init commit

This commit is contained in:
2025-11-08 19:15:39 +01:00
parent ecffcb08e8
commit c7adacf53b
470 changed files with 73751 additions and 0 deletions

View File

@@ -0,0 +1,7 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from .model import RTDETR
from .predict import RTDETRPredictor
from .val import RTDETRValidator
__all__ = "RTDETRPredictor", "RTDETRValidator", "RTDETR"

View File

@@ -0,0 +1,66 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Interface for Baidu's RT-DETR, a Vision Transformer-based real-time object detector.
RT-DETR offers real-time performance and high accuracy, excelling in accelerated backends like CUDA with TensorRT.
It features an efficient hybrid encoder and IoU-aware query selection for enhanced detection accuracy.
References:
https://arxiv.org/pdf/2304.08069.pdf
"""
from ultralytics.engine.model import Model
from ultralytics.nn.tasks import RTDETRDetectionModel
from ultralytics.utils.torch_utils import TORCH_1_11
from .predict import RTDETRPredictor
from .train import RTDETRTrainer
from .val import RTDETRValidator
class RTDETR(Model):
"""
Interface for Baidu's RT-DETR model, a Vision Transformer-based real-time object detector.
This model provides real-time performance with high accuracy. It supports efficient hybrid encoding, IoU-aware
query selection, and adaptable inference speed.
Attributes:
model (str): Path to the pre-trained model.
Methods:
task_map: Return a task map for RT-DETR, associating tasks with corresponding Ultralytics classes.
Examples:
Initialize RT-DETR with a pre-trained model
>>> from ultralytics import RTDETR
>>> model = RTDETR("rtdetr-l.pt")
>>> results = model("image.jpg")
"""
def __init__(self, model: str = "rtdetr-l.pt") -> None:
"""
Initialize the RT-DETR model with the given pre-trained model file.
Args:
model (str): Path to the pre-trained model. Supports .pt, .yaml, and .yml formats.
"""
assert TORCH_1_11, "RTDETR requires torch>=1.11"
super().__init__(model=model, task="detect")
@property
def task_map(self) -> dict:
"""
Return a task map for RT-DETR, associating tasks with corresponding Ultralytics classes.
Returns:
(dict): A dictionary mapping task names to Ultralytics task classes for the RT-DETR model.
"""
return {
"detect": {
"predictor": RTDETRPredictor,
"validator": RTDETRValidator,
"trainer": RTDETRTrainer,
"model": RTDETRDetectionModel,
}
}

View File

@@ -0,0 +1,92 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import torch
from ultralytics.data.augment import LetterBox
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops
class RTDETRPredictor(BasePredictor):
"""
RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions.
This class leverages Vision Transformers to provide real-time object detection while maintaining high accuracy.
It supports key features like efficient hybrid encoding and IoU-aware query selection.
Attributes:
imgsz (int): Image size for inference (must be square and scale-filled).
args (dict): Argument overrides for the predictor.
model (torch.nn.Module): The loaded RT-DETR model.
batch (list): Current batch of processed inputs.
Methods:
postprocess: Postprocess raw model predictions to generate bounding boxes and confidence scores.
pre_transform: Pre-transform input images before feeding them into the model for inference.
Examples:
>>> from ultralytics.utils import ASSETS
>>> from ultralytics.models.rtdetr import RTDETRPredictor
>>> args = dict(model="rtdetr-l.pt", source=ASSETS)
>>> predictor = RTDETRPredictor(overrides=args)
>>> predictor.predict_cli()
"""
def postprocess(self, preds, img, orig_imgs):
"""
Postprocess the raw predictions from the model to generate bounding boxes and confidence scores.
The method filters detections based on confidence and class if specified in `self.args`. It converts
model predictions to Results objects containing properly scaled bounding boxes.
Args:
preds (list | tuple): List of [predictions, extra] from the model, where predictions contain
bounding boxes and scores.
img (torch.Tensor): Processed input images with shape (N, 3, H, W).
orig_imgs (list | torch.Tensor): Original, unprocessed images.
Returns:
results (list[Results]): A list of Results objects containing the post-processed bounding boxes,
confidence scores, and class labels.
"""
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
preds = [preds, None]
nd = preds[0].shape[-1]
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for bbox, score, orig_img, img_path in zip(bboxes, scores, orig_imgs, self.batch[0]): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
max_score, cls = score.max(-1, keepdim=True) # (300, 1)
idx = max_score.squeeze(-1) > self.args.conf # (300, )
if self.args.classes is not None:
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
pred = torch.cat([bbox, max_score, cls], dim=-1)[idx] # filter
pred = pred[pred[:, 4].argsort(descending=True)][: self.args.max_det]
oh, ow = orig_img.shape[:2]
pred[..., [0, 2]] *= ow # scale x coordinates to original width
pred[..., [1, 3]] *= oh # scale y coordinates to original height
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results
def pre_transform(self, im):
"""
Pre-transform input images before feeding them into the model for inference.
The input images are letterboxed to ensure a square aspect ratio and scale-filled. The size must be square
(640) and scale_filled.
Args:
im (list[np.ndarray] | torch.Tensor): Input images of shape (N, 3, H, W) for tensor,
[(H, W, 3) x N] for list.
Returns:
(list): List of pre-transformed images ready for model inference.
"""
letterbox = LetterBox(self.imgsz, auto=False, scale_fill=True)
return [letterbox(image=x) for x in im]

