init commit
This commit is contained in:
77
ultralytics/cfg/datasets/Argoverse.yaml
Normal file
77
ultralytics/cfg/datasets/Argoverse.yaml
Normal file
@@ -0,0 +1,77 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
|
||||
# Example usage: yolo train data=Argoverse.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── Argoverse ← downloads here (31.5 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: Argoverse # dataset root dir
|
||||
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||||
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||||
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: bus
|
||||
5: truck
|
||||
6: traffic_light
|
||||
7: stop_sign
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.utils import TQDM
|
||||
from ultralytics.utils.downloads import download
|
||||
|
||||
def argoverse2yolo(set):
|
||||
"""Convert Argoverse dataset annotations to YOLO format for object detection tasks."""
|
||||
labels = {}
|
||||
a = json.load(open(set, "rb"))
|
||||
for annot in TQDM(a["annotations"], desc=f"Converting {set} to YOLOv5 format..."):
|
||||
img_id = annot["image_id"]
|
||||
img_name = a["images"][img_id]["name"]
|
||||
img_label_name = f"{img_name[:-3]}txt"
|
||||
|
||||
cls = annot["category_id"] # instance class id
|
||||
x_center, y_center, width, height = annot["bbox"]
|
||||
x_center = (x_center + width / 2) / 1920.0 # offset and scale
|
||||
y_center = (y_center + height / 2) / 1200.0 # offset and scale
|
||||
width /= 1920.0 # scale
|
||||
height /= 1200.0 # scale
|
||||
|
||||
img_dir = set.parents[2] / "Argoverse-1.1" / "labels" / a["seq_dirs"][a["images"][annot["image_id"]]["sid"]]
|
||||
if not img_dir.exists():
|
||||
img_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
k = str(img_dir / img_label_name)
|
||||
if k not in labels:
|
||||
labels[k] = []
|
||||
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
|
||||
|
||||
for k in labels:
|
||||
with open(k, "w", encoding="utf-8") as f:
|
||||
f.writelines(labels[k])
|
||||
|
||||
|
||||
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
urls = ["https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link"]
|
||||
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
|
||||
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
|
||||
# download(urls, dir=dir)
|
||||
|
||||
# Convert
|
||||
annotations_dir = "Argoverse-HD/annotations/"
|
||||
(dir / "Argoverse-1.1" / "tracking").rename(dir / "Argoverse-1.1" / "images") # rename 'tracking' to 'images'
|
||||
for d in "train.json", "val.json":
|
||||
argoverse2yolo(dir / annotations_dir / d) # convert Argoverse annotations to YOLO labels
|
||||
Reference in New Issue
Block a user