init commit
This commit is contained in:
358
ultralytics/models/sam/build.py
Normal file
358
ultralytics/models/sam/build.py
Normal file
@@ -0,0 +1,358 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.utils.downloads import attempt_download_asset
|
||||
|
||||
from .modules.decoders import MaskDecoder
|
||||
from .modules.encoders import FpnNeck, Hiera, ImageEncoder, ImageEncoderViT, MemoryEncoder, PromptEncoder
|
||||
from .modules.memory_attention import MemoryAttention, MemoryAttentionLayer
|
||||
from .modules.sam import SAM2Model, SAMModel
|
||||
from .modules.tiny_encoder import TinyViT
|
||||
from .modules.transformer import TwoWayTransformer
|
||||
|
||||
|
||||
def build_sam_vit_h(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) h-size model with specified encoder parameters."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=1280,
|
||||
encoder_depth=32,
|
||||
encoder_num_heads=16,
|
||||
encoder_global_attn_indexes=[7, 15, 23, 31],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam_vit_l(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) l-size model with specified encoder parameters."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=1024,
|
||||
encoder_depth=24,
|
||||
encoder_num_heads=16,
|
||||
encoder_global_attn_indexes=[5, 11, 17, 23],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam_vit_b(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) b-size model with specified encoder parameters."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=768,
|
||||
encoder_depth=12,
|
||||
encoder_num_heads=12,
|
||||
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_mobile_sam(checkpoint=None):
|
||||
"""Build and return a Mobile Segment Anything Model (Mobile-SAM) for efficient image segmentation."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=[64, 128, 160, 320],
|
||||
encoder_depth=[2, 2, 6, 2],
|
||||
encoder_num_heads=[2, 4, 5, 10],
|
||||
encoder_global_attn_indexes=None,
|
||||
mobile_sam=True,
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam2_t(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model 2 (SAM2) tiny-size model with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=96,
|
||||
encoder_stages=[1, 2, 7, 2],
|
||||
encoder_num_heads=1,
|
||||
encoder_global_att_blocks=[5, 7, 9],
|
||||
encoder_window_spec=[8, 4, 14, 7],
|
||||
encoder_backbone_channel_list=[768, 384, 192, 96],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam2_s(checkpoint=None):
|
||||
"""Build and return a small-size Segment Anything Model 2 (SAM2) with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=96,
|
||||
encoder_stages=[1, 2, 11, 2],
|
||||
encoder_num_heads=1,
|
||||
encoder_global_att_blocks=[7, 10, 13],
|
||||
encoder_window_spec=[8, 4, 14, 7],
|
||||
encoder_backbone_channel_list=[768, 384, 192, 96],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam2_b(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model 2 (SAM2) base-size model with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=112,
|
||||
encoder_stages=[2, 3, 16, 3],
|
||||
encoder_num_heads=2,
|
||||
encoder_global_att_blocks=[12, 16, 20],
|
||||
encoder_window_spec=[8, 4, 14, 7],
|
||||
encoder_window_spatial_size=[14, 14],
|
||||
encoder_backbone_channel_list=[896, 448, 224, 112],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam2_l(checkpoint=None):
|
||||
"""Build and return a large-size Segment Anything Model 2 (SAM2) with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=144,
|
||||
encoder_stages=[2, 6, 36, 4],
|
||||
encoder_num_heads=2,
|
||||
encoder_global_att_blocks=[23, 33, 43],
|
||||
encoder_window_spec=[8, 4, 16, 8],
|
||||
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def _build_sam(
|
||||
encoder_embed_dim,
|
||||
encoder_depth,
|
||||
encoder_num_heads,
|
||||
encoder_global_attn_indexes,
|
||||
checkpoint=None,
|
||||
mobile_sam=False,
|
||||
):
|
||||
"""
|
||||
Build a Segment Anything Model (SAM) with specified encoder parameters.
|
||||
|
||||
Args:
|
||||
encoder_embed_dim (int | list[int]): Embedding dimension for the encoder.
|
||||
encoder_depth (int | list[int]): Depth of the encoder.
|
||||
encoder_num_heads (int | list[int]): Number of attention heads in the encoder.
|
||||
encoder_global_attn_indexes (list[int] | None): Indexes for global attention in the encoder.
|
||||
checkpoint (str | None, optional): Path to the model checkpoint file.
|
||||
mobile_sam (bool, optional): Whether to build a Mobile-SAM model.
|
||||
|
||||
Returns:
|
||||
(SAMModel): A Segment Anything Model instance with the specified architecture.
