init commit
This commit is contained in:
7
ultralytics/models/nas/__init__.py
Normal file
7
ultralytics/models/nas/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from .model import NAS
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
__all__ = "NASPredictor", "NASValidator", "NAS"
|
||||
BIN
ultralytics/models/nas/__pycache__/__init__.cpython-310.pyc
Normal file
BIN
ultralytics/models/nas/__pycache__/__init__.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/models/nas/__pycache__/model.cpython-310.pyc
Normal file
BIN
ultralytics/models/nas/__pycache__/model.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/models/nas/__pycache__/predict.cpython-310.pyc
Normal file
BIN
ultralytics/models/nas/__pycache__/predict.cpython-310.pyc
Normal file
Binary file not shown.
BIN
ultralytics/models/nas/__pycache__/val.cpython-310.pyc
Normal file
BIN
ultralytics/models/nas/__pycache__/val.cpython-310.pyc
Normal file
Binary file not shown.
101
ultralytics/models/nas/model.py
Normal file
101
ultralytics/models/nas/model.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.utils import DEFAULT_CFG_DICT
|
||||
from ultralytics.utils.downloads import attempt_download_asset
|
||||
from ultralytics.utils.patches import torch_load
|
||||
from ultralytics.utils.torch_utils import model_info
|
||||
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
|
||||
class NAS(Model):
|
||||
"""
|
||||
YOLO-NAS model for object detection.
|
||||
|
||||
This class provides an interface for the YOLO-NAS models and extends the `Model` class from ultralytics engine.
|
||||
It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
|
||||
|
||||
Attributes:
|
||||
model (torch.nn.Module): The loaded YOLO-NAS model.
|
||||
task (str): The task type for the model, defaults to 'detect'.
|
||||
predictor (NASPredictor): The predictor instance for making predictions.
|
||||
validator (NASValidator): The validator instance for model validation.
|
||||
|
||||
Methods:
|
||||
info: Log model information and return model details.
|
||||
|
||||
Examples:
|
||||
>>> from ultralytics import NAS
|
||||
>>> model = NAS("yolo_nas_s")
|
||||
>>> results = model.predict("ultralytics/assets/bus.jpg")
|
||||
|
||||
Notes:
|
||||
YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
|
||||
"""
|
||||
|
||||
def __init__(self, model: str = "yolo_nas_s.pt") -> None:
|
||||
"""Initialize the NAS model with the provided or default model."""
|
||||
assert Path(model).suffix not in {".yaml", ".yml"}, "YOLO-NAS models only support pre-trained models."
|
||||
super().__init__(model, task="detect")
|
||||
|
||||
def _load(self, weights: str, task=None) -> None:
|
||||
"""
|
||||
Load an existing NAS model weights or create a new NAS model with pretrained weights.
|
||||
|
||||
Args:
|
||||
weights (str): Path to the model weights file or model name.
|
||||
task (str, optional): Task type for the model.
|
||||
"""
|
||||
import super_gradients
|
||||
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == ".pt":
|
||||
self.model = torch_load(attempt_download_asset(weights))
|
||||
elif suffix == "":
|
||||
self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
|
||||
|
||||
# Override the forward method to ignore additional arguments
|
||||
def new_forward(x, *args, **kwargs):
|
||||
"""Ignore additional __call__ arguments."""
|
||||
return self.model._original_forward(x)
|
||||
|
||||
self.model._original_forward = self.model.forward
|
||||
self.model.forward = new_forward
|
||||
|
||||
# Standardize model attributes for compatibility
|
||||
self.model.fuse = lambda verbose=True: self.model
|
||||
self.model.stride = torch.tensor([32])
|
||||
self.model.names = dict(enumerate(self.model._class_names))
|
||||
self.model.is_fused = lambda: False # for info()
|
||||
self.model.yaml = {} # for info()
|
||||
self.model.pt_path = weights # for export()
|
||||
self.model.task = "detect" # for export()
|
||||
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # for export()
|
||||
self.model.eval()
|
||||
|
||||
def info(self, detailed: bool = False, verbose: bool = True) -> dict[str, Any]:
|
||||
"""
|
||||
Log model information.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
|
||||
Returns:
|
||||
(dict[str, Any]): Model information dictionary.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||
|
||||
@property
|
||||
def task_map(self) -> dict[str, dict[str, Any]]:
|
||||
"""Return a dictionary mapping tasks to respective predictor and validator classes."""
