init commit

This commit is contained in:
2025-11-08 19:15:39 +01:00
parent ecffcb08e8
commit c7adacf53b
470 changed files with 73751 additions and 0 deletions

169
ultralytics/hub/__init__.py Normal file
View File

@@ -0,0 +1,169 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from ultralytics.data.utils import HUBDatasetStats
from ultralytics.hub.auth import Auth
from ultralytics.hub.session import HUBTrainingSession
from ultralytics.hub.utils import HUB_API_ROOT, HUB_WEB_ROOT, PREFIX
from ultralytics.utils import LOGGER, SETTINGS, checks
__all__ = (
"PREFIX",
"HUB_WEB_ROOT",
"HUBTrainingSession",
"login",
"logout",
"reset_model",
"export_fmts_hub",
"export_model",
"get_export",
"check_dataset",
)
def login(api_key: str = None, save: bool = True) -> bool:
"""
Log in to the Ultralytics HUB API using the provided API key.
The session is not stored; a new session is created when needed using the saved SETTINGS or the HUB_API_KEY
environment variable if successfully authenticated.
Args:
api_key (str, optional): API key to use for authentication. If not provided, it will be retrieved from
SETTINGS or HUB_API_KEY environment variable.
save (bool, optional): Whether to save the API key to SETTINGS if authentication is successful.
Returns:
(bool): True if authentication is successful, False otherwise.
"""
checks.check_requirements("hub-sdk>=0.0.12")
from hub_sdk import HUBClient
api_key_url = f"{HUB_WEB_ROOT}/settings?tab=api+keys" # set the redirect URL
saved_key = SETTINGS.get("api_key")
active_key = api_key or saved_key
credentials = {"api_key": active_key} if active_key and active_key != "" else None # set credentials
client = HUBClient(credentials) # initialize HUBClient
if client.authenticated:
# Successfully authenticated with HUB
if save and client.api_key != saved_key:
SETTINGS.update({"api_key": client.api_key}) # update settings with valid API key
# Set message based on whether key was provided or retrieved from settings
log_message = (
"New authentication successful ✅" if client.api_key == api_key or not credentials else "Authenticated ✅"
)
LOGGER.info(f"{PREFIX}{log_message}")
return True
else:
# Failed to authenticate with HUB
LOGGER.info(f"{PREFIX}Get API key from {api_key_url} and then run 'yolo login API_KEY'")
return False
def logout():
"""Log out of Ultralytics HUB by removing the API key from the settings file."""
SETTINGS["api_key"] = ""
LOGGER.info(f"{PREFIX}logged out ✅. To log in again, use 'yolo login'.")
def reset_model(model_id: str = ""):
"""Reset a trained model to an untrained state."""
import requests # scoped as slow import
r = requests.post(f"{HUB_API_ROOT}/model-reset", json={"modelId": model_id}, headers={"x-api-key": Auth().api_key})
if r.status_code == 200:
LOGGER.info(f"{PREFIX}Model reset successfully")
return
LOGGER.warning(f"{PREFIX}Model reset failure {r.status_code} {r.reason}")
def export_fmts_hub():
"""Return a list of HUB-supported export formats."""
from ultralytics.engine.exporter import export_formats
return list(export_formats()["Argument"][1:]) + ["ultralytics_tflite", "ultralytics_coreml"]
def export_model(model_id: str = "", format: str = "torchscript"):
"""
Export a model to a specified format for deployment via the Ultralytics HUB API.
Args:
model_id (str): The ID of the model to export. An empty string will use the default model.
format (str): The format to export the model to. Must be one of the supported formats returned by
export_fmts_hub().
Raises:
AssertionError: If the specified format is not supported or if the export request fails.
Examples:
>>> from ultralytics import hub
>>> hub.export_model(model_id="your_model_id", format="torchscript")
"""
import requests # scoped as slow import
assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}"
r = requests.post(
f"{HUB_API_ROOT}/v1/models/{model_id}/export", json={"format": format}, headers={"x-api-key": Auth().api_key}
)
assert r.status_code == 200, f"{PREFIX}{format} export failure {r.status_code} {r.reason}"
LOGGER.info(f"{PREFIX}{format} export started ✅")
def get_export(model_id: str = "", format: str = "torchscript"):
"""
Retrieve an exported model in the specified format from ultralytics HUB using the model ID.
Args:
model_id (str): The ID of the model to retrieve from ultralytics HUB.
format (str): The export format to retrieve. Must be one of the supported formats returned by
export_fmts_hub().
Returns:
(dict): JSON response containing the exported model information.
Raises:
AssertionError: If the specified format is not supported or if the API request fails.
