init commit
This commit is contained in:
513
ultralytics/models/sam/modules/decoders.py
Normal file
513
ultralytics/models/sam/modules/decoders.py
Normal file
@@ -0,0 +1,513 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ultralytics.nn.modules import MLP, LayerNorm2d
|
||||
|
||||
|
||||
class MaskDecoder(nn.Module):
|
||||
"""
|
||||
Decoder module for generating masks and their associated quality scores using a transformer architecture.
|
||||
|
||||
This class predicts masks given image and prompt embeddings, utilizing a transformer to process the inputs and
|
||||
generate mask predictions along with their quality scores.
|
||||
|
||||
Attributes:
|
||||
transformer_dim (int): Channel dimension for the transformer module.
|
||||
transformer (nn.Module): Transformer module used for mask prediction.
|
||||
num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
|
||||
iou_token (nn.Embedding): Embedding for the IoU token.
|
||||
num_mask_tokens (int): Number of mask tokens.
|
||||
mask_tokens (nn.Embedding): Embedding for the mask tokens.
|
||||
output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
|
||||
output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
|
||||
iou_prediction_head (nn.Module): MLP for predicting mask quality.
|
||||
|
||||
Methods:
|
||||
forward: Predict masks given image and prompt embeddings.
|
||||
predict_masks: Internal method for mask prediction.
|
||||
|
||||
Examples:
|
||||
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
|
||||
>>> masks, iou_pred = decoder(
|
||||
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, multimask_output=True
|
||||
... )
|
||||
>>> print(f"Predicted masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
transformer_dim: int,
|
||||
transformer: nn.Module,
|
||||
num_multimask_outputs: int = 3,
|
||||
activation: type[nn.Module] = nn.GELU,
|
||||
iou_head_depth: int = 3,
|
||||
iou_head_hidden_dim: int = 256,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the MaskDecoder module for generating masks and their associated quality scores.
|
||||
|
||||
Args:
|
||||
transformer_dim (int): Channel dimension for the transformer module.
|
||||
transformer (nn.Module): Transformer module used for mask prediction.
|
||||
num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
|
||||
activation (Type[nn.Module]): Type of activation to use when upscaling masks.
|
||||
iou_head_depth (int): Depth of the MLP used to predict mask quality.
|
||||
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
|
||||
|
||||
Examples:
|
||||
>>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)
|
||||
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer)
|
||||
>>> print(decoder)
|
||||
"""
|
||||
super().__init__()
|
||||
self.transformer_dim = transformer_dim
|
||||
self.transformer = transformer
|
||||
|
||||
self.num_multimask_outputs = num_multimask_outputs
|
||||
|
||||
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||
self.num_mask_tokens = num_multimask_outputs + 1
|
||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||
|
||||
self.output_upscaling = nn.Sequential(
|
||||
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(transformer_dim // 4),
|
||||
activation(),
|
||||
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||
activation(),
|
||||
)
|
||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
|
||||
)
|
||||
|
||||
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
multimask_output: bool,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks given image and prompt embeddings.
|
||||
|
||||
Args:
|
||||
image_embeddings (torch.Tensor): Embeddings from the image encoder.
|
||||
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings.
|
||||
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes.
|
||||
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs.
|
||||
multimask_output (bool): Whether to return multiple masks or a single mask.
|
||||
|
||||
Returns:
|
||||
masks (torch.Tensor): Batched predicted masks.
|
||||
iou_pred (torch.Tensor): Batched predictions of mask quality.
|
||||
|
||||
Examples:
|
||||
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
|
||||
>>> image_emb = torch.rand(1, 256, 64, 64)
|
||||
>>> image_pe = torch.rand(1, 256, 64, 64)
|
||||
>>> sparse_emb = torch.rand(1, 2, 256)
|
||||
>>> dense_emb = torch.rand(1, 256, 64, 64)
|
||||
>>> masks, iou_pred = decoder(image_emb, image_pe, sparse_emb, dense_emb, multimask_output=True)
|
||||
>>> print(f"Masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
|
||||
"""
|
||||
masks, iou_pred = self.predict_masks(
|
||||
image_embeddings=image_embeddings,
|
||||
image_pe=image_pe,
|
||||
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||
)
|
||||
|
||||
# Select the correct mask or masks for output
|
||||
mask_slice = slice(1, None) if multimask_output else slice(0, 1)
|
||||
masks = masks[:, mask_slice, :, :]
|
||||
iou_pred = iou_pred[:, mask_slice]
|
||||
|
||||
return masks, iou_pred
|
||||
|
||||
def predict_masks(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Predict masks and quality scores using image and prompt embeddings via transformer architecture."""
