init commit
This commit is contained in:
77
ultralytics/cfg/datasets/Argoverse.yaml
Normal file
77
ultralytics/cfg/datasets/Argoverse.yaml
Normal file
@@ -0,0 +1,77 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
|
||||
# Example usage: yolo train data=Argoverse.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── Argoverse ← downloads here (31.5 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: Argoverse # dataset root dir
|
||||
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||||
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||||
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: bus
|
||||
5: truck
|
||||
6: traffic_light
|
||||
7: stop_sign
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.utils import TQDM
|
||||
from ultralytics.utils.downloads import download
|
||||
|
||||
def argoverse2yolo(set):
|
||||
"""Convert Argoverse dataset annotations to YOLO format for object detection tasks."""
|
||||
labels = {}
|
||||
a = json.load(open(set, "rb"))
|
||||
for annot in TQDM(a["annotations"], desc=f"Converting {set} to YOLOv5 format..."):
|
||||
img_id = annot["image_id"]
|
||||
img_name = a["images"][img_id]["name"]
|
||||
img_label_name = f"{img_name[:-3]}txt"
|
||||
|
||||
cls = annot["category_id"] # instance class id
|
||||
x_center, y_center, width, height = annot["bbox"]
|
||||
x_center = (x_center + width / 2) / 1920.0 # offset and scale
|
||||
y_center = (y_center + height / 2) / 1200.0 # offset and scale
|
||||
width /= 1920.0 # scale
|
||||
height /= 1200.0 # scale
|
||||
|
||||
img_dir = set.parents[2] / "Argoverse-1.1" / "labels" / a["seq_dirs"][a["images"][annot["image_id"]]["sid"]]
|
||||
if not img_dir.exists():
|
||||
img_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
k = str(img_dir / img_label_name)
|
||||
if k not in labels:
|
||||
labels[k] = []
|
||||
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
|
||||
|
||||
for k in labels:
|
||||
with open(k, "w", encoding="utf-8") as f:
|
||||
f.writelines(labels[k])
|
||||
|
||||
|
||||
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
urls = ["https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link"]
|
||||
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
|
||||
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
|
||||
# download(urls, dir=dir)
|
||||
|
||||
# Convert
|
||||
annotations_dir = "Argoverse-HD/annotations/"
|
||||
(dir / "Argoverse-1.1" / "tracking").rename(dir / "Argoverse-1.1" / "images") # rename 'tracking' to 'images'
|
||||
for d in "train.json", "val.json":
|
||||
argoverse2yolo(dir / annotations_dir / d) # convert Argoverse annotations to YOLO labels
|
||||
37
ultralytics/cfg/datasets/DOTAv1.5.yaml
Normal file
37
ultralytics/cfg/datasets/DOTAv1.5.yaml
Normal file
@@ -0,0 +1,37 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota1.5 ← downloads here (2GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: DOTAv1.5 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
|
||||
# Classes for DOTA 1.5
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
15: container crane
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.5.zip
|
||||
36
ultralytics/cfg/datasets/DOTAv1.yaml
Normal file
36
ultralytics/cfg/datasets/DOTAv1.yaml
Normal file
@@ -0,0 +1,36 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota1 ← downloads here (2GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: DOTAv1 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
|
||||
# Classes for DOTA 1.0
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.zip
|
||||
68
ultralytics/cfg/datasets/GlobalWheat2020.yaml
Normal file
68
ultralytics/cfg/datasets/GlobalWheat2020.yaml
Normal file
@@ -0,0 +1,68 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
|
||||
# Example usage: yolo train data=GlobalWheat2020.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: GlobalWheat2020 # dataset root dir
|
||||
train: # train images (relative to 'path') 3422 images
|
||||
- images/arvalis_1
|
||||
- images/arvalis_2
|
||||
- images/arvalis_3
|
||||
- images/ethz_1
|
||||
- images/rres_1
|
||||
- images/inrae_1
|
||||
- images/usask_1
|
||||
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
|
||||
- images/ethz_1
|
||||
test: # test images (optional) 1276 images
|
||||
- images/utokyo_1
|
||||
- images/utokyo_2
|
||||
- images/nau_1
|
||||
- images/uq_1
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: wheat_head
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.utils.downloads import download
|
||||
|
||||
# Download
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
urls = [
|
||||
"https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip",
|
||||
"https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip",
|
||||
]
|
||||
download(urls, dir=dir)
|
||||
|
||||
# Make Directories
|
||||
for p in "annotations", "images", "labels":
|
||||
(dir / p).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Move
|
||||
for p in (
|
||||
"arvalis_1",
|
||||
"arvalis_2",
|
||||
"arvalis_3",
|
||||
"ethz_1",
|
||||
"rres_1",
|
||||
"inrae_1",
|
||||
"usask_1",
|
||||
"utokyo_1",
|
||||
"utokyo_2",
|
||||
"nau_1",
|
||||
"uq_1",
|
||||
):
|
||||
(dir / "global-wheat-codalab-official" / p).rename(dir / "images" / p) # move to /images
|
||||
f = (dir / "global-wheat-codalab-official" / p).with_suffix(".json") # json file
|
||||
if f.exists():
|
||||
f.rename((dir / "annotations" / p).with_suffix(".json")) # move to /annotations
|
||||
32
ultralytics/cfg/datasets/HomeObjects-3K.yaml
Normal file
32
ultralytics/cfg/datasets/HomeObjects-3K.yaml
Normal file
@@ -0,0 +1,32 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# HomeObjects-3K dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/homeobjects-3k/
|
||||
# Example usage: yolo train data=HomeObjects-3K.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── homeobjects-3K ← downloads here (390 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: homeobjects-3K # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 2285 images
|
||||
val: images/val # val images (relative to 'path') 404 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: bed
|
||||
1: sofa
|
||||
2: chair
|
||||
3: table
|
||||
4: lamp
|
||||
5: tv
|
||||
6: laptop
|
||||
7: wardrobe
|
||||
8: window
|
||||
9: door
|
||||
10: potted plant
|
||||
11: photo frame
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/homeobjects-3K.zip
|
||||
2025
ultralytics/cfg/datasets/ImageNet.yaml
Normal file
2025
ultralytics/cfg/datasets/ImageNet.yaml
Normal file
File diff suppressed because it is too large
Load Diff
443
ultralytics/cfg/datasets/Objects365.yaml
Normal file
443
ultralytics/cfg/datasets/Objects365.yaml
Normal file
@@ -0,0 +1,443 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Objects365 dataset https://www.objects365.org/ by Megvii
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
|
||||
# Example usage: yolo train data=Objects365.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: Objects365 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1742289 images
|