View File

@@ -0,0 +1,92 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from __future__ import annotations
from copy import copy
from ultralytics.models.yolo.detect import DetectionTrainer
from ultralytics.nn.tasks import RTDETRDetectionModel
from ultralytics.utils import RANK, colorstr
from .val import RTDETRDataset, RTDETRValidator
class RTDETRTrainer(DetectionTrainer):
"""
Trainer class for the RT-DETR model developed by Baidu for real-time object detection.
This class extends the DetectionTrainer class for YOLO to adapt to the specific features and architecture of RT-DETR.
The model leverages Vision Transformers and has capabilities like IoU-aware query selection and adaptable inference
speed.
Attributes:
loss_names (tuple): Names of the loss components used for training.
data (dict): Dataset configuration containing class count and other parameters.
args (dict): Training arguments and hyperparameters.
save_dir (Path): Directory to save training results.
test_loader (DataLoader): DataLoader for validation/testing data.
Methods:
get_model: Initialize and return an RT-DETR model for object detection tasks.
build_dataset: Build and return an RT-DETR dataset for training or validation.
get_validator: Return a DetectionValidator suitable for RT-DETR model validation.
Notes:
- F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
- AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.
Examples:
>>> from ultralytics.models.rtdetr.train import RTDETRTrainer
>>> args = dict(model="rtdetr-l.yaml", data="coco8.yaml", imgsz=640, epochs=3)
>>> trainer = RTDETRTrainer(overrides=args)
>>> trainer.train()
"""
def get_model(self, cfg: dict | None = None, weights: str | None = None, verbose: bool = True):
"""
Initialize and return an RT-DETR model for object detection tasks.
Args:
cfg (dict, optional): Model configuration.
weights (str, optional): Path to pre-trained model weights.
verbose (bool): Verbose logging if True.
Returns:
(RTDETRDetectionModel): Initialized model.
"""
model = RTDETRDetectionModel(cfg, nc=self.data["nc"], ch=self.data["channels"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def build_dataset(self, img_path: str, mode: str = "val", batch: int | None = None):
"""
Build and return an RT-DETR dataset for training or validation.
Args:
img_path (str): Path to the folder containing images.
mode (str): Dataset mode, either 'train' or 'val'.
batch (int, optional): Batch size for rectangle training.
Returns:
(RTDETRDataset): Dataset object for the specific mode.
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=mode == "train",
hyp=self.args,
rect=False,
cache=self.args.cache or None,
single_cls=self.args.single_cls or False,
prefix=colorstr(f"{mode}: "),
classes=self.args.classes,
data=self.data,
fraction=self.args.fraction if mode == "train" else 1.0,
)
def get_validator(self):
"""Return a DetectionValidator suitable for RT-DETR model validation."""
self.loss_names = "giou_loss", "cls_loss", "l1_loss"
return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