Examples:
>>> from ultralytics import hub
>>> result = hub.get_export(model_id="your_model_id", format="torchscript")
"""
import requests # scoped as slow import
assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}"
r = requests.post(
f"{HUB_API_ROOT}/get-export",
json={"apiKey": Auth().api_key, "modelId": model_id, "format": format},
headers={"x-api-key": Auth().api_key},
)
assert r.status_code == 200, f"{PREFIX}{format} get_export failure {r.status_code} {r.reason}"
return r.json()
def check_dataset(path: str, task: str) -> None:
"""
Check HUB dataset Zip file for errors before upload.
Args:
path (str): Path to data.zip (with data.yaml inside data.zip).
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify', 'obb'.
Examples:
>>> from ultralytics.hub import check_dataset
>>> check_dataset("path/to/coco8.zip", task="detect") # detect dataset
>>> check_dataset("path/to/coco8-seg.zip", task="segment") # segment dataset
>>> check_dataset("path/to/coco8-pose.zip", task="pose") # pose dataset
>>> check_dataset("path/to/dota8.zip", task="obb") # OBB dataset
>>> check_dataset("path/to/imagenet10.zip", task="classify") # classification dataset
Notes:
Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets
i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
"""
HUBDatasetStats(path=path, task=task).get_json()
LOGGER.info(f"Checks completed correctly ✅. Upload this dataset to {HUB_WEB_ROOT}/datasets/.")

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

157
ultralytics/hub/auth.py Normal file
View File

@@ -0,0 +1,157 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from ultralytics.hub.utils import HUB_API_ROOT, HUB_WEB_ROOT, PREFIX, request_with_credentials
from ultralytics.utils import IS_COLAB, LOGGER, SETTINGS, emojis
API_KEY_URL = f"{HUB_WEB_ROOT}/settings?tab=api+keys"
class Auth:
"""
Manages authentication processes including API key handling, cookie-based authentication, and header generation.
The class supports different methods of authentication:
1. Directly using an API key.
2. Authenticating using browser cookies (specifically in Google Colab).
3. Prompting the user to enter an API key.
Attributes:
id_token (str | bool): Token used for identity verification, initialized as False.
api_key (str | bool): API key for authentication, initialized as False.
model_key (bool): Placeholder for model key, initialized as False.
Methods:
authenticate: Attempt to authenticate with the server using either id_token or API key.
auth_with_cookies: Attempt to fetch authentication via cookies and set id_token.
get_auth_header: Get the authentication header for making API requests.
request_api_key: Prompt the user to input their API key.
Examples:
Initialize Auth with an API key
>>> auth = Auth(api_key="your_api_key_here")
Initialize Auth without API key (will prompt for input)
>>> auth = Auth()
"""
id_token = api_key = model_key = False
def __init__(self, api_key: str = "", verbose: bool = False):
"""
Initialize Auth class and authenticate user.
Handles API key validation, Google Colab authentication, and new key requests. Updates SETTINGS upon successful
authentication.
Args:
api_key (str): API key or combined key_id format.
verbose (bool): Enable verbose logging.
"""
# Split the input API key in case it contains a combined key_model and keep only the API key part
api_key = api_key.split("_", 1)[0]
# Set API key attribute as value passed or SETTINGS API key if none passed
self.api_key = api_key or SETTINGS.get("api_key", "")
# If an API key is provided
if self.api_key:
# If the provided API key matches the API key in the SETTINGS
if self.api_key == SETTINGS.get("api_key"):
# Log that the user is already logged in
if verbose:
LOGGER.info(f"{PREFIX}Authenticated ✅")
return
else:
# Attempt to authenticate with the provided API key
success = self.authenticate()
# If the API key is not provided and the environment is a Google Colab notebook
elif IS_COLAB:
# Attempt to authenticate using browser cookies
success = self.auth_with_cookies()
else:
# Request an API key
success = self.request_api_key()
# Update SETTINGS with the new API key after successful authentication
if success:
SETTINGS.update({"api_key": self.api_key})
# Log that the new login was successful
if verbose:
LOGGER.info(f"{PREFIX}New authentication successful ✅")
elif verbose:
LOGGER.info(f"{PREFIX}Get API key from {API_KEY_URL} and then run 'yolo login API_KEY'")
def request_api_key(self, max_attempts: int = 3) -> bool:
"""
Prompt the user to input their API key.
Args:
max_attempts (int): Maximum number of authentication attempts.
Returns:
(bool): True if authentication is successful, False otherwise.
"""
import getpass
for attempts in range(max_attempts):
LOGGER.info(f"{PREFIX}Login. Attempt {attempts + 1} of {max_attempts}")
input_key = getpass.getpass(f"Enter API key from {API_KEY_URL} ")
self.api_key = input_key.split("_", 1)[0] # remove model id if present
if self.authenticate():
return True
raise ConnectionError(emojis(f"{PREFIX}Failed to authenticate ❌"))
def authenticate(self) -> bool:
"""
Attempt to authenticate with the server using either id_token or API key.