|
||||
|
||||
Examples:
|
||||
>>> sam = _build_sam(768, 12, 12, [2, 5, 8, 11])
|
||||
>>> sam = _build_sam([64, 128, 160, 320], [2, 2, 6, 2], [2, 4, 5, 10], None, mobile_sam=True)
|
||||
"""
|
||||
prompt_embed_dim = 256
|
||||
image_size = 1024
|
||||
vit_patch_size = 16
|
||||
image_embedding_size = image_size // vit_patch_size
|
||||
image_encoder = (
|
||||
TinyViT(
|
||||
img_size=1024,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
embed_dims=encoder_embed_dim,
|
||||
depths=encoder_depth,
|
||||
num_heads=encoder_num_heads,
|
||||
window_sizes=[7, 7, 14, 7],
|
||||
mlp_ratio=4.0,
|
||||
drop_rate=0.0,
|
||||
drop_path_rate=0.0,
|
||||
use_checkpoint=False,
|
||||
mbconv_expand_ratio=4.0,
|
||||
local_conv_size=3,
|
||||
layer_lr_decay=0.8,
|
||||
)
|
||||
if mobile_sam
|
||||
else ImageEncoderViT(
|
||||
depth=encoder_depth,
|
||||
embed_dim=encoder_embed_dim,
|
||||
img_size=image_size,
|
||||
mlp_ratio=4,
|
||||
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||
num_heads=encoder_num_heads,
|
||||
patch_size=vit_patch_size,
|
||||
qkv_bias=True,
|
||||
use_rel_pos=True,
|
||||
global_attn_indexes=encoder_global_attn_indexes,
|
||||
window_size=14,
|
||||
out_chans=prompt_embed_dim,
|
||||
)
|
||||
)
|
||||
sam = SAMModel(
|
||||
image_encoder=image_encoder,
|
||||
prompt_encoder=PromptEncoder(
|
||||
embed_dim=prompt_embed_dim,
|
||||
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||||
input_image_size=(image_size, image_size),
|
||||
mask_in_chans=16,
|
||||
),
|
||||
mask_decoder=MaskDecoder(
|
||||
num_multimask_outputs=3,
|
||||
transformer=TwoWayTransformer(
|
||||
depth=2,
|
||||
embedding_dim=prompt_embed_dim,
|
||||
mlp_dim=2048,
|
||||
num_heads=8,
|
||||
),
|
||||
transformer_dim=prompt_embed_dim,
|
||||
iou_head_depth=3,
|
||||
iou_head_hidden_dim=256,
|
||||
),
|
||||
pixel_mean=[123.675, 116.28, 103.53],
|
||||
pixel_std=[58.395, 57.12, 57.375],
|
||||
)
|
||||
if checkpoint is not None:
|
||||
checkpoint = attempt_download_asset(checkpoint)
|
||||
with open(checkpoint, "rb") as f:
|
||||
state_dict = torch.load(f)
|
||||
sam.load_state_dict(state_dict)
|
||||
sam.eval()
|
||||
return sam
|
||||
|
||||
|
||||
def _build_sam2(
|
||||
encoder_embed_dim=1280,
|
||||
encoder_stages=[2, 6, 36, 4],
|
||||
encoder_num_heads=2,
|
||||
encoder_global_att_blocks=[7, 15, 23, 31],
|
||||
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
||||
encoder_window_spatial_size=[7, 7],
|
||||
encoder_window_spec=[8, 4, 16, 8],
|
||||
checkpoint=None,
|
||||
):
|
||||
"""
|
||||
Build and return a Segment Anything Model 2 (SAM2) with specified architecture parameters.
|
||||
|
||||
Args:
|
||||
encoder_embed_dim (int, optional): Embedding dimension for the encoder.
|
||||
encoder_stages (list[int], optional): Number of blocks in each stage of the encoder.
|
||||
encoder_num_heads (int, optional): Number of attention heads in the encoder.
|
||||
encoder_global_att_blocks (list[int], optional): Indices of global attention blocks in the encoder.
|
||||
encoder_backbone_channel_list (list[int], optional): Channel dimensions for each level of the encoder backbone.
|
||||
encoder_window_spatial_size (list[int], optional): Spatial size of the window for position embeddings.
|
||||
encoder_window_spec (list[int], optional): Window specifications for each stage of the encoder.
|
||||
checkpoint (str | None, optional): Path to the checkpoint file for loading pre-trained weights.
|
||||
|
||||
Returns:
|
||||
(SAM2Model): A configured and initialized SAM2 model.
