init commit
This commit is contained in:
101
ultralytics/models/nas/model.py
Normal file
101
ultralytics/models/nas/model.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.utils import DEFAULT_CFG_DICT
|
||||
from ultralytics.utils.downloads import attempt_download_asset
|
||||
from ultralytics.utils.patches import torch_load
|
||||
from ultralytics.utils.torch_utils import model_info
|
||||
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
|
||||
class NAS(Model):
|
||||
"""
|
||||
YOLO-NAS model for object detection.
|
||||
|
||||
This class provides an interface for the YOLO-NAS models and extends the `Model` class from ultralytics engine.
|
||||
It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
|
||||
|
||||
Attributes:
|
||||
model (torch.nn.Module): The loaded YOLO-NAS model.
|
||||
task (str): The task type for the model, defaults to 'detect'.
|
||||
predictor (NASPredictor): The predictor instance for making predictions.
|
||||
validator (NASValidator): The validator instance for model validation.
|
||||
|
||||
Methods:
|
||||
info: Log model information and return model details.
|
||||
|
||||
Examples:
|
||||
>>> from ultralytics import NAS
|
||||
>>> model = NAS("yolo_nas_s")
|
||||
>>> results = model.predict("ultralytics/assets/bus.jpg")
|
||||
|
||||
Notes:
|
||||
YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
|
||||
"""
|
||||
|
||||
def __init__(self, model: str = "yolo_nas_s.pt") -> None:
|
||||
"""Initialize the NAS model with the provided or default model."""
|
||||
assert Path(model).suffix not in {".yaml", ".yml"}, "YOLO-NAS models only support pre-trained models."
|
||||
super().__init__(model, task="detect")
|
||||
|
||||
def _load(self, weights: str, task=None) -> None:
|
||||
"""
|
||||
Load an existing NAS model weights or create a new NAS model with pretrained weights.
|
||||
|
||||
Args:
|
||||
weights (str): Path to the model weights file or model name.
|
||||
task (str, optional): Task type for the model.
|
||||
"""
|
||||
import super_gradients
|
||||
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == ".pt":
|
||||
self.model = torch_load(attempt_download_asset(weights))
|
||||
elif suffix == "":
|
||||
self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
|
||||
|
||||
# Override the forward method to ignore additional arguments
|
||||
def new_forward(x, *args, **kwargs):
|
||||
"""Ignore additional __call__ arguments."""
|
||||
return self.model._original_forward(x)
|
||||
|
||||
self.model._original_forward = self.model.forward
|
||||
self.model.forward = new_forward
|
||||
|
||||
# Standardize model attributes for compatibility
|
||||
self.model.fuse = lambda verbose=True: self.model
|
||||
self.model.stride = torch.tensor([32])
|
||||
self.model.names = dict(enumerate(self.model._class_names))
|
||||
self.model.is_fused = lambda: False # for info()
|
||||
self.model.yaml = {} # for info()
|
||||
self.model.pt_path = weights # for export()
|
||||
self.model.task = "detect" # for export()
|
||||
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # for export()
|
||||
self.model.eval()
|
||||
|
||||
def info(self, detailed: bool = False, verbose: bool = True) -> dict[str, Any]:
|
||||
"""
|
||||
Log model information.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
|
||||
Returns:
|
||||
(dict[str, Any]): Model information dictionary.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||
|
||||
@property
|
||||
def task_map(self) -> dict[str, dict[str, Any]]:
|
||||
"""Return a dictionary mapping tasks to respective predictor and validator classes."""
|
||||
return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}
|
||||
Reference in New Issue
Block a user