Returns:
(bool): True if authentication is successful, False otherwise.
"""
import requests # scoped as slow import
try:
if header := self.get_auth_header():
r = requests.post(f"{HUB_API_ROOT}/v1/auth", headers=header)
if not r.json().get("success", False):
raise ConnectionError("Unable to authenticate.")
return True
raise ConnectionError("User has not authenticated locally.")
except ConnectionError:
self.id_token = self.api_key = False # reset invalid
LOGGER.warning(f"{PREFIX}Invalid API key")
return False
def auth_with_cookies(self) -> bool:
"""
Attempt to fetch authentication via cookies and set id_token.
User must be logged in to HUB and running in a supported browser.
Returns:
(bool): True if authentication is successful, False otherwise.
"""
if not IS_COLAB:
return False # Currently only works with Colab
try:
authn = request_with_credentials(f"{HUB_API_ROOT}/v1/auth/auto")
if authn.get("success", False):
self.id_token = authn.get("data", {}).get("idToken", None)
self.authenticate()
return True
raise ConnectionError("Unable to fetch browser authentication details.")
except ConnectionError:
self.id_token = False # reset invalid
return False
def get_auth_header(self):
"""
Get the authentication header for making API requests.
Returns:
(dict | None): The authentication header if id_token or API key is set, None otherwise.
"""
if self.id_token:
return {"authorization": f"Bearer {self.id_token}"}
elif self.api_key:
return {"x-api-key": self.api_key}

View File

@@ -0,0 +1,177 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from __future__ import annotations
import concurrent.futures
import statistics
import time
class GCPRegions:
"""
A class for managing and analyzing Google Cloud Platform (GCP) regions.
This class provides functionality to initialize, categorize, and analyze GCP regions based on their
geographical location, tier classification, and network latency.
Attributes:
regions (dict[str, tuple[int, str, str]]): A dictionary of GCP regions with their tier, city, and country.
Methods:
tier1: Returns a list of tier 1 GCP regions.
tier2: Returns a list of tier 2 GCP regions.
lowest_latency: Determines the GCP region(s) with the lowest network latency.
Examples:
>>> from ultralytics.hub.google import GCPRegions
>>> regions = GCPRegions()
>>> lowest_latency_region = regions.lowest_latency(verbose=True, attempts=3)
>>> print(f"Lowest latency region: {lowest_latency_region[0][0]}")
"""
def __init__(self):
"""Initialize the GCPRegions class with predefined Google Cloud Platform regions and their details."""
self.regions = {
"asia-east1": (1, "Taiwan", "China"),
"asia-east2": (2, "Hong Kong", "China"),
"asia-northeast1": (1, "Tokyo", "Japan"),
"asia-northeast2": (1, "Osaka", "Japan"),
"asia-northeast3": (2, "Seoul", "South Korea"),
"asia-south1": (2, "Mumbai", "India"),
"asia-south2": (2, "Delhi", "India"),
"asia-southeast1": (2, "Jurong West", "Singapore"),
"asia-southeast2": (2, "Jakarta", "Indonesia"),
"australia-southeast1": (2, "Sydney", "Australia"),
"australia-southeast2": (2, "Melbourne", "Australia"),
"europe-central2": (2, "Warsaw", "Poland"),
"europe-north1": (1, "Hamina", "Finland"),
"europe-southwest1": (1, "Madrid", "Spain"),
"europe-west1": (1, "St. Ghislain", "Belgium"),
"europe-west10": (2, "Berlin", "Germany"),
"europe-west12": (2, "Turin", "Italy"),
"europe-west2": (2, "London", "United Kingdom"),
"europe-west3": (2, "Frankfurt", "Germany"),
"europe-west4": (1, "Eemshaven", "Netherlands"),
"europe-west6": (2, "Zurich", "Switzerland"),
"europe-west8": (1, "Milan", "Italy"),
"europe-west9": (1, "Paris", "France"),
"me-central1": (2, "Doha", "Qatar"),
"me-west1": (1, "Tel Aviv", "Israel"),
"northamerica-northeast1": (2, "Montreal", "Canada"),
"northamerica-northeast2": (2, "Toronto", "Canada"),
"southamerica-east1": (2, "São Paulo", "Brazil"),
"southamerica-west1": (2, "Santiago", "Chile"),
"us-central1": (1, "Iowa", "United States"),
"us-east1": (1, "South Carolina", "United States"),
"us-east4": (1, "Northern Virginia", "United States"),
"us-east5": (1, "Columbus", "United States"),
"us-south1": (1, "Dallas", "United States"),
"us-west1": (1, "Oregon", "United States"),
"us-west2": (2, "Los Angeles", "United States"),
"us-west3": (2, "Salt Lake City", "United States"),
"us-west4": (2, "Las Vegas", "United States"),
}
def tier1(self) -> list[str]:
"""Return a list of GCP regions classified as tier 1 based on predefined criteria."""
