor]): List of input tensors from the backbone, each with shape (B, C, H, W).
|
||||
|
||||
Returns:
|
||||
out (list[torch.Tensor]): List of output feature maps after FPN processing, each with shape
|
||||
(B, d_model, H, W).
|
||||
pos (list[torch.Tensor]): List of positional encodings corresponding to each output feature map.
|
||||
|
||||
Examples:
|
||||
>>> fpn_neck = FpnNeck(d_model=256, backbone_channel_list=[64, 128, 256, 512])
|
||||
>>> inputs = [torch.rand(1, c, 32, 32) for c in [64, 128, 256, 512]]
|
||||
>>> outputs, positions = fpn_neck(inputs)
|
||||
>>> print(len(outputs), len(positions))
|
||||
4 4
|
||||
"""
|
||||
out = [None] * len(self.convs)
|
||||
pos = [None] * len(self.convs)
|
||||
assert len(xs) == len(self.convs)
|
||||
# FPN forward pass
|
||||
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
||||
prev_features = None
|
||||
# Forward in top-down order (from low to high resolution)
|
||||
n = len(self.convs) - 1
|
||||
for i in range(n, -1, -1):
|
||||
x = xs[i]
|
||||
lateral_features = self.convs[n - i](x)
|
||||
if i in self.fpn_top_down_levels and prev_features is not None:
|
||||
top_down_features = F.interpolate(
|
||||
prev_features.to(dtype=x.dtype),
|
||||
scale_factor=2.0,
|
||||
mode=self.fpn_interp_model,
|
||||
align_corners=(None if self.fpn_interp_model == "nearest" else False),
|
||||
antialias=False,
|
||||
)
|
||||
prev_features = lateral_features + top_down_features
|
||||
if self.fuse_type == "avg":
|
||||
prev_features /= 2
|
||||
else:
|
||||
prev_features = lateral_features
|
||||
x_out = prev_features
|
||||
out[i] = x_out
|
||||
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
||||
|
||||
return out, pos
|
||||
|
||||
|
||||
class Hiera(nn.Module):
|
||||
"""
|
||||
Hierarchical vision transformer for efficient multiscale feature extraction in image processing tasks.
|
||||
|
||||
This class implements a Hiera model, which is a hierarchical vision transformer architecture designed for
|
||||
efficient multiscale feature extraction. It uses a series of transformer blocks organized into stages,
|
||||
with optional pooling and global attention mechanisms.
|
||||
|
||||
Attributes:
|
||||
window_spec (tuple[int, ...]): Window sizes for each stage.
|
||||
q_stride (tuple[int, int]): Downsampling stride between stages.
|
||||
stage_ends (list[int]): Indices of the last block in each stage.
|
||||
q_pool_blocks (list[int]): Indices of blocks where pooling is applied.
|
||||
return_interm_layers (bool): Whether to return intermediate layer outputs.
|
||||
patch_embed (PatchEmbed): Module for patch embedding.
|
||||
global_att_blocks (tuple[int, ...]): Indices of blocks with global attention.
|
||||
window_pos_embed_bkg_spatial_size (tuple[int, int]): Spatial size for window positional embedding background.
|
||||
pos_embed (nn.Parameter): Positional embedding for the background.
|
||||
pos_embed_window (nn.Parameter): Positional embedding for the window.
|
||||
blocks (nn.ModuleList): List of MultiScaleBlock modules.
|
||||
channel_list (list[int]): List of output channel dimensions for each stage.
|
||||
|
||||
Methods:
|
||||
_get_pos_embed: Generate positional embeddings by interpolating and combining window and background embeddings.
|
||||
forward: Perform the forward pass through the Hiera model.
|
||||
|
||||
Examples:
|
||||
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
|
||||
>>> input_tensor = torch.randn(1, 3, 224, 224)
|
||||
>>> output_features = model(input_tensor)
|
||||
>>> for feat in output_features:
|
||||
... print(feat.shape)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int = 96, # initial embed dim
|
||||
num_heads: int = 1, # initial number of heads
|
||||
drop_path_rate: float = 0.0, # stochastic depth
|
||||
q_pool: int = 3, # number of q_pool stages
|
||||
q_stride: tuple[int, int] = (2, 2), # downsample stride bet. stages
|
||||
stages: tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
||||
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
||||
head_mul: float = 2.0, # head_mul factor at stage shift
|
||||
window_pos_embed_bkg_spatial_size: tuple[int, int] = (14, 14),
|
||||
# window size per stage, when not using global att.
|
||||
window_spec: tuple[int, ...] = (
|
||||
8,
|
||||
4,
|
||||
14,
|
||||
7,
|
||||
),
|
||||
# global attn in these blocks
|
||||
global_att_blocks: tuple[int, ...] = (
|
||||
12,
|
||||
16,
|
||||
20,
|
||||
),
|
||||
return_interm_layers=True, # return feats from every stage
|
||||
):
|
||||
"""
|
||||
Initialize a Hiera model, a hierarchical vision transformer for efficient multiscale feature extraction.
|
||||
|
||||
Hiera is a hierarchical vision transformer architecture designed for efficient multiscale feature extraction
|
||||
in image processing tasks. It uses a series of transformer blocks organized into stages, with optional
|
||||
pooling and global attention mechanisms.