||||
val: images/val # val images (relative to 'path') 80000 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: Person
|
||||
1: Sneakers
|
||||
2: Chair
|
||||
3: Other Shoes
|
||||
4: Hat
|
||||
5: Car
|
||||
6: Lamp
|
||||
7: Glasses
|
||||
8: Bottle
|
||||
9: Desk
|
||||
10: Cup
|
||||
11: Street Lights
|
||||
12: Cabinet/shelf
|
||||
13: Handbag/Satchel
|
||||
14: Bracelet
|
||||
15: Plate
|
||||
16: Picture/Frame
|
||||
17: Helmet
|
||||
18: Book
|
||||
19: Gloves
|
||||
20: Storage box
|
||||
21: Boat
|
||||
22: Leather Shoes
|
||||
23: Flower
|
||||
24: Bench
|
||||
25: Potted Plant
|
||||
26: Bowl/Basin
|
||||
27: Flag
|
||||
28: Pillow
|
||||
29: Boots
|
||||
30: Vase
|
||||
31: Microphone
|
||||
32: Necklace
|
||||
33: Ring
|
||||
34: SUV
|
||||
35: Wine Glass
|
||||
36: Belt
|
||||
37: Monitor/TV
|
||||
38: Backpack
|
||||
39: Umbrella
|
||||
40: Traffic Light
|
||||
41: Speaker
|
||||
42: Watch
|
||||
43: Tie
|
||||
44: Trash bin Can
|
||||
45: Slippers
|
||||
46: Bicycle
|
||||
47: Stool
|
||||
48: Barrel/bucket
|
||||
49: Van
|
||||
50: Couch
|
||||
51: Sandals
|
||||
52: Basket
|
||||
53: Drum
|
||||
54: Pen/Pencil
|
||||
55: Bus
|
||||
56: Wild Bird
|
||||
57: High Heels
|
||||
58: Motorcycle
|
||||
59: Guitar
|
||||
60: Carpet
|
||||
61: Cell Phone
|
||||
62: Bread
|
||||
63: Camera
|
||||
64: Canned
|
||||
65: Truck
|
||||
66: Traffic cone
|
||||
67: Cymbal
|
||||
68: Lifesaver
|
||||
69: Towel
|
||||
70: Stuffed Toy
|
||||
71: Candle
|
||||
72: Sailboat
|
||||
73: Laptop
|
||||
74: Awning
|
||||
75: Bed
|
||||
76: Faucet
|
||||
77: Tent
|
||||
78: Horse
|
||||
79: Mirror
|
||||
80: Power outlet
|
||||
81: Sink
|
||||
82: Apple
|
||||
83: Air Conditioner
|
||||
84: Knife
|
||||
85: Hockey Stick
|
||||
86: Paddle
|
||||
87: Pickup Truck
|
||||
88: Fork
|
||||
89: Traffic Sign
|
||||
90: Balloon
|
||||
91: Tripod
|
||||
92: Dog
|
||||
93: Spoon
|
||||
94: Clock
|
||||
95: Pot
|
||||
96: Cow
|
||||
97: Cake
|
||||
98: Dining Table
|
||||
99: Sheep
|
||||
100: Hanger
|
||||
101: Blackboard/Whiteboard
|
||||
102: Napkin
|
||||
103: Other Fish
|
||||
104: Orange/Tangerine
|
||||
105: Toiletry
|
||||
106: Keyboard
|
||||
107: Tomato
|
||||
108: Lantern
|
||||
109: Machinery Vehicle
|
||||
110: Fan
|
||||
111: Green Vegetables
|
||||
112: Banana
|
||||
113: Baseball Glove
|
||||
114: Airplane
|
||||
115: Mouse
|
||||
116: Train
|
||||
117: Pumpkin
|
||||
118: Soccer
|
||||
119: Skiboard
|
||||
120: Luggage
|
||||
121: Nightstand
|
||||
122: Tea pot
|
||||
123: Telephone
|
||||
124: Trolley
|
||||
125: Head Phone
|
||||
126: Sports Car
|
||||
127: Stop Sign
|
||||
128: Dessert
|
||||
129: Scooter
|
||||
130: Stroller
|
||||
131: Crane
|
||||
132: Remote
|
||||
133: Refrigerator
|
||||
134: Oven
|
||||
135: Lemon
|
||||
136: Duck
|
||||
137: Baseball Bat
|
||||
138: Surveillance Camera
|
||||
139: Cat
|
||||
140: Jug
|
||||
141: Broccoli
|
||||
142: Piano
|
||||
143: Pizza
|
||||
144: Elephant
|
||||
145: Skateboard
|
||||
146: Surfboard
|
||||
147: Gun
|
||||
148: Skating and Skiing shoes
|
||||
149: Gas stove
|
||||
150: Donut
|
||||
151: Bow Tie
|
||||
152: Carrot
|
||||
153: Toilet
|
||||
154: Kite
|
||||
155: Strawberry
|
||||
156: Other Balls
|
||||
157: Shovel
|
||||
158: Pepper
|
||||
159: Computer Box
|
||||
160: Toilet Paper
|
||||
161: Cleaning Products
|
||||
162: Chopsticks
|
||||
163: Microwave
|
||||
164: Pigeon
|
||||
165: Baseball
|
||||
166: Cutting/chopping Board
|
||||
167: Coffee Table
|
||||
168: Side Table
|
||||
169: Scissors
|
||||
170: Marker
|
||||
171: Pie
|
||||
172: Ladder
|
||||
173: Snowboard
|
||||
174: Cookies
|
||||
175: Radiator
|
||||
176: Fire Hydrant
|
||||
177: Basketball
|
||||
178: Zebra
|
||||
179: Grape
|
||||
180: Giraffe
|
||||
181: Potato
|
||||
182: Sausage
|
||||
183: Tricycle
|
||||
184: Violin
|
||||
185: Egg
|
||||
186: Fire Extinguisher
|
||||
187: Candy
|
||||
188: Fire Truck
|
||||
189: Billiards
|
||||
190: Converter
|
||||
191: Bathtub
|
||||
192: Wheelchair
|
||||
193: Golf Club
|
||||
194: Briefcase
|
||||
195: Cucumber
|
||||
196: Cigar/Cigarette
|
||||
197: Paint Brush
|
||||
198: Pear
|
||||
199: Heavy Truck
|
||||
200: Hamburger
|
||||
201: Extractor
|
||||
202: Extension Cord
|
||||
203: Tong
|
||||
204: Tennis Racket
|
||||
205: Folder
|
||||
206: American Football
|
||||
207: earphone
|
||||
208: Mask
|
||||
209: Kettle
|
||||
210: Tennis
|
||||
211: Ship
|
||||
212: Swing
|
||||
213: Coffee Machine
|
||||
214: Slide
|
||||
215: Carriage
|
||||
216: Onion
|
||||
217: Green beans
|
||||
218: Projector
|
||||
219: Frisbee
|
||||
220: Washing Machine/Drying Machine
|
||||
221: Chicken
|
||||
222: Printer
|
||||
223: Watermelon
|
||||
224: Saxophone
|
||||
225: Tissue
|
||||
226: Toothbrush
|
||||
227: Ice cream
|
||||
228: Hot-air balloon
|
||||
229: Cello
|
||||
230: French Fries
|
||||
231: Scale
|
||||
232: Trophy
|
||||
233: Cabbage
|
||||
234: Hot dog
|
||||
235: Blender
|
||||
236: Peach
|
||||
237: Rice
|
||||
238: Wallet/Purse
|
||||
239: Volleyball
|
||||
240: Deer
|
||||
241: Goose
|
||||
242: Tape
|
||||
243: Tablet
|
||||
244: Cosmetics
|
||||
245: Trumpet
|
||||
246: Pineapple
|
||||
247: Golf Ball
|
||||
248: Ambulance
|
||||
249: Parking meter
|
||||
250: Mango
|
||||
251: Key
|
||||
252: Hurdle
|
||||
253: Fishing Rod
|
||||
254: Medal
|
||||
255: Flute
|
||||
256: Brush
|
||||
257: Penguin
|
||||
258: Megaphone
|
||||
259: Corn
|
||||
260: Lettuce
|
||||
261: Garlic
|
||||
262: Swan
|
||||
263: Helicopter
|
||||
264: Green Onion
|
||||
265: Sandwich
|
||||
266: Nuts
|
||||
267: Speed Limit Sign
|
||||
268: Induction Cooker
|
||||
269: Broom
|
||||
270: Trombone
|
||||
271: Plum
|
||||
272: Rickshaw
|
||||
273: Goldfish
|
||||
274: Kiwi fruit
|
||||
275: Router/modem
|
||||
276: Poker Card
|
||||
277: Toaster
|
||||
278: Shrimp
|
||||
279: Sushi
|
||||
280: Cheese
|
||||
281: Notepaper
|
||||
282: Cherry
|
||||
283: Pliers
|
||||
284: CD
|
||||
285: Pasta
|
||||
286: Hammer
|
||||
287: Cue
|
||||
288: Avocado
|
||||
289: Hami melon
|
||||
290: Flask
|
||||
291: Mushroom
|
||||
292: Screwdriver
|
||||
293: Soap
|
||||
294: Recorder
|
||||
295: Bear
|
||||
296: Eggplant
|
||||
297: Board Eraser
|
||||
298: Coconut
|
||||
299: Tape Measure/Ruler
|
||||
300: Pig
|
||||
301: Showerhead
|
||||
302: Globe
|
||||
303: Chips
|
||||
304: Steak
|
||||
305: Crosswalk Sign
|
||||
306: Stapler
|
||||
307: Camel
|
||||
308: Formula 1
|
||||
309: Pomegranate
|
||||
310: Dishwasher
|
||||
311: Crab
|
||||
312: Hoverboard
|
||||
313: Meatball
|
||||
314: Rice Cooker
|
||||
315: Tuba
|
||||
316: Calculator
|
||||
317: Papaya
|
||||
318: Antelope
|
||||
319: Parrot
|
||||
320: Seal
|
||||
321: Butterfly
|
||||
322: Dumbbell
|
||||
323: Donkey
|
||||
324: Lion
|
||||
325: Urinal
|
||||
326: Dolphin
|
||||
327: Electric Drill
|
||||
328: Hair Dryer
|
||||
329: Egg tart
|
||||
330: Jellyfish
|
||||
331: Treadmill
|
||||
332: Lighter
|
||||
333: Grapefruit
|
||||