return [region for region, info in self.regions.items() if info[0] == 1]
def tier2(self) -> list[str]:
"""Return a list of GCP regions classified as tier 2 based on predefined criteria."""
return [region for region, info in self.regions.items() if info[0] == 2]
@staticmethod
def _ping_region(region: str, attempts: int = 1) -> tuple[str, float, float, float, float]:
"""
Ping a specified GCP region and measure network latency statistics.
Args:
region (str): The GCP region identifier to ping (e.g., 'us-central1').
attempts (int, optional): Number of ping attempts to make for calculating statistics.
Returns:
region (str): The GCP region identifier that was pinged.
mean_latency (float): Mean latency in milliseconds, or infinity if all pings failed.
std_dev (float): Standard deviation of latencies in milliseconds, or infinity if all pings failed.
min_latency (float): Minimum latency in milliseconds, or infinity if all pings failed.
max_latency (float): Maximum latency in milliseconds, or infinity if all pings failed.
Examples:
>>> region, mean, std, min_lat, max_lat = GCPRegions._ping_region("us-central1", attempts=3)
>>> print(f"Region {region} has mean latency: {mean:.2f}ms")
"""
import requests # scoped as slow import
url = f"https://{region}-docker.pkg.dev"
latencies = []
for _ in range(attempts):
try:
start_time = time.time()
_ = requests.head(url, timeout=5)
latency = (time.time() - start_time) * 1000 # Convert latency to milliseconds
if latency != float("inf"):
latencies.append(latency)
except requests.RequestException:
pass
if not latencies:
return region, float("inf"), float("inf"), float("inf"), float("inf")
std_dev = statistics.stdev(latencies) if len(latencies) > 1 else 0
return region, statistics.mean(latencies), std_dev, min(latencies), max(latencies)
def lowest_latency(
self,
top: int = 1,
verbose: bool = False,
tier: int | None = None,
attempts: int = 1,
) -> list[tuple[str, float, float, float, float]]:
"""
Determine the GCP regions with the lowest latency based on ping tests.
Args:
top (int, optional): Number of top regions to return.
verbose (bool, optional): If True, prints detailed latency information for all tested regions.
tier (int | None, optional): Filter regions by tier (1 or 2). If None, all regions are tested.
attempts (int, optional): Number of ping attempts per region.
Returns:
(list[tuple[str, float, float, float, float]]): List of tuples containing region information and
latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency).
Examples:
>>> regions = GCPRegions()
>>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2)
>>> print(results[0][0]) # Print the name of the lowest latency region
"""
if verbose:
print(f"Testing GCP regions for latency (with {attempts} {'retry' if attempts == 1 else 'attempts'})...")
regions_to_test = [k for k, v in self.regions.items() if v[0] == tier] if tier else list(self.regions.keys())
with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
results = list(executor.map(lambda r: self._ping_region(r, attempts), regions_to_test))
sorted_results = sorted(results, key=lambda x: x[1])
if verbose:
print(f"{'Region':<25} {'Location':<35} {'Tier':<5} Latency (ms)")
for region, mean, std, min_, max_ in sorted_results:
tier, city, country = self.regions[region]
location = f"{city}, {country}"
if mean == float("inf"):
print(f"{region:<25} {location:<35} {tier:<5} Timeout")
else:
print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
print(f"\nLowest latency region{'s' if top > 1 else ''}:")
for region, mean, std, min_, max_ in sorted_results[:top]:
tier, city, country = self.regions[region]
location = f"{city}, {country}"
print(f"{region} ({location}, {mean:.0f} ± {std:.0f} ms ({min_:.0f} - {max_:.0f}))")
return sorted_results[:top]
# Usage example
if __name__ == "__main__":
regions = GCPRegions()
top_3_latency_tier1 = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=3)

432
ultralytics/hub/session.py Normal file
View File

@@ -0,0 +1,432 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from __future__ import annotations
import shutil
import threading
import time
from http import HTTPStatus
from pathlib import Path
from typing import Any
from urllib.parse import parse_qs, urlparse
from ultralytics import __version__
from ultralytics.hub.utils import HELP_MSG, HUB_WEB_ROOT, PREFIX
from ultralytics.utils import IS_COLAB, LOGGER, SETTINGS, TQDM, checks, emojis
from ultralytics.utils.errors import HUBModelError
AGENT_NAME = f"python-{__version__}-colab" if IS_COLAB else f"python-{__version__}-local"
class HUBTrainingSession:
"""
HUB training session for Ultralytics HUB YOLO models.
