init commit
This commit is contained in:
315
ultralytics/data/build.py
Normal file
315
ultralytics/data/build.py
Normal file
@@ -0,0 +1,315 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import random
|
||||
from collections.abc import Iterator
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from urllib.parse import urlsplit
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import dataloader, distributed
|
||||
|
||||
from ultralytics.cfg import IterableSimpleNamespace
|
||||
from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
|
||||
from ultralytics.data.loaders import (
|
||||
LOADERS,
|
||||
LoadImagesAndVideos,
|
||||
LoadPilAndNumpy,
|
||||
LoadScreenshots,
|
||||
LoadStreams,
|
||||
LoadTensor,
|
||||
SourceTypes,
|
||||
autocast_list,
|
||||
)
|
||||
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
|
||||
from ultralytics.utils import RANK, colorstr
|
||||
from ultralytics.utils.checks import check_file
|
||||
from ultralytics.utils.torch_utils import TORCH_2_0
|
||||
|
||||
|
||||
class InfiniteDataLoader(dataloader.DataLoader):
|
||||
"""
|
||||
Dataloader that reuses workers for infinite iteration.
|
||||
|
||||
This dataloader extends the PyTorch DataLoader to provide infinite recycling of workers, which improves efficiency
|
||||
for training loops that need to iterate through the dataset multiple times without recreating workers.
|
||||
|
||||
Attributes:
|
||||
batch_sampler (_RepeatSampler): A sampler that repeats indefinitely.
|
||||
iterator (Iterator): The iterator from the parent DataLoader.
|
||||
|
||||
Methods:
|
||||
__len__: Return the length of the batch sampler's sampler.
|
||||
__iter__: Create a sampler that repeats indefinitely.
|
||||
__del__: Ensure workers are properly terminated.
|
||||
reset: Reset the iterator, useful when modifying dataset settings during training.
|
||||
|
||||
Examples:
|
||||
Create an infinite dataloader for training
|
||||
>>> dataset = YOLODataset(...)
|
||||
>>> dataloader = InfiniteDataLoader(dataset, batch_size=16, shuffle=True)
|
||||
>>> for batch in dataloader: # Infinite iteration
|
||||
>>> train_step(batch)
|
||||
"""
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any):
|
||||
"""Initialize the InfiniteDataLoader with the same arguments as DataLoader."""
|
||||
if not TORCH_2_0:
|
||||
kwargs.pop("prefetch_factor", None) # not supported by earlier versions
|
||||
super().__init__(*args, **kwargs)
|
||||
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
|
||||
self.iterator = super().__iter__()
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return the length of the batch sampler's sampler."""
|
||||
return len(self.batch_sampler.sampler)
|
||||
|
||||
def __iter__(self) -> Iterator:
|
||||
"""Create an iterator that yields indefinitely from the underlying iterator."""
|
||||
for _ in range(len(self)):
|
||||
yield next(self.iterator)
|
||||
|
||||
def __del__(self):
|
||||
"""Ensure that workers are properly terminated when the dataloader is deleted."""
|
||||
try:
|
||||
if not hasattr(self.iterator, "_workers"):
|
||||
return
|
||||
for w in self.iterator._workers: # force terminate
|
||||
if w.is_alive():
|
||||
w.terminate()
|
||||
self.iterator._shutdown_workers() # cleanup
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def reset(self):
|
||||
"""Reset the iterator to allow modifications to the dataset during training."""
|
||||
self.iterator = self._get_iterator()
|
||||
|
||||
|
||||
class _RepeatSampler:
|
||||
"""
|
||||
Sampler that repeats forever for infinite iteration.
|
||||
|
||||
This sampler wraps another sampler and yields its contents indefinitely, allowing for infinite iteration
|
||||
over a dataset without recreating the sampler.
|
||||
|
||||
Attributes:
|
||||
sampler (Dataset.sampler): The sampler to repeat.
|
||||
"""
|
||||
|
||||
def __init__(self, sampler: Any):
|
||||
"""Initialize the _RepeatSampler with a sampler to repeat indefinitely."""
|
||||
self.sampler = sampler
|
||||
|
||||
def __iter__(self) -> Iterator:
|
||||
"""Iterate over the sampler indefinitely, yielding its contents."""