334: Game board
|
||||
335: Mop
|
||||
336: Radish
|
||||
337: Baozi
|
||||
338: Target
|
||||
339: French
|
||||
340: Spring Rolls
|
||||
341: Monkey
|
||||
342: Rabbit
|
||||
343: Pencil Case
|
||||
344: Yak
|
||||
345: Red Cabbage
|
||||
346: Binoculars
|
||||
347: Asparagus
|
||||
348: Barbell
|
||||
349: Scallop
|
||||
350: Noddles
|
||||
351: Comb
|
||||
352: Dumpling
|
||||
353: Oyster
|
||||
354: Table Tennis paddle
|
||||
355: Cosmetics Brush/Eyeliner Pencil
|
||||
356: Chainsaw
|
||||
357: Eraser
|
||||
358: Lobster
|
||||
359: Durian
|
||||
360: Okra
|
||||
361: Lipstick
|
||||
362: Cosmetics Mirror
|
||||
363: Curling
|
||||
364: Table Tennis
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils import TQDM
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
from ultralytics.utils.downloads import download
|
||||
from ultralytics.utils.ops import xyxy2xywhn
|
||||
|
||||
check_requirements("faster-coco-eval")
|
||||
from faster_coco_eval import COCO
|
||||
|
||||
# Make Directories
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
for p in "images", "labels":
|
||||
(dir / p).mkdir(parents=True, exist_ok=True)
|
||||
for q in "train", "val":
|
||||
(dir / p / q).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Train, Val Splits
|
||||
for split, patches in [("train", 50 + 1), ("val", 43 + 1)]:
|
||||
print(f"Processing {split} in {patches} patches ...")
|
||||
images, labels = dir / "images" / split, dir / "labels" / split
|
||||
|
||||
# Download
|
||||
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
|
||||
if split == "train":
|
||||
download([f"{url}zhiyuan_objv2_{split}.tar.gz"], dir=dir) # annotations json
|
||||
download([f"{url}patch{i}.tar.gz" for i in range(patches)], dir=images, curl=True, threads=8)
|
||||
elif split == "val":
|
||||
download([f"{url}zhiyuan_objv2_{split}.json"], dir=dir) # annotations json
|
||||
download([f"{url}images/v1/patch{i}.tar.gz" for i in range(15 + 1)], dir=images, curl=True, threads=8)
|
||||
download([f"{url}images/v2/patch{i}.tar.gz" for i in range(16, patches)], dir=images, curl=True, threads=8)
|
||||
|
||||
# Move
|
||||
for f in TQDM(images.rglob("*.jpg"), desc=f"Moving {split} images"):
|
||||
f.rename(images / f.name) # move to /images/{split}
|
||||
|
||||
# Labels
|
||||
coco = COCO(dir / f"zhiyuan_objv2_{split}.json")
|
||||
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
|
||||
for cid, cat in enumerate(names):
|
||||
catIds = coco.getCatIds(catNms=[cat])
|
||||
imgIds = coco.getImgIds(catIds=catIds)
|
||||
for im in TQDM(coco.loadImgs(imgIds), desc=f"Class {cid + 1}/{len(names)} {cat}"):
|
||||
width, height = im["width"], im["height"]
|
||||
path = Path(im["file_name"]) # image filename
|
||||
try:
|
||||
with open(labels / path.with_suffix(".txt").name, "a", encoding="utf-8") as file:
|
||||
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
|
||||
for a in coco.loadAnns(annIds):
|
||||
x, y, w, h = a["bbox"] # bounding box in xywh (xy top-left corner)
|
||||
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
|
||||
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
|
||||
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
58
ultralytics/cfg/datasets/SKU-110K.yaml
Normal file
58
ultralytics/cfg/datasets/SKU-110K.yaml
Normal file
@@ -0,0 +1,58 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
|
||||
# Example usage: yolo train data=SKU-110K.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── SKU-110K ← downloads here (13.6 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: SKU-110K # dataset root dir
|
||||
train: train.txt # train images (relative to 'path') 8219 images
|
||||
val: val.txt # val images (relative to 'path') 588 images
|
||||
test: test.txt # test images (optional) 2936 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: object
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import polars as pl
|
||||
|
||||
from ultralytics.utils import TQDM
|
||||
from ultralytics.utils.downloads import download
|
||||
from ultralytics.utils.ops import xyxy2xywh
|
||||
|
||||
# Download
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
parent = Path(dir.parent) # download dir
|
||||
urls = ["http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz"]
|
||||
download(urls, dir=parent)
|
||||
|
||||
# Rename directories
|
||||
if dir.exists():
|
||||
shutil.rmtree(dir)
|
||||
(parent / "SKU110K_fixed").rename(dir) # rename dir
|
||||
(dir / "labels").mkdir(parents=True, exist_ok=True) # create labels dir
|
||||
|
||||
# Convert labels
|
||||
names = "image", "x1", "y1", "x2", "y2", "class", "image_width", "image_height" # column names
|
||||
for d in "annotations_train.csv", "annotations_val.csv", "annotations_test.csv":
|
||||
x = pl.read_csv(dir / "annotations" / d, has_header=False, new_columns=names, infer_schema_length=None).to_numpy() # annotations
|
||||
images, unique_images = x[:, 0], np.unique(x[:, 0])
|
||||
with open((dir / d).with_suffix(".txt").__str__().replace("annotations_", ""), "w", encoding="utf-8") as f:
|
||||
f.writelines(f"./images/{s}\n" for s in unique_images)
|
||||
for im in TQDM(unique_images, desc=f"Converting {dir / d}"):
|
||||
cls = 0 # single-class dataset
|
||||
with open((dir / "labels" / im).with_suffix(".txt"), "a", encoding="utf-8") as f:
|
||||
for r in x[images == im]:
|
||||
w, h = r[6], r[7] # image width, height
|
||||
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
|
||||
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
|
||||
104
ultralytics/cfg/datasets/VOC.yaml
Normal file
104
ultralytics/cfg/datasets/VOC.yaml
Normal file
@@ -0,0 +1,104 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
||||
# Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
|
||||
# Example usage: yolo train data=VOC.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── VOC ← downloads here (2.8 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: VOC
|
||||
train: # train images (relative to 'path') 16551 images
|
||||
- images/train2012
|
||||
- images/train2007
|
||||
- images/val2012
|
||||
- images/val2007
|
||||
val: # val images (relative to 'path') 4952 images
|
||||
- images/test2007
|
||||
test: # test images (optional)
|
||||
- images/test2007
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: aeroplane
|
||||
1: bicycle
|
||||
2: bird
|
||||
3: boat
|
||||
4: bottle
|
||||
5: bus
|
||||
6: car
|
||||
7: cat
|
||||
8: chair
|
||||
9: cow
|
||||
10: diningtable
|
||||
11: dog
|
||||
12: horse
|
||||
13: motorbike
|
||||
14: person
|
||||
15: pottedplant
|
||||
16: sheep
|
||||
17: sofa
|
||||
18: train
|
||||
19: tvmonitor
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import xml.etree.ElementTree as ET
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.utils.downloads import download
|
||||
from ultralytics.utils import TQDM
|
||||
|
||||
def convert_label(path, lb_path, year, image_id):
|
||||
"""Converts XML annotations from VOC format to YOLO format by extracting bounding boxes and class IDs."""