|
||||
|
||||
Examples:
|
||||
>>> sam2_model = _build_sam2(encoder_embed_dim=96, encoder_stages=[1, 2, 7, 2])
|
||||
>>> sam2_model.eval()
|
||||
"""
|
||||
image_encoder = ImageEncoder(
|
||||
trunk=Hiera(
|
||||
embed_dim=encoder_embed_dim,
|
||||
num_heads=encoder_num_heads,
|
||||
stages=encoder_stages,
|
||||
global_att_blocks=encoder_global_att_blocks,
|
||||
window_pos_embed_bkg_spatial_size=encoder_window_spatial_size,
|
||||
window_spec=encoder_window_spec,
|
||||
),
|
||||
neck=FpnNeck(
|
||||
d_model=256,
|
||||
backbone_channel_list=encoder_backbone_channel_list,
|
||||
fpn_top_down_levels=[2, 3],
|
||||
fpn_interp_model="nearest",
|
||||
),
|
||||
scalp=1,
|
||||
)
|
||||
memory_attention = MemoryAttention(d_model=256, pos_enc_at_input=True, num_layers=4, layer=MemoryAttentionLayer())
|
||||
memory_encoder = MemoryEncoder(out_dim=64)
|
||||
|
||||
is_sam2_1 = checkpoint is not None and "sam2.1" in checkpoint
|
||||
sam2 = SAM2Model(
|
||||
image_encoder=image_encoder,
|
||||
memory_attention=memory_attention,
|
||||
memory_encoder=memory_encoder,
|
||||
num_maskmem=7,
|
||||
image_size=1024,
|
||||
sigmoid_scale_for_mem_enc=20.0,
|
||||
sigmoid_bias_for_mem_enc=-10.0,
|
||||
use_mask_input_as_output_without_sam=True,
|
||||
directly_add_no_mem_embed=True,
|
||||
use_high_res_features_in_sam=True,
|
||||
multimask_output_in_sam=True,
|
||||
iou_prediction_use_sigmoid=True,
|
||||
use_obj_ptrs_in_encoder=True,
|
||||
add_tpos_enc_to_obj_ptrs=True,
|
||||
only_obj_ptrs_in_the_past_for_eval=True,
|
||||
pred_obj_scores=True,
|
||||
pred_obj_scores_mlp=True,
|
||||
fixed_no_obj_ptr=True,
|
||||
multimask_output_for_tracking=True,
|
||||
use_multimask_token_for_obj_ptr=True,
|
||||
multimask_min_pt_num=0,
|
||||
multimask_max_pt_num=1,
|
||||
use_mlp_for_obj_ptr_proj=True,
|
||||
compile_image_encoder=False,
|
||||
no_obj_embed_spatial=is_sam2_1,
|
||||
proj_tpos_enc_in_obj_ptrs=is_sam2_1,
|
||||
use_signed_tpos_enc_to_obj_ptrs=is_sam2_1,
|
||||
sam_mask_decoder_extra_args=dict(
|
||||
dynamic_multimask_via_stability=True,
|
||||
dynamic_multimask_stability_delta=0.05,
|
||||
dynamic_multimask_stability_thresh=0.98,
|
||||
),
|
||||
)
|
||||
|
||||
if checkpoint is not None:
|
||||
checkpoint = attempt_download_asset(checkpoint)
|
||||
with open(checkpoint, "rb") as f:
|
||||
state_dict = torch.load(f)["model"]
|
||||
sam2.load_state_dict(state_dict)
|
||||
sam2.eval()
|
||||
return sam2
|
||||
|
||||
|
||||
sam_model_map = {
|
||||
"sam_h.pt": build_sam_vit_h,
|
||||
"sam_l.pt": build_sam_vit_l,
|
||||
"sam_b.pt": build_sam_vit_b,
|
||||
"mobile_sam.pt": build_mobile_sam,
|
||||
"sam2_t.pt": build_sam2_t,
|
||||
"sam2_s.pt": build_sam2_s,
|
||||
"sam2_b.pt": build_sam2_b,
|
||||
"sam2_l.pt": build_sam2_l,
|
||||
"sam2.1_t.pt": build_sam2_t,
|
||||
"sam2.1_s.pt": build_sam2_s,
|
||||
"sam2.1_b.pt": build_sam2_b,
|
||||
"sam2.1_l.pt": build_sam2_l,
|
||||
}
|
||||
|
||||
|
||||
def build_sam(ckpt="sam_b.pt"):
|
||||
"""
|
||||
Build and return a Segment Anything Model (SAM) based on the provided checkpoint.
|
||||
|
||||
Args:
|
||||
ckpt (str | Path, optional): Path to the checkpoint file or name of a pre-defined SAM model.
|
||||
|
||||
Returns:
|
||||
(SAMModel | SAM2Model): A configured and initialized SAM or SAM2 model instance.
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If the provided checkpoint is not a supported SAM model.
|
||||
|
||||
Examples:
|
||||
>>> sam_model = build_sam("sam_b.pt")
|
||||
>>> sam_model = build_sam("path/to/custom_checkpoint.pt")
|
||||
|
||||
Notes:
|
||||
Supported pre-defined models include:
|
||||
- SAM: 'sam_h.pt', 'sam_l.pt', 'sam_b.pt', 'mobile_sam.pt'
|
||||
- SAM2: 'sam2_t.pt', 'sam2_s.pt', 'sam2_b.pt', 'sam2_l.pt'
|
||||
"""
|
||||
model_builder = None
|
||||
ckpt = str(ckpt) # to allow Path ckpt types
|
||||
for k in sam_model_map.keys():
|
||||
if ckpt.endswith(k):
|
||||
model_builder = sam_model_map.get(k)
|
||||
|
||||
if not model_builder:
|
||||
raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}")
|
||||
|
||||
return model_builder(ckpt)
|
||||
Reference in New Issue
Block a user