This class encapsulates the functionality for interacting with Ultralytics HUB during model training, including
model creation, metrics tracking, and checkpoint uploading.
Attributes:
model_id (str): Identifier for the YOLO model being trained.
model_url (str): URL for the model in Ultralytics HUB.
rate_limits (dict[str, int]): Rate limits for different API calls in seconds.
timers (dict[str, Any]): Timers for rate limiting.
metrics_queue (dict[str, Any]): Queue for the model's metrics.
metrics_upload_failed_queue (dict[str, Any]): Queue for metrics that failed to upload.
model (Any): Model data fetched from ultralytics HUB.
model_file (str): Path to the model file.
train_args (dict[str, Any]): Arguments for training the model.
client (Any): Client for interacting with Ultralytics HUB.
filename (str): Filename of the model.
Examples:
Create a training session with a model URL
>>> session = HUBTrainingSession("https://hub.ultralytics.com/models/example-model")
>>> session.upload_metrics()
"""
def __init__(self, identifier: str):
"""
Initialize the HUBTrainingSession with the provided model identifier.
Args:
identifier (str): Model identifier used to initialize the HUB training session. It can be a URL string
or a model key with specific format.
Raises:
ValueError: If the provided model identifier is invalid.
ConnectionError: If connecting with global API key is not supported.
ModuleNotFoundError: If hub-sdk package is not installed.
"""
from hub_sdk import HUBClient
self.rate_limits = {"metrics": 3, "ckpt": 900, "heartbeat": 300} # rate limits (seconds)
self.metrics_queue = {} # holds metrics for each epoch until upload
self.metrics_upload_failed_queue = {} # holds metrics for each epoch if upload failed
self.timers = {} # holds timers in ultralytics/utils/callbacks/hub.py
self.model = None
self.model_url = None
self.model_file = None
self.train_args = None
# Parse input
api_key, model_id, self.filename = self._parse_identifier(identifier)
# Get credentials
active_key = api_key or SETTINGS.get("api_key")
credentials = {"api_key": active_key} if active_key else None # set credentials
# Initialize client
self.client = HUBClient(credentials)
# Load models
try:
if model_id:
self.load_model(model_id) # load existing model
else:
self.model = self.client.model() # load empty model
except Exception:
if identifier.startswith(f"{HUB_WEB_ROOT}/models/") and not self.client.authenticated:
LOGGER.warning(
f"{PREFIX}Please log in using 'yolo login API_KEY'. "
"You can find your API Key at: https://hub.ultralytics.com/settings?tab=api+keys."
)
@classmethod
def create_session(cls, identifier: str, args: dict[str, Any] | None = None):
"""
Create an authenticated HUBTrainingSession or return None.
Args:
identifier (str): Model identifier used to initialize the HUB training session.
args (dict[str, Any], optional): Arguments for creating a new model if identifier is not a HUB model URL.
Returns:
session (HUBTrainingSession | None): An authenticated session or None if creation fails.
"""
try:
session = cls(identifier)
if args and not identifier.startswith(f"{HUB_WEB_ROOT}/models/"): # not a HUB model URL
session.create_model(args)
assert session.model.id, "HUB model not loaded correctly"
return session
# PermissionError and ModuleNotFoundError indicate hub-sdk not installed
except (PermissionError, ModuleNotFoundError, AssertionError):
return None
def load_model(self, model_id: str):
"""
Load an existing model from ultralytics HUB using the provided model identifier.
Args:
model_id (str): The identifier of the model to load.
Raises:
ValueError: If the specified HUB model does not exist.
"""
self.model = self.client.model(model_id)
if not self.model.data: # then model does not exist
raise ValueError(emojis("❌ The specified HUB model does not exist")) # TODO: improve error handling
self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"
if self.model.is_trained():
LOGGER.info(f"Loading trained HUB model {self.model_url} 🚀")
url = self.model.get_weights_url("best") # download URL with auth
self.model_file = checks.check_file(url, download_dir=Path(SETTINGS["weights_dir"]) / "hub" / self.model.id)
return
# Set training args and start heartbeats for HUB to monitor agent
self._set_train_args()
self.model.start_heartbeat(self.rate_limits["heartbeat"])
LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀")
def create_model(self, model_args: dict[str, Any]):
"""
Initialize a HUB training session with the specified model arguments.
Args:
model_args (dict[str, Any]): Arguments for creating the model, including batch size, epochs, image size,
etc.
Returns:
(None): If the model could not be created.