View File

@@ -0,0 +1,218 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from __future__ import annotations
from pathlib import Path
from typing import Any
import torch
from ultralytics.data import YOLODataset
from ultralytics.data.augment import Compose, Format, v8_transforms
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import colorstr, ops
__all__ = ("RTDETRValidator",) # tuple or list
class RTDETRDataset(YOLODataset):
"""
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
real-time detection and tracking tasks.
Attributes:
augment (bool): Whether to apply data augmentation.
rect (bool): Whether to use rectangular training.
use_segments (bool): Whether to use segmentation masks.
use_keypoints (bool): Whether to use keypoint annotations.
imgsz (int): Target image size for training.
Methods:
load_image: Load one image from dataset index.
build_transforms: Build transformation pipeline for the dataset.
Examples:
Initialize an RT-DETR dataset
>>> dataset = RTDETRDataset(img_path="path/to/images", imgsz=640)
>>> image, hw = dataset.load_image(0)
"""
def __init__(self, *args, data=None, **kwargs):
"""
Initialize the RTDETRDataset class by inheriting from the YOLODataset class.
This constructor sets up a dataset specifically optimized for the RT-DETR (Real-Time DEtection and TRacking)
model, building upon the base YOLODataset functionality.
Args:
*args (Any): Variable length argument list passed to the parent YOLODataset class.
data (dict | None): Dictionary containing dataset information. If None, default values will be used.
**kwargs (Any): Additional keyword arguments passed to the parent YOLODataset class.
"""
super().__init__(*args, data=data, **kwargs)
def load_image(self, i, rect_mode=False):
"""
Load one image from dataset index 'i'.
Args:
i (int): Index of the image to load.
rect_mode (bool, optional): Whether to use rectangular mode for batch inference.
Returns:
im (torch.Tensor): The loaded image.
resized_hw (tuple): Height and width of the resized image with shape (2,).
Examples:
Load an image from the dataset
>>> dataset = RTDETRDataset(img_path="path/to/images")
>>> image, hw = dataset.load_image(0)
"""
return super().load_image(i=i, rect_mode=rect_mode)
def build_transforms(self, hyp=None):
"""
Build transformation pipeline for the dataset.
Args:
hyp (dict, optional): Hyperparameters for transformations.
Returns:
(Compose): Composition of transformation functions.
"""
if self.augment:
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
hyp.cutmix = hyp.cutmix if self.augment and not self.rect else 0.0
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
else:
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scale_fill=True)])
transforms = Compose([])
transforms.append(
Format(
bbox_format="xywh",
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask,
)
)
return transforms
class RTDETRValidator(DetectionValidator):
"""
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
the RT-DETR (Real-Time DETR) object detection model.
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
post-processing, and updates evaluation metrics accordingly.
Attributes:
args (Namespace): Configuration arguments for validation.
data (dict): Dataset configuration dictionary.
Methods:
build_dataset: Build an RTDETR Dataset for validation.
postprocess: Apply Non-maximum suppression to prediction outputs.
Examples:
Initialize and run RT-DETR validation
>>> from ultralytics.models.rtdetr import RTDETRValidator
>>> args = dict(model="rtdetr-l.pt", data="coco8.yaml")
>>> validator = RTDETRValidator(args=args)
>>> validator()
Notes:
For further details on the attributes and methods, refer to the parent DetectionValidator class.
"""
def build_dataset(self, img_path, mode="val", batch=None):
"""
Build an RTDETR Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str, optional): `train` mode or `val` mode, users are able to customize different augmentations for
each mode.
batch (int, optional): Size of batches, this is for `rect`.
Returns:
(RTDETRDataset): Dataset configured for RT-DETR validation.
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=False, # no augmentation
hyp=self.args,
rect=False, # no rect
cache=self.args.cache or None,
prefix=colorstr(f"{mode}: "),
data=self.data,
)
def postprocess(
self, preds: torch.Tensor | list[torch.Tensor] | tuple[torch.Tensor]
) -> list[dict[str, torch.Tensor]]:
"""
Apply Non-maximum suppression to prediction outputs.
Args:
preds (torch.Tensor | list | tuple): Raw predictions from the model. If tensor, should have shape
(batch_size, num_predictions, num_classes + 4) where last dimension contains bbox coords and class scores.
Returns:
(list[dict[str, torch.Tensor]]): List of dictionaries for each image, each containing:
- 'bboxes': Tensor of shape (N, 4) with bounding box coordinates
- 'conf': Tensor of shape (N,) with confidence scores
- 'cls': Tensor of shape (N,) with class indices
"""
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
preds = [preds, None]
bs, _, nd = preds[0].shape
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
bboxes *= self.args.imgsz
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
for i, bbox in enumerate(bboxes): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
score, cls = scores[i].max(-1) # (300, )
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
# Sort by confidence to correctly get internal metrics
pred = pred[score.argsort(descending=True)]
outputs[i] = pred[score > self.args.conf]
return [{"bboxes": x[:, :4], "conf": x[:, 4], "cls": x[:, 5]} for x in outputs]
def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None:
"""
Serialize YOLO predictions to COCO json format.
Args:
predn (dict[str, torch.Tensor]): Predictions dictionary containing 'bboxes', 'conf', and 'cls' keys
with bounding box coordinates, confidence scores, and class predictions.
pbatch (dict[str, Any]): Batch dictionary containing 'imgsz', 'ori_shape', 'ratio_pad', and 'im_file'.
"""
path = Path(pbatch["im_file"])
stem = path.stem
image_id = int(stem) if stem.isnumeric() else stem
box = predn["bboxes"].clone()
box[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
box[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
box = ops.xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for b, s, c in zip(box.tolist(), predn["conf"].tolist(), predn["cls"].tolist()):
self.jdict.append(
{
"image_id": image_id,
"file_name": path.name,
"category_id": self.class_map[int(c)],
"bbox": [round(x, 3) for x in b],
"score": round(s, 5),
}
)