|
||||
|
||||
def convert_box(size, box):
|
||||
dw, dh = 1.0 / size[0], 1.0 / size[1]
|
||||
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
|
||||
return x * dw, y * dh, w * dw, h * dh
|
||||
|
||||
in_file = open(path / f"VOC{year}/Annotations/{image_id}.xml")
|
||||
out_file = open(lb_path, "w")
|
||||
tree = ET.parse(in_file)
|
||||
root = tree.getroot()
|
||||
size = root.find("size")
|
||||
w = int(size.find("width").text)
|
||||
h = int(size.find("height").text)
|
||||
|
||||
names = list(yaml["names"].values()) # names list
|
||||
for obj in root.iter("object"):
|
||||
cls = obj.find("name").text
|
||||
if cls in names and int(obj.find("difficult").text) != 1:
|
||||
xmlbox = obj.find("bndbox")
|
||||
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ("xmin", "xmax", "ymin", "ymax")])
|
||||
cls_id = names.index(cls) # class id
|
||||
out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + "\n")
|
||||
|
||||
|
||||
# Download
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
||||
urls = [
|
||||
f"{url}VOCtrainval_06-Nov-2007.zip", # 446MB, 5012 images
|
||||
f"{url}VOCtest_06-Nov-2007.zip", # 438MB, 4953 images
|
||||
f"{url}VOCtrainval_11-May-2012.zip", # 1.95GB, 17126 images
|
||||
]
|
||||
download(urls, dir=dir / "images", threads=3, exist_ok=True) # download and unzip over existing (required)
|
||||
|
||||
# Convert
|
||||
path = dir / "images/VOCdevkit"
|
||||
for year, image_set in ("2012", "train"), ("2012", "val"), ("2007", "train"), ("2007", "val"), ("2007", "test"):
|
||||
imgs_path = dir / "images" / f"{image_set}{year}"
|
||||
lbs_path = dir / "labels" / f"{image_set}{year}"
|
||||
imgs_path.mkdir(exist_ok=True, parents=True)
|
||||
lbs_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
with open(path / f"VOC{year}/ImageSets/Main/{image_set}.txt") as f:
|
||||
image_ids = f.read().strip().split()
|
||||
for id in TQDM(image_ids, desc=f"{image_set}{year}"):
|
||||
f = path / f"VOC{year}/JPEGImages/{id}.jpg" # old img path
|
||||
lb_path = (lbs_path / f.name).with_suffix(".txt") # new label path
|
||||
f.rename(imgs_path / f.name) # move image
|
||||
convert_label(path, lb_path, year, id) # convert labels to YOLO format
|
||||
87
ultralytics/cfg/datasets/VisDrone.yaml
Normal file
87
ultralytics/cfg/datasets/VisDrone.yaml
Normal file
@@ -0,0 +1,87 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
|
||||
# Example usage: yolo train data=VisDrone.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── VisDrone ← downloads here (2.3 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: VisDrone # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 6471 images
|
||||
val: images/val # val images (relative to 'path') 548 images
|
||||
test: images/test # test-dev images (optional) 1610 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: pedestrian
|
||||
1: people
|
||||
2: bicycle
|
||||
3: car
|
||||
4: van
|
||||
5: truck
|
||||
6: tricycle
|
||||
7: awning-tricycle
|
||||
8: bus
|
||||
9: motor
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import os
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
|
||||
from ultralytics.utils.downloads import download
|
||||
from ultralytics.utils import TQDM
|
||||
|
||||
|
||||
def visdrone2yolo(dir, split, source_name=None):
|
||||
"""Convert VisDrone annotations to YOLO format with images/{split} and labels/{split} structure."""
|
||||
from PIL import Image
|
||||
|
||||
source_dir = dir / (source_name or f"VisDrone2019-DET-{split}")
|
||||
images_dir = dir / "images" / split
|
||||
labels_dir = dir / "labels" / split
|
||||
labels_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Move images to new structure
|
||||
if (source_images_dir := source_dir / "images").exists():
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
for img in source_images_dir.glob("*.jpg"):
|
||||
img.rename(images_dir / img.name)
|
||||
|
||||
for f in TQDM((source_dir / "annotations").glob("*.txt"), desc=f"Converting {split}"):
|
||||
img_size = Image.open(images_dir / f.with_suffix(".jpg").name).size
|
||||
dw, dh = 1.0 / img_size[0], 1.0 / img_size[1]
|
||||
lines = []
|
||||
|
||||
with open(f, encoding="utf-8") as file:
|
||||
for row in [x.split(",") for x in file.read().strip().splitlines()]:
|
||||
if row[4] != "0": # Skip ignored regions
|
||||
x, y, w, h = map(int, row[:4])
|
||||
cls = int(row[5]) - 1
|
||||
# Convert to YOLO format
|
||||
x_center, y_center = (x + w / 2) * dw, (y + h / 2) * dh
|
||||
w_norm, h_norm = w * dw, h * dh
|
||||
lines.append(f"{cls} {x_center:.6f} {y_center:.6f} {w_norm:.6f} {h_norm:.6f}\n")
|
||||
|
||||
(labels_dir / f.name).write_text("".join(lines), encoding="utf-8")
|
||||
|
||||
|
||||
# Download (ignores test-challenge split)
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
urls = [
|
||||
"https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip",
|
||||
"https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip",
|
||||
"https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip",
|
||||
# "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip",
|
||||
]
|
||||
download(urls, dir=dir, threads=4)
|
||||
|
||||
# Convert
|
||||
splits = {"VisDrone2019-DET-train": "train", "VisDrone2019-DET-val": "val", "VisDrone2019-DET-test-dev": "test"}
|
||||
for folder, split in splits.items():
|
||||
visdrone2yolo(dir, split, folder) # convert VisDrone annotations to YOLO labels
|
||||
shutil.rmtree(dir / folder) # cleanup original directory
|
||||
25
ultralytics/cfg/datasets/african-wildlife.yaml
Normal file
25
ultralytics/cfg/datasets/african-wildlife.yaml
Normal file
@@ -0,0 +1,25 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# African-wildlife dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
|
||||
# Example usage: yolo train data=african-wildlife.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── african-wildlife ← downloads here (100 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: african-wildlife # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1052 images
|
||||
val: images/val # val images (relative to 'path') 225 images
|
||||
test: images/test # test images (relative to 'path') 227 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: buffalo
|
||||
1: elephant
|
||||
2: rhino
|
||||
3: zebra
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
|
||||
22
ultralytics/cfg/datasets/brain-tumor.yaml
Normal file
22
ultralytics/cfg/datasets/brain-tumor.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Brain-tumor dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
|
||||
# Example usage: yolo train data=brain-tumor.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── brain-tumor ← downloads here (4.21 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: brain-tumor # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 893 images
|
||||
val: images/val # val images (relative to 'path') 223 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: negative
|
||||
1: positive
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
|
||||
44
ultralytics/cfg/datasets/carparts-seg.yaml
Normal file
44
ultralytics/cfg/datasets/carparts-seg.yaml
Normal file
@@ -0,0 +1,44 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Carparts-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
|
||||
# Example usage: yolo train data=carparts-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── carparts-seg ← downloads here (133 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: carparts-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 3516 images
|