|
||||
# Concatenate output tokens
|
||||
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
|
||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||
|
||||
# Expand per-image data in batch direction to be per-mask
|
||||
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||
src = src + dense_prompt_embeddings
|
||||
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||
b, c, h, w = src.shape
|
||||
|
||||
# Run the transformer
|
||||
hs, src = self.transformer(src, pos_src, tokens)
|
||||
iou_token_out = hs[:, 0, :]
|
||||
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
||||
|
||||
# Upscale mask embeddings and predict masks using the mask tokens
|
||||
src = src.transpose(1, 2).view(b, c, h, w)
|
||||
upscaled_embedding = self.output_upscaling(src)
|
||||
hyper_in_list: list[torch.Tensor] = [
|
||||
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
|
||||
]
|
||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||
b, c, h, w = upscaled_embedding.shape
|
||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||
|
||||
# Generate mask quality predictions
|
||||
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||
|
||||
return masks, iou_pred
|
||||
|
||||
|
||||
class SAM2MaskDecoder(nn.Module):
|
||||
"""
|
||||
Transformer-based decoder for predicting instance segmentation masks from image and prompt embeddings.
|
||||
|
||||
This class extends the functionality of the MaskDecoder, incorporating additional features such as
|
||||
high-resolution feature processing, dynamic multimask output, and object score prediction.
|
||||
|
||||
Attributes:
|
||||
transformer_dim (int): Channel dimension of the transformer.
|
||||
transformer (nn.Module): Transformer used to predict masks.
|
||||
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
|
||||
iou_token (nn.Embedding): Embedding for IOU token.
|
||||
num_mask_tokens (int): Total number of mask tokens.
|
||||
mask_tokens (nn.Embedding): Embedding for mask tokens.
|
||||
pred_obj_scores (bool): Whether to predict object scores.
|
||||
obj_score_token (nn.Embedding): Embedding for object score token.
|
||||
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
|
||||
output_upscaling (nn.Sequential): Upscaling layers for output.
|
||||
use_high_res_features (bool): Whether to use high-resolution features.
|
||||
conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0).
|
||||
conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1).
|
||||
output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks.
|
||||
iou_prediction_head (MLP): MLP for IOU prediction.
|
||||
pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction.
|
||||
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
|
||||
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
|
||||
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
|
||||
|
||||
Methods:
|
||||
forward: Predict masks given image and prompt embeddings.
|
||||
predict_masks: Predict instance segmentation masks from image and prompt embeddings.
|
||||
_get_stability_scores: Compute mask stability scores based on IoU between thresholds.
|
||||
_dynamic_multimask_via_stability: Dynamically select the most stable mask output.
|
||||
|
||||
Examples:
|
||||
>>> image_embeddings = torch.rand(1, 256, 64, 64)
|
||||
>>> image_pe = torch.rand(1, 256, 64, 64)
|
||||
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
|
||||
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
|
||||
>>> decoder = SAM2MaskDecoder(256, transformer)
|
||||
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
|
||||
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
|
||||
... )
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
transformer_dim: int,
|
||||
transformer: nn.Module,
|
||||
num_multimask_outputs: int = 3,
|
||||
activation: type[nn.Module] = nn.GELU,
|
||||
iou_head_depth: int = 3,
|
||||
iou_head_hidden_dim: int = 256,
|
||||
use_high_res_features: bool = False,
|
||||
iou_prediction_use_sigmoid=False,
|
||||
dynamic_multimask_via_stability=False,
|
||||
dynamic_multimask_stability_delta=0.05,
|
||||
dynamic_multimask_stability_thresh=0.98,
|
||||
pred_obj_scores: bool = False,
|
||||
pred_obj_scores_mlp: bool = False,
|
||||
use_multimask_token_for_obj_ptr: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the SAM2MaskDecoder module for predicting instance segmentation masks.
|
||||
|
||||
This decoder extends the functionality of MaskDecoder, incorporating additional features such as
|
||||
high-resolution feature processing, dynamic multimask output, and object score prediction.
|
||||
|
||||
Args:
|
||||
transformer_dim (int): Channel dimension of the transformer.
|
||||
transformer (nn.Module): Transformer used to predict masks.
|
||||
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
|
||||
activation (Type[nn.Module]): Type of activation to use when upscaling masks.
|
||||
iou_head_depth (int): Depth of the MLP used to predict mask quality.
|
||||
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
|
||||
use_high_res_features (bool): Whether to use high-resolution features.
|
||||
iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction.
|
||||
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
|
||||
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
|
||||
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
|
||||
pred_obj_scores (bool): Whether to predict object scores.
|
||||
pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.
