init commit

This commit is contained in:
2025-11-08 19:15:39 +01:00
parent ecffcb08e8
commit c7adacf53b
470 changed files with 73751 additions and 0 deletions

View File

@@ -0,0 +1,87 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
# Example usage: yolo train data=VisDrone.yaml
# parent
# ├── ultralytics
# └── datasets
# └── VisDrone ← downloads here (2.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: VisDrone # dataset root dir
train: images/train # train images (relative to 'path') 6471 images
val: images/val # val images (relative to 'path') 548 images
test: images/test # test-dev images (optional) 1610 images
# Classes
names:
0: pedestrian
1: people
2: bicycle
3: car
4: van
5: truck
6: tricycle
7: awning-tricycle
8: bus
9: motor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import os
from pathlib import Path
import shutil
from ultralytics.utils.downloads import download
from ultralytics.utils import TQDM
def visdrone2yolo(dir, split, source_name=None):
"""Convert VisDrone annotations to YOLO format with images/{split} and labels/{split} structure."""
from PIL import Image
source_dir = dir / (source_name or f"VisDrone2019-DET-{split}")
images_dir = dir / "images" / split
labels_dir = dir / "labels" / split
labels_dir.mkdir(parents=True, exist_ok=True)
# Move images to new structure
if (source_images_dir := source_dir / "images").exists():
images_dir.mkdir(parents=True, exist_ok=True)
for img in source_images_dir.glob("*.jpg"):
img.rename(images_dir / img.name)
for f in TQDM((source_dir / "annotations").glob("*.txt"), desc=f"Converting {split}"):
img_size = Image.open(images_dir / f.with_suffix(".jpg").name).size
dw, dh = 1.0 / img_size[0], 1.0 / img_size[1]
lines = []
with open(f, encoding="utf-8") as file:
for row in [x.split(",") for x in file.read().strip().splitlines()]:
if row[4] != "0": # Skip ignored regions
x, y, w, h = map(int, row[:4])
cls = int(row[5]) - 1
# Convert to YOLO format
x_center, y_center = (x + w / 2) * dw, (y + h / 2) * dh
w_norm, h_norm = w * dw, h * dh
lines.append(f"{cls} {x_center:.6f} {y_center:.6f} {w_norm:.6f} {h_norm:.6f}\n")
(labels_dir / f.name).write_text("".join(lines), encoding="utf-8")
# Download (ignores test-challenge split)
dir = Path(yaml["path"]) # dataset root dir
urls = [
"https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip",
"https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip",
"https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip",
# "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip",
]
download(urls, dir=dir, threads=4)
# Convert
splits = {"VisDrone2019-DET-train": "train", "VisDrone2019-DET-val": "val", "VisDrone2019-DET-test-dev": "test"}
for folder, split in splits.items():
visdrone2yolo(dir, split, folder) # convert VisDrone annotations to YOLO labels
shutil.rmtree(dir / folder) # cleanup original directory