||||
val: images/val # val images (relative to 'path') 276 images
|
||||
test: images/test # test images (relative to 'path') 401 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: back_bumper
|
||||
1: back_door
|
||||
2: back_glass
|
||||
3: back_left_door
|
||||
4: back_left_light
|
||||
5: back_light
|
||||
6: back_right_door
|
||||
7: back_right_light
|
||||
8: front_bumper
|
||||
9: front_door
|
||||
10: front_glass
|
||||
11: front_left_door
|
||||
12: front_left_light
|
||||
13: front_light
|
||||
14: front_right_door
|
||||
15: front_right_light
|
||||
16: hood
|
||||
17: left_mirror
|
||||
18: object
|
||||
19: right_mirror
|
||||
20: tailgate
|
||||
21: trunk
|
||||
22: wheel
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
|
||||
42
ultralytics/cfg/datasets/coco-pose.yaml
Normal file
42
ultralytics/cfg/datasets/coco-pose.yaml
Normal file
@@ -0,0 +1,42 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
|
||||
# Example usage: yolo train data=coco-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco-pose ← downloads here (20.1 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco-pose # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 56599 images
|
||||
val: val2017.txt # val images (relative to 'path') 2346 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: |
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.utils.downloads import download
|
||||
|
||||
# Download labels
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
||||
urls = [f"{url}coco2017labels-pose.zip"]
|
||||
download(urls, dir=dir.parent)
|
||||
# Download data
|
||||
urls = [
|
||||
"http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images
|
||||
"http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images
|
||||
"http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional)
|
||||
]
|
||||
download(urls, dir=dir / "images", threads=3)
|
||||
118
ultralytics/cfg/datasets/coco.yaml
Normal file
118
ultralytics/cfg/datasets/coco.yaml
Normal file
@@ -0,0 +1,118 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO 2017 dataset https://cocodataset.org by Microsoft
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
||||
# Example usage: yolo train data=coco.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco ← downloads here (20.1 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: |
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.utils.downloads import download
|
||||
|
||||
# Download labels
|
||||
segments = True # segment or box labels
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
||||
urls = [url + ("coco2017labels-segments.zip" if segments else "coco2017labels.zip")] # labels
|
||||
download(urls, dir=dir.parent)
|
||||
# Download data
|
||||
urls = [
|
||||
"http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images
|
||||
"http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images
|
||||
"http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional)
|
||||
]
|
||||
download(urls, dir=dir / "images", threads=3)
|
||||
101
ultralytics/cfg/datasets/coco128-seg.yaml
Normal file
101
ultralytics/cfg/datasets/coco128-seg.yaml
Normal file
@@ -0,0 +1,101 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco128-seg ← downloads here (7 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco128-seg # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
|
||||
101
ultralytics/cfg/datasets/coco128.yaml
Normal file
101
ultralytics/cfg/datasets/coco128.yaml
Normal file
@@ -0,0 +1,101 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco128 ← downloads here (7 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco128 # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
|
||||
103
ultralytics/cfg/datasets/coco8-grayscale.yaml
Normal file
103
ultralytics/cfg/datasets/coco8-grayscale.yaml
Normal file
@@ -0,0 +1,103 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO8-Grayscale dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8-grayscale/
|
||||
# Example usage: yolo train data=coco8-grayscale.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-grayscale ← downloads here (1 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco8-grayscale # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
channels: 1
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-grayscale.zip
|
||||
104
ultralytics/cfg/datasets/coco8-multispectral.yaml
Normal file
104
ultralytics/cfg/datasets/coco8-multispectral.yaml
Normal file
@@ -0,0 +1,104 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO8-Multispectral dataset (COCO8 images interpolated across 10 channels in the visual spectrum) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8-multispectral/
|
||||
# Example usage: yolo train data=coco8-multispectral.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-multispectral ← downloads here (20.2 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco8-multispectral # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Number of multispectral image channels
|
||||
channels: 10
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-multispectral.zip
|
||||
26
ultralytics/cfg/datasets/coco8-pose.yaml
Normal file
26
ultralytics/cfg/datasets/coco8-pose.yaml
Normal file
@@ -0,0 +1,26 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
|
||||
# Example usage: yolo train data=coco8-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-pose ← downloads here (1 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco8-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
|
||||
101
ultralytics/cfg/datasets/coco8-seg.yaml
Normal file
101
ultralytics/cfg/datasets/coco8-seg.yaml
Normal file
@@ -0,0 +1,101 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
|
||||
# Example usage: yolo train data=coco8-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-seg ← downloads here (1 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco8-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
|
||||
101
ultralytics/cfg/datasets/coco8.yaml
Normal file
101
ultralytics/cfg/datasets/coco8.yaml
Normal file
@@ -0,0 +1,101 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
|
||||
# Example usage: yolo train data=coco8.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8 ← downloads here (1 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
|
||||
32
ultralytics/cfg/datasets/construction-ppe.yaml
Normal file
32
ultralytics/cfg/datasets/construction-ppe.yaml
Normal file
@@ -0,0 +1,32 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Construction-PPE dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/construction-ppe/
|
||||
# Example usage: yolo train data=construction-ppe.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── construction-ppe ← downloads here (178.4 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: construction-ppe # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1132 images
|
||||
val: images/val # val images (relative to 'path') 143 images
|
||||
test: images/test # test images (relative to 'path') 141 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: helmet
|
||||
1: gloves
|
||||
2: vest
|
||||
3: boots
|
||||
4: goggles
|
||||
5: none
|
||||
6: Person
|
||||
7: no_helmet
|
||||
8: no_goggle
|
||||
9: no_gloves
|
||||
10: no_boots
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/construction-ppe.zip
|
||||
22
ultralytics/cfg/datasets/crack-seg.yaml
Normal file
22
ultralytics/cfg/datasets/crack-seg.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Crack-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