|
||||
return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}
|
||||
58
ultralytics/models/nas/predict.py
Normal file
58
ultralytics/models/nas/predict.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
||||
from ultralytics.utils import ops
|
||||
|
||||
|
||||
class NASPredictor(DetectionPredictor):
|
||||
"""
|
||||
Ultralytics YOLO NAS Predictor for object detection.
|
||||
|
||||
This class extends the DetectionPredictor from ultralytics engine and is responsible for post-processing the
|
||||
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
|
||||
scaling the bounding boxes to fit the original image dimensions.
|
||||
|
||||
Attributes:
|
||||
args (Namespace): Namespace containing various configurations for post-processing including confidence
|
||||
threshold, IoU threshold, agnostic NMS flag, maximum detections, and class filtering options.
|
||||
model (torch.nn.Module): The YOLO NAS model used for inference.
|
||||
batch (list): Batch of inputs for processing.
|
||||
|
||||
Examples:
|
||||
>>> from ultralytics import NAS
|
||||
>>> model = NAS("yolo_nas_s")
|
||||
>>> predictor = model.predictor
|
||||
|
||||
Assume that raw_preds, img, orig_imgs are available
|
||||
>>> results = predictor.postprocess(raw_preds, img, orig_imgs)
|
||||
|
||||
Notes:
|
||||
Typically, this class is not instantiated directly. It is used internally within the NAS class.
|
||||
"""
|
||||
|
||||
def postprocess(self, preds_in, img, orig_imgs):
|
||||
"""
|
||||
Postprocess NAS model predictions to generate final detection results.
|
||||
|
||||
This method takes raw predictions from a YOLO NAS model, converts bounding box formats, and applies
|
||||
post-processing operations to generate the final detection results compatible with Ultralytics
|
||||
result visualization and analysis tools.
|
||||
|
||||
Args:
|
||||
preds_in (list): Raw predictions from the NAS model, typically containing bounding boxes and class scores.
|
||||
img (torch.Tensor): Input image tensor that was fed to the model, with shape (B, C, H, W).
|
||||
orig_imgs (list | torch.Tensor | np.ndarray): Original images before preprocessing, used for scaling
|
||||
coordinates back to original dimensions.
|
||||
|
||||
Returns:
|
||||
(list): List of Results objects containing the processed predictions for each image in the batch.
|
||||
|
||||
Examples:
|
||||
>>> predictor = NAS("yolo_nas_s").predictor
|
||||
>>> results = predictor.postprocess(raw_preds, img, orig_imgs)
|
||||
"""
|
||||
boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding boxes from xyxy to xywh format
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with class scores
|
||||
return super().postprocess(preds, img, orig_imgs)
|
||||
39
ultralytics/models/nas/val.py
Normal file
39
ultralytics/models/nas/val.py
Normal file
@@ -0,0 +1,39 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import ops
|
||||
|
||||
__all__ = ["NASValidator"]
|
||||
|
||||
|
||||
class NASValidator(DetectionValidator):
|
||||
"""
|
||||
Ultralytics YOLO NAS Validator for object detection.
|
||||
|
||||
Extends DetectionValidator from the Ultralytics models package and is designed to post-process the raw predictions
|
||||
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes,
|
||||
ultimately producing the final detections.
|
||||
|
||||
Attributes:
|
||||
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU
|
||||
thresholds.
|
||||
lb (torch.Tensor): Optional tensor for multilabel NMS.
|
||||
|
||||
Examples:
|
||||
>>> from ultralytics import NAS
|
||||
>>> model = NAS("yolo_nas_s")
|
||||
>>> validator = model.validator
|
||||
>>> # Assumes that raw_preds are available
|
||||
>>> final_preds = validator.postprocess(raw_preds)
|
||||
|
||||
Notes:
|
||||
This class is generally not instantiated directly but is used internally within the NAS class.
|
||||
"""
|
||||
|
||||
def postprocess(self, preds_in):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding box format from xyxy to xywh
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with scores and permute
|
||||
return super().postprocess(preds)
|
||||
Reference in New Issue
Block a user