|
||||
while True:
|
||||
yield from iter(self.sampler)
|
||||
|
||||
|
||||
def seed_worker(worker_id: int): # noqa
|
||||
"""Set dataloader worker seed for reproducibility across worker processes."""
|
||||
worker_seed = torch.initial_seed() % 2**32
|
||||
np.random.seed(worker_seed)
|
||||
random.seed(worker_seed)
|
||||
|
||||
|
||||
def build_yolo_dataset(
|
||||
cfg: IterableSimpleNamespace,
|
||||
img_path: str,
|
||||
batch: int,
|
||||
data: dict[str, Any],
|
||||
mode: str = "train",
|
||||
rect: bool = False,
|
||||
stride: int = 32,
|
||||
multi_modal: bool = False,
|
||||
):
|
||||
"""Build and return a YOLO dataset based on configuration parameters."""
|
||||
dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
|
||||
return dataset(
|
||||
img_path=img_path,
|
||||
imgsz=cfg.imgsz,
|
||||
batch_size=batch,
|
||||
augment=mode == "train", # augmentation
|
||||
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
||||
rect=cfg.rect or rect, # rectangular batches
|
||||
cache=cfg.cache or None,
|
||||
single_cls=cfg.single_cls or False,
|
||||
stride=stride,
|
||||
pad=0.0 if mode == "train" else 0.5,
|
||||
prefix=colorstr(f"{mode}: "),
|
||||
task=cfg.task,
|
||||
classes=cfg.classes,
|
||||
data=data,
|
||||
fraction=cfg.fraction if mode == "train" else 1.0,
|
||||
)
|
||||
|
||||
|
||||
def build_grounding(
|
||||
cfg: IterableSimpleNamespace,
|
||||
img_path: str,
|
||||
json_file: str,
|
||||
batch: int,
|
||||
mode: str = "train",
|
||||
rect: bool = False,
|
||||
stride: int = 32,
|
||||
max_samples: int = 80,
|
||||
):
|
||||
"""Build and return a GroundingDataset based on configuration parameters."""
|
||||
return GroundingDataset(
|
||||
img_path=img_path,
|
||||
json_file=json_file,
|
||||
max_samples=max_samples,
|
||||
imgsz=cfg.imgsz,
|
||||
batch_size=batch,
|
||||
augment=mode == "train", # augmentation
|
||||
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
||||
rect=cfg.rect or rect, # rectangular batches
|
||||
cache=cfg.cache or None,
|
||||
single_cls=cfg.single_cls or False,
|
||||
stride=stride,
|
||||
pad=0.0 if mode == "train" else 0.5,
|
||||
prefix=colorstr(f"{mode}: "),
|
||||
task=cfg.task,
|
||||
classes=cfg.classes,
|
||||
fraction=cfg.fraction if mode == "train" else 1.0,
|
||||
)
|
||||
|
||||
|
||||
def build_dataloader(dataset, batch: int, workers: int, shuffle: bool = True, rank: int = -1, drop_last: bool = False):
|
||||
"""
|
||||
Create and return an InfiniteDataLoader or DataLoader for training or validation.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): Dataset to load data from.
|
||||
batch (int): Batch size for the dataloader.
|
||||
workers (int): Number of worker threads for loading data.
|
||||
shuffle (bool, optional): Whether to shuffle the dataset.
|
||||
rank (int, optional): Process rank in distributed training. -1 for single-GPU training.
|
||||
drop_last (bool, optional): Whether to drop the last incomplete batch.
|
||||
|
||||
Returns:
|
||||
(InfiniteDataLoader): A dataloader that can be used for training or validation.
|
||||
|
||||
Examples:
|
||||
Create a dataloader for training
|
||||
>>> dataset = YOLODataset(...)
|
||||
>>> dataloader = build_dataloader(dataset, batch=16, workers=4, shuffle=True)
|
||||
"""
|
||||
batch = min(batch, len(dataset))
|
||||
nd = torch.cuda.device_count() # number of CUDA devices
|
||||
nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers
|
||||
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
||||
generator = torch.Generator()
|
||||
generator.manual_seed(6148914691236517205 + RANK)
|
||||
return InfiniteDataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch,
|
||||
shuffle=shuffle and sampler is None,
|
||||
num_workers=nw,
|
||||
sampler=sampler,
|
||||
prefetch_factor=4 if nw > 0 else None, # increase over default 2
|
||||
pin_memory=nd > 0,
|
||||
collate_fn=getattr(dataset, "collate_fn", None),
|
||||
worker_init_fn=seed_worker,
|
||||
generator=generator,
|
||||
drop_last=drop_last and len(dataset) % batch != 0,
|
||||
)
|
||||
|
||||
|
||||
def check_source(source):
|
||||
"""
|
||||
Check the type of input source and return corresponding flag values.