|
||||
|
||||
Args:
|
||||
embed_dim (int): Initial embedding dimension for the model.
|
||||
num_heads (int): Initial number of attention heads.
|
||||
drop_path_rate (float): Stochastic depth rate.
|
||||
q_pool (int): Number of query pooling stages.
|
||||
q_stride (tuple[int, int]): Downsampling stride between stages.
|
||||
stages (tuple[int, ...]): Number of blocks per stage.
|
||||
dim_mul (float): Dimension multiplier factor at stage transitions.
|
||||
head_mul (float): Head multiplier factor at stage transitions.
|
||||
window_pos_embed_bkg_spatial_size (tuple[int, int]): Spatial size for window positional embedding background.
|
||||
window_spec (tuple[int, ...]): Window sizes for each stage when not using global attention.
|
||||
global_att_blocks (tuple[int, ...]): Indices of blocks that use global attention.
|
||||
return_interm_layers (bool): Whether to return intermediate layer outputs.
|
||||
|
||||
Examples:
|
||||
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
|
||||
>>> input_tensor = torch.randn(1, 3, 224, 224)
|
||||
>>> output_features = model(input_tensor)
|
||||
>>> for feat in output_features:
|
||||
... print(feat.shape)
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert len(stages) == len(window_spec)
|
||||
self.window_spec = window_spec
|
||||
|
||||
depth = sum(stages)
|
||||
self.q_stride = q_stride
|
||||
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
||||
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
||||
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
||||
self.return_interm_layers = return_interm_layers
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
embed_dim=embed_dim,
|
||||
kernel_size=(7, 7),
|
||||
stride=(4, 4),
|
||||
padding=(3, 3),
|
||||
)
|
||||
# Which blocks have global attention?
|
||||
self.global_att_blocks = global_att_blocks
|
||||
|
||||
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
||||
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size))
|
||||
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
|
||||
cur_stage = 1
|
||||
self.blocks = nn.ModuleList()
|
||||
|
||||
for i in range(depth):
|
||||
dim_out = embed_dim
|
||||
# Lags by a block, so first block of next stage uses an initial window size
|
||||
# of previous stage and final window size of current stage
|
||||
window_size = self.window_spec[cur_stage - 1]
|
||||
|
||||
if self.global_att_blocks is not None:
|
||||
window_size = 0 if i in self.global_att_blocks else window_size
|
||||
|
||||
if i - 1 in self.stage_ends:
|
||||
dim_out = int(embed_dim * dim_mul)
|
||||
num_heads = int(num_heads * head_mul)
|
||||
cur_stage += 1
|
||||
|
||||
block = MultiScaleBlock(
|
||||
dim=embed_dim,
|
||||
dim_out=dim_out,
|
||||
num_heads=num_heads,
|
||||
drop_path=dpr[i],
|
||||
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
||||
window_size=window_size,
|
||||
)
|
||||
|
||||
embed_dim = dim_out
|
||||
self.blocks.append(block)
|
||||
|
||||
self.channel_list = (
|
||||
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
||||
if return_interm_layers
|
||||
else [self.blocks[-1].dim_out]
|
||||
)
|
||||
|
||||
def _get_pos_embed(self, hw: tuple[int, int]) -> torch.Tensor:
|
||||
"""Generate positional embeddings by interpolating and combining window and background embeddings."""
|
||||
h, w = hw
|
||||
window_embed = self.pos_embed_window
|
||||
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
||||
pos_embed = pos_embed + window_embed.tile([x // y for x, y in zip(pos_embed.shape, window_embed.shape)])
|
||||
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
||||
return pos_embed
|
||||
|
||||
def forward(self, x: torch.Tensor) -> list[torch.Tensor]:
|
||||
"""
|
||||
Perform forward pass through Hiera model, extracting multiscale features from input images.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor with shape (B, C, H, W) representing a batch of images.
|
||||
|
||||
Returns:
|
||||
(list[torch.Tensor]): List of feature maps at different scales, each with shape (B, C_i, H_i, W_i), where
|
||||
C_i is the channel dimension and H_i, W_i are the spatial dimensions at scale i. The list is ordered
|
||||
from highest resolution (fine features) to lowest resolution (coarse features) if return_interm_layers
|
||||
is True, otherwise contains only the final output.
|
||||
|
||||
Examples:
|
||||
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
|
||||
>>> input_tensor = torch.randn(1, 3, 224, 224)
|
||||
>>> output_features = model(input_tensor)
|
||||
>>> for feat in output_features:
|
||||
... print(feat.shape)
|
||||
"""
|
||||
x = self.patch_embed(x)
|
||||
# x: (B, H, W, C)
|
||||
|
||||
# Add positional embedding
|
||||
x = x + self._get_pos_embed(x.shape[1:3])
|
||||
|
||||
outputs = []
|
||||
for i, blk in enumerate(self.blocks):
|
||||
x = blk(x)
|
||||
if (i == self.stage_ends[-1]) or (i in self.stage_ends and self.return_interm_layers):
|
||||
feats = x.permute(0, 3, 1, 2)
|
||||
outputs.append(feats)
|
||||
|
||||
return outputs
|
||||
Reference in New Issue
Block a user