|
||||
# Example usage: yolo train data=crack-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── crack-seg ← downloads here (91.6 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: crack-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 3717 images
|
||||
val: images/val # val images (relative to 'path') 112 images
|
||||
test: images/test # test images (relative to 'path') 200 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: crack
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/crack-seg.zip
|
||||
24
ultralytics/cfg/datasets/dog-pose.yaml
Normal file
24
ultralytics/cfg/datasets/dog-pose.yaml
Normal file
@@ -0,0 +1,24 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/
|
||||
# Example usage: yolo train data=dog-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dog-pose ← downloads here (337 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: dog-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 6773 images
|
||||
val: images/val # val images (relative to 'path') 1703 images
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: dog
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip
|
||||
38
ultralytics/cfg/datasets/dota8-multispectral.yaml
Normal file
38
ultralytics/cfg/datasets/dota8-multispectral.yaml
Normal file
@@ -0,0 +1,38 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# DOTA8-Multispectral dataset (DOTA8 interpolated across 10 channels in the visual spectrum) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=dota8-multispectral.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota8-multispectral ← downloads here (37.3MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: dota8-multispectral # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
|
||||
# Number of multispectral image channels
|
||||
channels: 10
|
||||
|
||||
# Classes for DOTA 1.0
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8-multispectral.zip
|
||||
35
ultralytics/cfg/datasets/dota8.yaml
Normal file
35
ultralytics/cfg/datasets/dota8.yaml
Normal file
@@ -0,0 +1,35 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota8 ← downloads here (1MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: dota8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
|
||||
# Classes for DOTA 1.0
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8.zip
|
||||
26
ultralytics/cfg/datasets/hand-keypoints.yaml
Normal file
26
ultralytics/cfg/datasets/hand-keypoints.yaml
Normal file
@@ -0,0 +1,26 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Hand Keypoints dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
|
||||
# Example usage: yolo train data=hand-keypoints.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── hand-keypoints ← downloads here (369 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: hand-keypoints # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 18776 images
|
||||
val: images/val # val images (relative to 'path') 7992 images
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx:
|
||||
[0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: hand
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip
|
||||
1240
ultralytics/cfg/datasets/lvis.yaml
Normal file
1240
ultralytics/cfg/datasets/lvis.yaml
Normal file
File diff suppressed because it is too large
Load Diff
21
ultralytics/cfg/datasets/medical-pills.yaml
Normal file
21
ultralytics/cfg/datasets/medical-pills.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Medical-pills dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/
|
||||
# Example usage: yolo train data=medical-pills.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── medical-pills ← downloads here (8.19 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: medical-pills # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 92 images
|
||||
val: images/val # val images (relative to 'path') 23 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: pill
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/medical-pills.zip
|
||||
663
ultralytics/cfg/datasets/open-images-v7.yaml
Normal file
663
ultralytics/cfg/datasets/open-images-v7.yaml
Normal file
@@ -0,0 +1,663 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
|
||||
# Example usage: yolo train data=open-images-v7.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── open-images-v7 ← downloads here (561 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: open-images-v7 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1743042 images
|
||||
val: images/val # val images (relative to 'path') 41620 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: Accordion
|
||||
1: Adhesive tape
|
||||
2: Aircraft
|
||||
3: Airplane
|
||||
4: Alarm clock
|
||||
5: Alpaca
|
||||
6: Ambulance
|
||||
7: Animal
|
||||
8: Ant
|
||||
9: Antelope
|
||||
10: Apple
|
||||
11: Armadillo
|
||||
12: Artichoke
|
||||
13: Auto part
|
||||
14: Axe
|
||||
15: Backpack
|
||||
16: Bagel
|
||||
17: Baked goods
|
||||
18: Balance beam
|
||||
19: Ball
|
||||
20: Balloon
|
||||
21: Banana
|
||||
22: Band-aid
|
||||
23: Banjo
|
||||
24: Barge
|
||||
25: Barrel
|
||||
26: Baseball bat
|
||||
27: Baseball glove
|
||||
28: Bat (Animal)
|
||||
29: Bathroom accessory
|
||||
30: Bathroom cabinet
|
||||
31: Bathtub
|
||||
32: Beaker
|
||||
33: Bear
|
||||
34: Bed
|
||||
35: Bee
|
||||
36: Beehive
|
||||
37: Beer
|
||||
38: Beetle
|
||||
39: Bell pepper
|
||||
40: Belt
|
||||
41: Bench
|
||||
42: Bicycle
|
||||
43: Bicycle helmet
|
||||
44: Bicycle wheel
|
||||
45: Bidet
|
||||
46: Billboard
|
||||
47: Billiard table
|
||||
48: Binoculars
|
||||
49: Bird
|
||||
50: Blender
|
||||
51: Blue jay
|
||||
52: Boat
|
||||
53: Bomb
|
||||
54: Book
|
||||
55: Bookcase
|
||||
56: Boot
|
||||
57: Bottle
|
||||
58: Bottle opener
|
||||
59: Bow and arrow
|
||||
60: Bowl
|
||||
61: Bowling equipment
|
||||
62: Box
|
||||
63: Boy
|
||||
64: Brassiere
|
||||
65: Bread
|
||||
66: Briefcase
|
||||
67: Broccoli
|
||||
68: Bronze sculpture
|
||||
69: Brown bear
|
||||
70: Building
|
||||
71: Bull
|
||||
72: Burrito
|
||||
73: Bus
|
||||
74: Bust
|
||||
75: Butterfly
|
||||
76: Cabbage
|
||||
77: Cabinetry
|
||||
78: Cake
|
||||
79: Cake stand
|
||||
80: Calculator
|
||||
81: Camel
|
||||
82: Camera
|
||||
83: Can opener
|
||||
84: Canary
|
||||
85: Candle
|
||||
86: Candy
|
||||
87: Cannon
|
||||
88: Canoe
|
||||
89: Cantaloupe
|
||||
90: Car
|
||||
91: Carnivore
|
||||
92: Carrot
|
||||
93: Cart
|
||||
94: Cassette deck
|
||||
95: Castle
|
||||
96: Cat
|
||||
97: Cat furniture
|
||||
98: Caterpillar
|
||||
99: Cattle
|
||||
100: Ceiling fan
|
||||
101: Cello
|
||||
102: Centipede
|
||||
103: Chainsaw
|
||||
104: Chair
|
||||
105: Cheese
|
||||
106: Cheetah
|
||||
107: Chest of drawers
|
||||
108: Chicken
|
||||
109: Chime
|
||||
110: Chisel
|
||||
111: Chopsticks
|
||||
112: Christmas tree
|
||||
113: Clock
|
||||
114: Closet
|
||||
115: Clothing
|
||||
116: Coat
|
||||
117: Cocktail
|
||||
118: Cocktail shaker
|
||||
119: Coconut
|
||||
120: Coffee
|
||||
121: Coffee cup
|
||||
122: Coffee table
|
||||
123: Coffeemaker
|
||||
124: Coin
|
||||
125: Common fig
|
||||
126: Common sunflower
|
||||
127: Computer keyboard
|
||||
128: Computer monitor
|
||||
129: Computer mouse
|
||||
130: Container
|
||||
131: Convenience store
|
||||
132: Cookie
|
||||
133: Cooking spray
|
||||
134: Corded phone
|
||||
135: Cosmetics
|
||||
136: Couch
|
||||
137: Countertop
|
||||
138: Cowboy hat
|
||||
139: Crab
|
||||
140: Cream
|
||||
141: Cricket ball
|
||||
142: Crocodile