|
||||
|
||||
Args:
|
||||
source (str | int | Path | list | tuple | np.ndarray | PIL.Image | torch.Tensor): The input source to check.
|
||||
|
||||
Returns:
|
||||
source (str | int | Path | list | tuple | np.ndarray | PIL.Image | torch.Tensor): The processed source.
|
||||
webcam (bool): Whether the source is a webcam.
|
||||
screenshot (bool): Whether the source is a screenshot.
|
||||
from_img (bool): Whether the source is an image or list of images.
|
||||
in_memory (bool): Whether the source is an in-memory object.
|
||||
tensor (bool): Whether the source is a torch.Tensor.
|
||||
|
||||
Examples:
|
||||
Check a file path source
|
||||
>>> source, webcam, screenshot, from_img, in_memory, tensor = check_source("image.jpg")
|
||||
|
||||
Check a webcam source
|
||||
>>> source, webcam, screenshot, from_img, in_memory, tensor = check_source(0)
|
||||
"""
|
||||
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
|
||||
if isinstance(source, (str, int, Path)): # int for local usb camera
|
||||
source = str(source)
|
||||
source_lower = source.lower()
|
||||
is_url = source_lower.startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
|
||||
is_file = (urlsplit(source_lower).path if is_url else source_lower).rpartition(".")[-1] in (
|
||||
IMG_FORMATS | VID_FORMATS
|
||||
)
|
||||
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
||||
screenshot = source_lower == "screen"
|
||||
if is_url and is_file:
|
||||
source = check_file(source) # download
|
||||
elif isinstance(source, LOADERS):
|
||||
in_memory = True
|
||||
elif isinstance(source, (list, tuple)):
|
||||
source = autocast_list(source) # convert all list elements to PIL or np arrays
|
||||
from_img = True
|
||||
elif isinstance(source, (Image.Image, np.ndarray)):
|
||||
from_img = True
|
||||
elif isinstance(source, torch.Tensor):
|
||||
tensor = True
|
||||
else:
|
||||
raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")
|
||||
|
||||
return source, webcam, screenshot, from_img, in_memory, tensor
|
||||
|
||||
|
||||
def load_inference_source(source=None, batch: int = 1, vid_stride: int = 1, buffer: bool = False, channels: int = 3):
|
||||
"""
|
||||
Load an inference source for object detection and apply necessary transformations.
|
||||
|
||||
Args:
|
||||
source (str | Path | torch.Tensor | PIL.Image | np.ndarray, optional): The input source for inference.
|
||||
batch (int, optional): Batch size for dataloaders.
|
||||
vid_stride (int, optional): The frame interval for video sources.
|
||||
buffer (bool, optional): Whether stream frames will be buffered.
|
||||
channels (int, optional): The number of input channels for the model.
|
||||
|
||||
Returns:
|
||||
(Dataset): A dataset object for the specified input source with attached source_type attribute.
|
||||
|
||||
Examples:
|
||||
Load an image source for inference
|
||||
>>> dataset = load_inference_source("image.jpg", batch=1)
|
||||
|
||||
Load a video stream source
|
||||
>>> dataset = load_inference_source("rtsp://example.com/stream", vid_stride=2)
|
||||
"""
|
||||
source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
|
||||
source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)
|
||||
|
||||
# Dataloader
|
||||
if tensor:
|
||||
dataset = LoadTensor(source)
|
||||
elif in_memory:
|
||||
dataset = source
|
||||
elif stream:
|
||||
dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer, channels=channels)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, channels=channels)
|
||||
elif from_img:
|
||||
dataset = LoadPilAndNumpy(source, channels=channels)
|
||||
else:
|
||||
dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride, channels=channels)
|
||||
|
||||
# Attach source types to the dataset
|
||||
setattr(dataset, "source_type", source_type)
|
||||
|
||||
return dataset
|
||||
Reference in New Issue
Block a user