"""
payload = {
"config": {
"batchSize": model_args.get("batch", -1),
"epochs": model_args.get("epochs", 300),
"imageSize": model_args.get("imgsz", 640),
"patience": model_args.get("patience", 100),
"device": str(model_args.get("device", "")), # convert None to string
"cache": str(model_args.get("cache", "ram")), # convert True, False, None to string
},
"dataset": {"name": model_args.get("data")},
"lineage": {
"architecture": {"name": self.filename.replace(".pt", "").replace(".yaml", "")},
"parent": {},
},
"meta": {"name": self.filename},
}
if self.filename.endswith(".pt"):
payload["lineage"]["parent"]["name"] = self.filename
self.model.create_model(payload)
# Model could not be created
# TODO: improve error handling
if not self.model.id:
return None
self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"
# Start heartbeats for HUB to monitor agent
self.model.start_heartbeat(self.rate_limits["heartbeat"])
LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀")
@staticmethod
def _parse_identifier(identifier: str):
"""
Parse the given identifier to determine the type and extract relevant components.
The method supports different identifier formats:
- A HUB model URL https://hub.ultralytics.com/models/MODEL
- A HUB model URL with API Key https://hub.ultralytics.com/models/MODEL?api_key=APIKEY
- A local filename that ends with '.pt' or '.yaml'
Args:
identifier (str): The identifier string to be parsed.
Returns:
api_key (str | None): Extracted API key if present.
model_id (str | None): Extracted model ID if present.
filename (str | None): Extracted filename if present.
Raises:
HUBModelError: If the identifier format is not recognized.
"""
api_key, model_id, filename = None, None, None
if identifier.endswith((".pt", ".yaml")):
filename = identifier
elif identifier.startswith(f"{HUB_WEB_ROOT}/models/"):
parsed_url = urlparse(identifier)
model_id = Path(parsed_url.path).stem # handle possible final backslash robustly
query_params = parse_qs(parsed_url.query) # dictionary, i.e. {"api_key": ["API_KEY_HERE"]}
api_key = query_params.get("api_key", [None])[0]
else:
raise HUBModelError(f"model='{identifier} invalid, correct format is {HUB_WEB_ROOT}/models/MODEL_ID")
return api_key, model_id, filename
def _set_train_args(self):
"""
Initialize training arguments and create a model entry on the Ultralytics HUB.
This method sets up training arguments based on the model's state and updates them with any additional
arguments provided. It handles different states of the model, such as whether it's resumable, pretrained,
or requires specific file setup.
Raises:
ValueError: If the model is already trained, if required dataset information is missing, or if there are
issues with the provided training arguments.
"""
if self.model.is_resumable():
# Model has saved weights
self.train_args = {"data": self.model.get_dataset_url(), "resume": True}
self.model_file = self.model.get_weights_url("last")
else:
# Model has no saved weights
self.train_args = self.model.data.get("train_args") # new response
# Set the model file as either a *.pt or *.yaml file
self.model_file = (
self.model.get_weights_url("parent") if self.model.is_pretrained() else self.model.get_architecture()
)
if "data" not in self.train_args:
# RF bug - datasets are sometimes not exported
raise ValueError("Dataset may still be processing. Please wait a minute and try again.")
self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False) # YOLOv5->YOLOv5u
self.model_id = self.model.id
def request_queue(
self,
request_func,
retry: int = 3,
timeout: int = 30,
thread: bool = True,
verbose: bool = True,
progress_total: int | None = None,
stream_response: bool | None = None,
*args,
**kwargs,
):
"""
Execute request_func with retries, timeout handling, optional threading, and progress tracking.
Args:
request_func (callable): The function to execute.
retry (int): Number of retry attempts.
timeout (int): Maximum time to wait for the request to complete.
thread (bool): Whether to run the request in a separate thread.
verbose (bool): Whether to log detailed messages.
progress_total (int, optional): Total size for progress tracking.
stream_response (bool, optional): Whether to stream the response.
*args (Any): Additional positional arguments for request_func.
**kwargs (Any): Additional keyword arguments for request_func.
Returns:
(requests.Response | None): The response object if thread=False, otherwise None.