|
||||
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
|
||||
|
||||
Examples:
|
||||
>>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)
|
||||
>>> decoder = SAM2MaskDecoder(transformer_dim=256, transformer=transformer)
|
||||
>>> print(decoder)
|
||||
"""
|
||||
super().__init__()
|
||||
self.transformer_dim = transformer_dim
|
||||
self.transformer = transformer
|
||||
|
||||
self.num_multimask_outputs = num_multimask_outputs
|
||||
|
||||
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||
self.num_mask_tokens = num_multimask_outputs + 1
|
||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||
|
||||
self.pred_obj_scores = pred_obj_scores
|
||||
if self.pred_obj_scores:
|
||||
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
||||
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
||||
|
||||
self.output_upscaling = nn.Sequential(
|
||||
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(transformer_dim // 4),
|
||||
activation(),
|
||||
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||
activation(),
|
||||
)
|
||||
self.use_high_res_features = use_high_res_features
|
||||
if use_high_res_features:
|
||||
self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
|
||||
self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
|
||||
|
||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
|
||||
)
|
||||
|
||||
self.iou_prediction_head = MLP(
|
||||
transformer_dim,
|
||||
iou_head_hidden_dim,
|
||||
self.num_mask_tokens,
|
||||
iou_head_depth,
|
||||
sigmoid=iou_prediction_use_sigmoid,
|
||||
)
|
||||
if self.pred_obj_scores:
|
||||
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
||||
if pred_obj_scores_mlp:
|
||||
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
||||
|
||||
# When outputting a single mask, optionally we can dynamically fall back to the best
|
||||
# multimask output token if the single mask output token gives low stability scores.
|
||||
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
||||
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
||||
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
multimask_output: bool,
|
||||
repeat_image: bool,
|
||||
high_res_features: list[torch.Tensor] | None = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks given image and prompt embeddings.
|
||||
|
||||
Args:
|
||||
image_embeddings (torch.Tensor): Embeddings from the image encoder with shape (B, C, H, W).
|
||||
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings (B, C, H, W).
|
||||
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes with shape (B, N, C).
|
||||
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs with shape (B, C, H, W).
|
||||
multimask_output (bool): Whether to return multiple masks or a single mask.
|
||||
repeat_image (bool): Flag to repeat the image embeddings.
|
||||
high_res_features (list[torch.Tensor] | None, optional): Optional high-resolution features.
|
||||
|
||||
Returns:
|
||||
masks (torch.Tensor): Batched predicted masks with shape (B, N, H, W).
|
||||
iou_pred (torch.Tensor): Batched predictions of mask quality with shape (B, N).
|
||||
sam_tokens_out (torch.Tensor): Batched SAM token for mask output with shape (B, N, C).
|
||||
object_score_logits (torch.Tensor): Batched object score logits with shape (B, 1).
|
||||
|
||||
Examples:
|
||||
>>> image_embeddings = torch.rand(1, 256, 64, 64)
|
||||
>>> image_pe = torch.rand(1, 256, 64, 64)
|
||||
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
|
||||
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
|
||||
>>> decoder = SAM2MaskDecoder(256, transformer)
|
||||
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
|
||||
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
|
||||
... )
|
||||
"""
|
||||
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
||||
image_embeddings=image_embeddings,
|
||||
image_pe=image_pe,
|
||||
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||
repeat_image=repeat_image,
|
||||
high_res_features=high_res_features,
|
||||
)
|
||||
|
||||
# Select the correct mask or masks for output
|
||||
if multimask_output:
|
||||
masks = masks[:, 1:, :, :]
|
||||
iou_pred = iou_pred[:, 1:]
|
||||
elif self.dynamic_multimask_via_stability and not self.training:
|
||||
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
||||
else:
|
||||
masks = masks[:, 0:1, :, :]
|
||||
iou_pred = iou_pred[:, 0:1]
|
||||
|
||||
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
||||
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
||||
else:
|
||||
# Take the mask output token. Here we *always* use the token for single mask output.
|
||||
# At test time, even if we track after 1-click (and using multimask_output=True),
|
||||
# we still take the single mask token here. The rationale is that we always track
|
||||
# after multiple clicks during training, so the past tokens seen during training
|
||||
# are always the single mask token (and we'll let it be the object-memory token).
|
||||
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
||||
|
||||
return masks, iou_pred, sam_tokens_out, object_score_logits
|
||||
|
||||
def predict_masks(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
repeat_image: bool,
|
||||
high_res_features: list[torch.Tensor] | None = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Predict instance segmentation masks from image and prompt embeddings using a transformer."""