|
||||
143: Croissant
|
||||
144: Crown
|
||||
145: Crutch
|
||||
146: Cucumber
|
||||
147: Cupboard
|
||||
148: Curtain
|
||||
149: Cutting board
|
||||
150: Dagger
|
||||
151: Dairy Product
|
||||
152: Deer
|
||||
153: Desk
|
||||
154: Dessert
|
||||
155: Diaper
|
||||
156: Dice
|
||||
157: Digital clock
|
||||
158: Dinosaur
|
||||
159: Dishwasher
|
||||
160: Dog
|
||||
161: Dog bed
|
||||
162: Doll
|
||||
163: Dolphin
|
||||
164: Door
|
||||
165: Door handle
|
||||
166: Doughnut
|
||||
167: Dragonfly
|
||||
168: Drawer
|
||||
169: Dress
|
||||
170: Drill (Tool)
|
||||
171: Drink
|
||||
172: Drinking straw
|
||||
173: Drum
|
||||
174: Duck
|
||||
175: Dumbbell
|
||||
176: Eagle
|
||||
177: Earrings
|
||||
178: Egg (Food)
|
||||
179: Elephant
|
||||
180: Envelope
|
||||
181: Eraser
|
||||
182: Face powder
|
||||
183: Facial tissue holder
|
||||
184: Falcon
|
||||
185: Fashion accessory
|
||||
186: Fast food
|
||||
187: Fax
|
||||
188: Fedora
|
||||
189: Filing cabinet
|
||||
190: Fire hydrant
|
||||
191: Fireplace
|
||||
192: Fish
|
||||
193: Flag
|
||||
194: Flashlight
|
||||
195: Flower
|
||||
196: Flowerpot
|
||||
197: Flute
|
||||
198: Flying disc
|
||||
199: Food
|
||||
200: Food processor
|
||||
201: Football
|
||||
202: Football helmet
|
||||
203: Footwear
|
||||
204: Fork
|
||||
205: Fountain
|
||||
206: Fox
|
||||
207: French fries
|
||||
208: French horn
|
||||
209: Frog
|
||||
210: Fruit
|
||||
211: Frying pan
|
||||
212: Furniture
|
||||
213: Garden Asparagus
|
||||
214: Gas stove
|
||||
215: Giraffe
|
||||
216: Girl
|
||||
217: Glasses
|
||||
218: Glove
|
||||
219: Goat
|
||||
220: Goggles
|
||||
221: Goldfish
|
||||
222: Golf ball
|
||||
223: Golf cart
|
||||
224: Gondola
|
||||
225: Goose
|
||||
226: Grape
|
||||
227: Grapefruit
|
||||
228: Grinder
|
||||
229: Guacamole
|
||||
230: Guitar
|
||||
231: Hair dryer
|
||||
232: Hair spray
|
||||
233: Hamburger
|
||||
234: Hammer
|
||||
235: Hamster
|
||||
236: Hand dryer
|
||||
237: Handbag
|
||||
238: Handgun
|
||||
239: Harbor seal
|
||||
240: Harmonica
|
||||
241: Harp
|
||||
242: Harpsichord
|
||||
243: Hat
|
||||
244: Headphones
|
||||
245: Heater
|
||||
246: Hedgehog
|
||||
247: Helicopter
|
||||
248: Helmet
|
||||
249: High heels
|
||||
250: Hiking equipment
|
||||
251: Hippopotamus
|
||||
252: Home appliance
|
||||
253: Honeycomb
|
||||
254: Horizontal bar
|
||||
255: Horse
|
||||
256: Hot dog
|
||||
257: House
|
||||
258: Houseplant
|
||||
259: Human arm
|
||||
260: Human beard
|
||||
261: Human body
|
||||
262: Human ear
|
||||
263: Human eye
|
||||
264: Human face
|
||||
265: Human foot
|
||||
266: Human hair
|
||||
267: Human hand
|
||||
268: Human head
|
||||
269: Human leg
|
||||
270: Human mouth
|
||||
271: Human nose
|
||||
272: Humidifier
|
||||
273: Ice cream
|
||||
274: Indoor rower
|
||||
275: Infant bed
|
||||
276: Insect
|
||||
277: Invertebrate
|
||||
278: Ipod
|
||||
279: Isopod
|
||||
280: Jacket
|
||||
281: Jacuzzi
|
||||
282: Jaguar (Animal)
|
||||
283: Jeans
|
||||
284: Jellyfish
|
||||
285: Jet ski
|
||||
286: Jug
|
||||
287: Juice
|
||||
288: Kangaroo
|
||||
289: Kettle
|
||||
290: Kitchen & dining room table
|
||||
291: Kitchen appliance
|
||||
292: Kitchen knife
|
||||
293: Kitchen utensil
|
||||
294: Kitchenware
|
||||
295: Kite
|
||||
296: Knife
|
||||
297: Koala
|
||||
298: Ladder
|
||||
299: Ladle
|
||||
300: Ladybug
|
||||
301: Lamp
|
||||
302: Land vehicle
|
||||
303: Lantern
|
||||
304: Laptop
|
||||
305: Lavender (Plant)
|
||||
306: Lemon
|
||||
307: Leopard
|
||||
308: Light bulb
|
||||
309: Light switch
|
||||
310: Lighthouse
|
||||
311: Lily
|
||||
312: Limousine
|
||||
313: Lion
|
||||
314: Lipstick
|
||||
315: Lizard
|
||||
316: Lobster
|
||||
317: Loveseat
|
||||
318: Luggage and bags
|
||||
319: Lynx
|
||||
320: Magpie
|
||||
321: Mammal
|
||||
322: Man
|
||||
323: Mango
|
||||
324: Maple
|
||||
325: Maracas
|
||||
326: Marine invertebrates
|
||||
327: Marine mammal
|
||||
328: Measuring cup
|
||||
329: Mechanical fan
|
||||
330: Medical equipment
|
||||
331: Microphone
|
||||
332: Microwave oven
|
||||
333: Milk
|
||||
334: Miniskirt
|
||||
335: Mirror
|
||||
336: Missile
|
||||
337: Mixer
|
||||
338: Mixing bowl
|
||||
339: Mobile phone
|
||||
340: Monkey
|
||||
341: Moths and butterflies
|
||||
342: Motorcycle
|
||||
343: Mouse
|
||||
344: Muffin
|
||||
345: Mug
|
||||
346: Mule
|
||||
347: Mushroom
|
||||
348: Musical instrument
|
||||
349: Musical keyboard
|
||||
350: Nail (Construction)
|
||||
351: Necklace
|
||||
352: Nightstand
|
||||
353: Oboe
|
||||
354: Office building
|
||||
355: Office supplies
|
||||
356: Orange
|
||||
357: Organ (Musical Instrument)
|
||||
358: Ostrich
|
||||
359: Otter
|
||||
360: Oven
|
||||
361: Owl
|
||||
362: Oyster
|
||||
363: Paddle
|
||||
364: Palm tree
|
||||
365: Pancake
|
||||
366: Panda
|
||||
367: Paper cutter
|
||||
368: Paper towel
|
||||
369: Parachute
|
||||
370: Parking meter
|
||||
371: Parrot
|
||||
372: Pasta
|
||||
373: Pastry
|
||||
374: Peach
|
||||
375: Pear
|
||||
376: Pen
|
||||
377: Pencil case
|
||||
378: Pencil sharpener
|
||||
379: Penguin
|
||||
380: Perfume
|
||||
381: Person
|
||||
382: Personal care
|
||||
383: Personal flotation device
|
||||
384: Piano
|
||||
385: Picnic basket
|
||||
386: Picture frame
|
||||
387: Pig
|
||||
388: Pillow
|
||||
389: Pineapple
|
||||
390: Pitcher (Container)
|
||||
391: Pizza
|
||||
392: Pizza cutter
|
||||
393: Plant
|
||||
394: Plastic bag
|
||||
395: Plate
|
||||
396: Platter
|
||||
397: Plumbing fixture
|
||||
398: Polar bear
|
||||
399: Pomegranate
|
||||
400: Popcorn
|
||||
401: Porch
|
||||
402: Porcupine
|
||||
403: Poster
|
||||
404: Potato
|
||||
405: Power plugs and sockets
|
||||
406: Pressure cooker
|
||||
407: Pretzel
|
||||
408: Printer
|
||||
409: Pumpkin
|
||||
410: Punching bag
|
||||
411: Rabbit
|
||||
412: Raccoon
|
||||
413: Racket
|
||||
414: Radish
|
||||
415: Ratchet (Device)
|
||||
416: Raven
|
||||
417: Rays and skates
|
||||
418: Red panda
|
||||
419: Refrigerator
|
||||
420: Remote control
|
||||
421: Reptile
|
||||
422: Rhinoceros
|
||||
423: Rifle
|
||||
424: Ring binder
|
||||
425: Rocket
|
||||
426: Roller skates
|
||||
427: Rose
|
||||
428: Rugby ball
|
||||
429: Ruler
|
||||
430: Salad
|
||||
431: Salt and pepper shakers
|
||||
432: Sandal
|
||||
433: Sandwich
|
||||
434: Saucer
|
||||
435: Saxophone
|
||||
436: Scale
|
||||
437: Scarf
|
||||
438: Scissors
|
||||
439: Scoreboard
|
||||
440: Scorpion
|
||||
441: Screwdriver
|
||||
442: Sculpture
|
||||
443: Sea lion
|
||||
444: Sea turtle
|
||||
445: Seafood
|
||||
446: Seahorse
|
||||
447: Seat belt
|
||||
448: Segway
|
||||
449: Serving tray
|
||||
450: Sewing machine
|
||||
451: Shark
|
||||
452: Sheep
|
||||
453: Shelf
|
||||
454: Shellfish
|
||||
455: Shirt
|
||||
456: Shorts
|
||||
457: Shotgun
|
||||
458: Shower
|
||||
459: Shrimp
|
||||
460: Sink
|
||||
461: Skateboard
|
||||
462: Ski
|
||||
463: Skirt
|
||||
464: Skull
|
||||
465: Skunk
|
||||
466: Skyscraper
|
||||
467: Slow cooker
|
||||
468: Snack
|
||||
469: Snail
|
||||
470: Snake
|
||||
471: Snowboard
|
||||
472: Snowman
|
||||
473: Snowmobile
|
||||
474: Snowplow
|
||||
475: Soap dispenser
|
||||
476: Sock
|
||||
477: Sofa bed
|
||||
478: Sombrero
|
||||
479: Sparrow
|
||||
480: Spatula
|
||||
481: Spice rack
|
||||
482: Spider
|
||||
483: Spoon
|
||||
484: Sports equipment
|
||||
485: Sports uniform
|
||||
486: Squash (Plant)
|
||||
487: Squid
|
||||
488: Squirrel
|
||||
489: Stairs
|
||||
490: Stapler
|
||||
491: Starfish