"""
def retry_request():
"""Attempt to call request_func with retries, timeout, and optional threading."""
t0 = time.time() # Record the start time for the timeout
response = None
for i in range(retry + 1):
if (time.time() - t0) > timeout:
LOGGER.warning(f"{PREFIX}Timeout for request reached. {HELP_MSG}")
break # Timeout reached, exit loop
response = request_func(*args, **kwargs)
if response is None:
LOGGER.warning(f"{PREFIX}Received no response from the request. {HELP_MSG}")
time.sleep(2**i) # Exponential backoff before retrying
continue # Skip further processing and retry
if progress_total:
self._show_upload_progress(progress_total, response)
elif stream_response:
self._iterate_content(response)
if HTTPStatus.OK <= response.status_code < HTTPStatus.MULTIPLE_CHOICES:
# if request related to metrics upload
if kwargs.get("metrics"):
self.metrics_upload_failed_queue = {}
return response # Success, no need to retry
if i == 0:
# Initial attempt, check status code and provide messages
message = self._get_failure_message(response, retry, timeout)
if verbose:
LOGGER.warning(f"{PREFIX}{message} {HELP_MSG} ({response.status_code})")
if not self._should_retry(response.status_code):
LOGGER.warning(f"{PREFIX}Request failed. {HELP_MSG} ({response.status_code}")
break # Not an error that should be retried, exit loop
time.sleep(2**i) # Exponential backoff for retries
# if request related to metrics upload and exceed retries
if response is None and kwargs.get("metrics"):
self.metrics_upload_failed_queue.update(kwargs.get("metrics"))
return response
if thread:
# Start a new thread to run the retry_request function
threading.Thread(target=retry_request, daemon=True).start()
else:
# If running in the main thread, call retry_request directly
return retry_request()
@staticmethod
def _should_retry(status_code: int) -> bool:
"""Determine if a request should be retried based on the HTTP status code."""
retry_codes = {
HTTPStatus.REQUEST_TIMEOUT,
HTTPStatus.BAD_GATEWAY,
HTTPStatus.GATEWAY_TIMEOUT,
}
return status_code in retry_codes
def _get_failure_message(self, response, retry: int, timeout: int) -> str:
"""
Generate a retry message based on the response status code.
Args:
response (requests.Response): The HTTP response object.
retry (int): The number of retry attempts allowed.
timeout (int): The maximum timeout duration.
Returns:
(str): The retry message.
"""
if self._should_retry(response.status_code):
return f"Retrying {retry}x for {timeout}s." if retry else ""
elif response.status_code == HTTPStatus.TOO_MANY_REQUESTS: # rate limit
headers = response.headers
return (
f"Rate limit reached ({headers['X-RateLimit-Remaining']}/{headers['X-RateLimit-Limit']}). "
f"Please retry after {headers['Retry-After']}s."
)
else:
try:
return response.json().get("message", "No JSON message.")
except AttributeError:
return "Unable to read JSON."
def upload_metrics(self):
"""Upload model metrics to Ultralytics HUB."""
return self.request_queue(self.model.upload_metrics, metrics=self.metrics_queue.copy(), thread=True)
def upload_model(
self,
epoch: int,
weights: str,
is_best: bool = False,
map: float = 0.0,
final: bool = False,
) -> None:
"""
Upload a model checkpoint to Ultralytics HUB.
Args:
epoch (int): The current training epoch.
weights (str): Path to the model weights file.
is_best (bool): Indicates if the current model is the best one so far.
map (float): Mean average precision of the model.
final (bool): Indicates if the model is the final model after training.
"""
weights = Path(weights)
if not weights.is_file():
last = weights.with_name(f"last{weights.suffix}")
if final and last.is_file():
LOGGER.warning(
f"{PREFIX} Model 'best.pt' not found, copying 'last.pt' to 'best.pt' and uploading. "
"This often happens when resuming training in transient environments like Google Colab. "
"For more reliable training, consider using Ultralytics HUB Cloud. "
"Learn more at https://docs.ultralytics.com/hub/cloud-training."
)
shutil.copy(last, weights) # copy last.pt to best.pt
else:
LOGGER.warning(f"{PREFIX} Model upload issue. Missing model {weights}.")
return
self.request_queue(
self.model.upload_model,
epoch=epoch,
weights=str(weights),
is_best=is_best,
map=map,
final=final,
retry=10,
timeout=3600,
thread=not final,
progress_total=weights.stat().st_size if final else None, # only show progress if final
stream_response=True,
)
@staticmethod
def _show_upload_progress(content_length: int, response) -> None:
"""Display a progress bar to track the upload progress of a file download."""
with TQDM(total=content_length, unit="B", unit_scale=True, unit_divisor=1024) as pbar:
for data in response.iter_content(chunk_size=1024):
pbar.update(len(data))
@staticmethod
def _iterate_content(response) -> None:
"""Process the streamed HTTP response data."""
for _ in response.iter_content(chunk_size=1024):
pass # Do nothing with data chunks

165
ultralytics/hub/utils.py Normal file
View File

@@ -0,0 +1,165 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import os
import threading
import time
from typing import Any
from ultralytics.utils import (
IS_COLAB,
LOGGER,
TQDM,
TryExcept,
colorstr,
)
HUB_API_ROOT = os.environ.get("ULTRALYTICS_HUB_API", "https://api.ultralytics.com")
HUB_WEB_ROOT = os.environ.get("ULTRALYTICS_HUB_WEB", "https://hub.ultralytics.com")
PREFIX = colorstr("Ultralytics HUB: ")
HELP_MSG = "If this issue persists please visit https://github.com/ultralytics/hub/issues for assistance."
def request_with_credentials(url: str) -> Any:
"""
Make an AJAX request with cookies attached in a Google Colab environment.