|
||||
# Concatenate output tokens
|
||||
s = 0
|
||||
if self.pred_obj_scores:
|
||||
output_tokens = torch.cat(
|
||||
[
|
||||
self.obj_score_token.weight,
|
||||
self.iou_token.weight,
|
||||
self.mask_tokens.weight,
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
s = 1
|
||||
else:
|
||||
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
|
||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||
|
||||
# Expand per-image data in batch direction to be per-mask
|
||||
if repeat_image:
|
||||
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||
else:
|
||||
assert image_embeddings.shape[0] == tokens.shape[0]
|
||||
src = image_embeddings
|
||||
src = src + dense_prompt_embeddings
|
||||
assert image_pe.shape[0] == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
||||
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||
b, c, h, w = src.shape
|
||||
|
||||
# Run the transformer
|
||||
hs, src = self.transformer(src, pos_src, tokens)
|
||||
iou_token_out = hs[:, s, :]
|
||||
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
||||
|
||||
# Upscale mask embeddings and predict masks using the mask tokens
|
||||
src = src.transpose(1, 2).view(b, c, h, w)
|
||||
if not self.use_high_res_features or high_res_features is None:
|
||||
upscaled_embedding = self.output_upscaling(src)
|
||||
else:
|
||||
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
||||
feat_s0, feat_s1 = high_res_features
|
||||
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
||||
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
||||
|
||||
hyper_in_list: list[torch.Tensor] = [
|
||||
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
|
||||
]
|
||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||
b, c, h, w = upscaled_embedding.shape
|
||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||
|
||||
# Generate mask quality predictions
|
||||
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||
if self.pred_obj_scores:
|
||||
assert s == 1
|
||||
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
||||
else:
|
||||
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
||||
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
||||
|
||||
return masks, iou_pred, mask_tokens_out, object_score_logits
|
||||
|
||||
def _get_stability_scores(self, mask_logits):
|
||||
"""Compute mask stability scores based on IoU between upper and lower thresholds."""
|
||||
mask_logits = mask_logits.flatten(-2)
|
||||
stability_delta = self.dynamic_multimask_stability_delta
|
||||
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
||||
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
||||
return torch.where(area_u > 0, area_i / area_u, 1.0)
|
||||
|
||||
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
||||
"""
|
||||
Dynamically select the most stable mask output based on stability scores and IoU predictions.
|
||||
|
||||
This method is used when outputting a single mask. If the stability score from the current single-mask
|
||||
output (based on output token 0) falls below a threshold, it instead selects from multi-mask outputs
|
||||
(based on output tokens 1-3) the mask with the highest predicted IoU score. This ensures a valid mask
|
||||
for both clicking and tracking scenarios.
|
||||
|
||||
Args:
|
||||
all_mask_logits (torch.Tensor): Logits for all predicted masks, shape (B, N, H, W) where B is
|
||||
batch size, N is number of masks (typically 4), and H, W are mask dimensions.
|
||||
all_iou_scores (torch.Tensor): Predicted IoU scores for all masks, shape (B, N).
|
||||
|
||||
Returns:
|
||||
mask_logits_out (torch.Tensor): Selected mask logits, shape (B, 1, H, W).
|
||||
iou_scores_out (torch.Tensor): Selected IoU scores, shape (B, 1).
|
||||
|
||||
Examples:
|
||||
>>> decoder = SAM2MaskDecoder(...)
|
||||
>>> all_mask_logits = torch.rand(2, 4, 256, 256) # 2 images, 4 masks each
|
||||
>>> all_iou_scores = torch.rand(2, 4)
|
||||
>>> mask_logits, iou_scores = decoder._dynamic_multimask_via_stability(all_mask_logits, all_iou_scores)
|
||||
>>> print(mask_logits.shape, iou_scores.shape)
|
||||
torch.Size([2, 1, 256, 256]) torch.Size([2, 1])
|
||||
"""
|
||||
# The best mask from multimask output tokens (1~3)
|
||||
multimask_logits = all_mask_logits[:, 1:, :, :]
|
||||
multimask_iou_scores = all_iou_scores[:, 1:]
|
||||
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
||||
batch_inds = torch.arange(multimask_iou_scores.shape[0], device=all_iou_scores.device)
|
||||
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
||||
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
||||
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
||||
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
||||
|
||||
# The mask from singlemask output token 0 and its stability score
|
||||
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
||||
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
||||
stability_scores = self._get_stability_scores(singlemask_logits)
|
||||
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
||||
|
||||
# Dynamically fall back to best multimask output upon low stability scores.
|
||||
mask_logits_out = torch.where(
|
||||
is_stable[..., None, None].expand_as(singlemask_logits),
|
||||
singlemask_logits,
|
||||
best_multimask_logits,
|
||||
)
|
||||
iou_scores_out = torch.where(
|
||||
is_stable.expand_as(singlemask_iou_scores),
|
||||
singlemask_iou_scores,
|
||||
best_multimask_iou_scores,
|
||||
)
|
||||
return mask_logits_out, iou_scores_out
|
||||
Reference in New Issue
Block a user