Args:
url (str): The URL to make the request to.
Returns:
(Any): The response data from the AJAX request.
Raises:
OSError: If the function is not run in a Google Colab environment.
"""
if not IS_COLAB:
raise OSError("request_with_credentials() must run in a Colab environment")
from google.colab import output # noqa
from IPython import display # noqa
display.display(
display.Javascript(
f"""
window._hub_tmp = new Promise((resolve, reject) => {{
const timeout = setTimeout(() => reject("Failed authenticating existing browser session"), 5000)
fetch("{url}", {{
method: 'POST',
credentials: 'include'
}})
.then((response) => resolve(response.json()))
.then((json) => {{
clearTimeout(timeout);
}}).catch((err) => {{
clearTimeout(timeout);
reject(err);
}});
}});
"""
)
)
return output.eval_js("_hub_tmp")
def requests_with_progress(method: str, url: str, **kwargs):
"""
Make an HTTP request using the specified method and URL, with an optional progress bar.
Args:
method (str): The HTTP method to use (e.g. 'GET', 'POST').
url (str): The URL to send the request to.
**kwargs (Any): Additional keyword arguments to pass to the underlying `requests.request` function.
Returns:
(requests.Response): The response object from the HTTP request.
Notes:
- If 'progress' is set to True, the progress bar will display the download progress for responses with a known
content length.
- If 'progress' is a number then progress bar will display assuming content length = progress.
"""
import requests # scoped as slow import
progress = kwargs.pop("progress", False)
if not progress:
return requests.request(method, url, **kwargs)
response = requests.request(method, url, stream=True, **kwargs)
total = int(response.headers.get("content-length", 0) if isinstance(progress, bool) else progress) # total size
try:
pbar = TQDM(total=total, unit="B", unit_scale=True, unit_divisor=1024)
for data in response.iter_content(chunk_size=1024):
pbar.update(len(data))
pbar.close()
except requests.exceptions.ChunkedEncodingError: # avoid 'Connection broken: IncompleteRead' warnings
response.close()
return response
def smart_request(
method: str,
url: str,
retry: int = 3,
timeout: int = 30,
thread: bool = True,
code: int = -1,
verbose: bool = True,
progress: bool = False,
**kwargs,
):
"""
Make an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout.
Args:
method (str): The HTTP method to use for the request. Choices are 'post' and 'get'.
url (str): The URL to make the request to.
retry (int, optional): Number of retries to attempt before giving up.
timeout (int, optional): Timeout in seconds after which the function will give up retrying.
thread (bool, optional): Whether to execute the request in a separate daemon thread.
code (int, optional): An identifier for the request, used for logging purposes.
verbose (bool, optional): A flag to determine whether to print out to console or not.
progress (bool, optional): Whether to show a progress bar during the request.
**kwargs (Any): Keyword arguments to be passed to the requests function specified in method.
Returns:
(requests.Response | None): The HTTP response object. If the request is executed in a separate thread, returns
None.
"""
retry_codes = (408, 500) # retry only these codes
@TryExcept(verbose=verbose)
def func(func_method, func_url, **func_kwargs):
"""Make HTTP requests with retries and timeouts, with optional progress tracking."""
r = None # response
t0 = time.time() # initial time for timer
for i in range(retry + 1):
if (time.time() - t0) > timeout:
break
r = requests_with_progress(func_method, func_url, **func_kwargs) # i.e. get(url, data, json, files)
if r.status_code < 300: # return codes in the 2xx range are generally considered "good" or "successful"
break
try:
m = r.json().get("message", "No JSON message.")
except AttributeError:
m = "Unable to read JSON."
if i == 0:
if r.status_code in retry_codes:
m += f" Retrying {retry}x for {timeout}s." if retry else ""
elif r.status_code == 429: # rate limit
h = r.headers # response headers
m = (
f"Rate limit reached ({h['X-RateLimit-Remaining']}/{h['X-RateLimit-Limit']}). "
f"Please retry after {h['Retry-After']}s."
)
if verbose:
LOGGER.warning(f"{PREFIX}{m} {HELP_MSG} ({r.status_code} #{code})")
if r.status_code not in retry_codes:
return r
time.sleep(2**i) # exponential standoff
return r
args = method, url
kwargs["progress"] = progress
if thread:
threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True).start()
else:
return func(*args, **kwargs)