|
||||
492: Stationary bicycle
|
||||
493: Stethoscope
|
||||
494: Stool
|
||||
495: Stop sign
|
||||
496: Strawberry
|
||||
497: Street light
|
||||
498: Stretcher
|
||||
499: Studio couch
|
||||
500: Submarine
|
||||
501: Submarine sandwich
|
||||
502: Suit
|
||||
503: Suitcase
|
||||
504: Sun hat
|
||||
505: Sunglasses
|
||||
506: Surfboard
|
||||
507: Sushi
|
||||
508: Swan
|
||||
509: Swim cap
|
||||
510: Swimming pool
|
||||
511: Swimwear
|
||||
512: Sword
|
||||
513: Syringe
|
||||
514: Table
|
||||
515: Table tennis racket
|
||||
516: Tablet computer
|
||||
517: Tableware
|
||||
518: Taco
|
||||
519: Tank
|
||||
520: Tap
|
||||
521: Tart
|
||||
522: Taxi
|
||||
523: Tea
|
||||
524: Teapot
|
||||
525: Teddy bear
|
||||
526: Telephone
|
||||
527: Television
|
||||
528: Tennis ball
|
||||
529: Tennis racket
|
||||
530: Tent
|
||||
531: Tiara
|
||||
532: Tick
|
||||
533: Tie
|
||||
534: Tiger
|
||||
535: Tin can
|
||||
536: Tire
|
||||
537: Toaster
|
||||
538: Toilet
|
||||
539: Toilet paper
|
||||
540: Tomato
|
||||
541: Tool
|
||||
542: Toothbrush
|
||||
543: Torch
|
||||
544: Tortoise
|
||||
545: Towel
|
||||
546: Tower
|
||||
547: Toy
|
||||
548: Traffic light
|
||||
549: Traffic sign
|
||||
550: Train
|
||||
551: Training bench
|
||||
552: Treadmill
|
||||
553: Tree
|
||||
554: Tree house
|
||||
555: Tripod
|
||||
556: Trombone
|
||||
557: Trousers
|
||||
558: Truck
|
||||
559: Trumpet
|
||||
560: Turkey
|
||||
561: Turtle
|
||||
562: Umbrella
|
||||
563: Unicycle
|
||||
564: Van
|
||||
565: Vase
|
||||
566: Vegetable
|
||||
567: Vehicle
|
||||
568: Vehicle registration plate
|
||||
569: Violin
|
||||
570: Volleyball (Ball)
|
||||
571: Waffle
|
||||
572: Waffle iron
|
||||
573: Wall clock
|
||||
574: Wardrobe
|
||||
575: Washing machine
|
||||
576: Waste container
|
||||
577: Watch
|
||||
578: Watercraft
|
||||
579: Watermelon
|
||||
580: Weapon
|
||||
581: Whale
|
||||
582: Wheel
|
||||
583: Wheelchair
|
||||
584: Whisk
|
||||
585: Whiteboard
|
||||
586: Willow
|
||||
587: Window
|
||||
588: Window blind
|
||||
589: Wine
|
||||
590: Wine glass
|
||||
591: Wine rack
|
||||
592: Winter melon
|
||||
593: Wok
|
||||
594: Woman
|
||||
595: Wood-burning stove
|
||||
596: Woodpecker
|
||||
597: Worm
|
||||
598: Wrench
|
||||
599: Zebra
|
||||
600: Zucchini
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import warnings
|
||||
|
||||
from ultralytics.utils import LOGGER, SETTINGS, Path
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
|
||||
check_requirements("fiftyone")
|
||||
|
||||
import fiftyone as fo
|
||||
import fiftyone.zoo as foz
|
||||
|
||||
name = "open-images-v7"
|
||||
fo.config.dataset_zoo_dir = Path(SETTINGS["datasets_dir"]) / "fiftyone" / name
|
||||
fraction = 1.0 # fraction of full dataset to use
|
||||
LOGGER.warning("Open Images V7 dataset requires at least **561 GB of free space. Starting download...")
|
||||
for split in "train", "validation": # 1743042 train, 41620 val images
|
||||
train = split == "train"
|
||||
|
||||
# Load Open Images dataset
|
||||
dataset = foz.load_zoo_dataset(
|
||||
name,
|
||||
split=split,
|
||||
label_types=["detections"],
|
||||
max_samples=round((1743042 if train else 41620) * fraction),
|
||||
)
|
||||
|
||||
# Define classes
|
||||
if train:
|
||||
classes = dataset.default_classes # all classes
|
||||
# classes = dataset.distinct('ground_truth.detections.label') # only observed classes
|
||||
|
||||
# Export to YOLO format
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo")
|
||||
dataset.export(
|
||||
export_dir=str(Path(SETTINGS["datasets_dir"]) / name),
|
||||
dataset_type=fo.types.YOLOv5Dataset,
|
||||
label_field="ground_truth",
|
||||
split="val" if split == "validation" else split,
|
||||
classes=classes,
|
||||
overwrite=train,
|
||||
)
|
||||
22
ultralytics/cfg/datasets/package-seg.yaml
Normal file
22
ultralytics/cfg/datasets/package-seg.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Package-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
|
||||
# Example usage: yolo train data=package-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── package-seg ← downloads here (103 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: package-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1920 images
|
||||
val: images/val # val images (relative to 'path') 89 images
|
||||
test: images/test # test images (relative to 'path') 188 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: package
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/package-seg.zip
|
||||
21
ultralytics/cfg/datasets/signature.yaml
Normal file
21
ultralytics/cfg/datasets/signature.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Signature dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/signature/
|
||||
# Example usage: yolo train data=signature.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── signature ← downloads here (11.3 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: signature # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 143 images
|
||||
val: images/val # val images (relative to 'path') 35 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: signature
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/signature.zip
|
||||
25
ultralytics/cfg/datasets/tiger-pose.yaml
Normal file
25
ultralytics/cfg/datasets/tiger-pose.yaml
Normal file
@@ -0,0 +1,25 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Tiger Pose dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
|
||||
# Example usage: yolo train data=tiger-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── tiger-pose ← downloads here (49.8 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: tiger-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 210 images
|
||||
val: images/val # val images (relative to 'path') 53 images
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: tiger
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
|
||||
155
ultralytics/cfg/datasets/xView.yaml
Normal file
155
ultralytics/cfg/datasets/xView.yaml
Normal file
@@ -0,0 +1,155 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
||||
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
|
||||
# Example usage: yolo train data=xView.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── xView ← downloads here (20.7 GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: xView # dataset root dir
|
||||
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
||||
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: Fixed-wing Aircraft
|
||||
1: Small Aircraft
|
||||
2: Cargo Plane
|
||||
3: Helicopter
|
||||
4: Passenger Vehicle
|
||||
5: Small Car
|
||||
6: Bus
|
||||
7: Pickup Truck
|
||||
8: Utility Truck
|
||||
9: Truck
|
||||
10: Cargo Truck
|
||||
11: Truck w/Box
|
||||
12: Truck Tractor
|
||||
13: Trailer
|
||||
14: Truck w/Flatbed
|
||||
15: Truck w/Liquid
|
||||
16: Crane Truck
|
||||
17: Railway Vehicle
|
||||
18: Passenger Car
|
||||
19: Cargo Car
|
||||
20: Flat Car
|
||||
21: Tank car
|
||||
22: Locomotive
|
||||
23: Maritime Vessel
|
||||
24: Motorboat
|
||||
25: Sailboat
|
||||
26: Tugboat
|
||||
27: Barge
|
||||
28: Fishing Vessel
|
||||
29: Ferry
|
||||
30: Yacht
|
||||
31: Container Ship
|
||||
32: Oil Tanker
|
||||
33: Engineering Vehicle
|
||||
34: Tower crane
|
||||
35: Container Crane
|
||||
36: Reach Stacker
|
||||
37: Straddle Carrier
|
||||
38: Mobile Crane
|
||||
39: Dump Truck
|
||||
40: Haul Truck
|
||||
41: Scraper/Tractor
|
||||
42: Front loader/Bulldozer
|
||||
43: Excavator
|
||||
44: Cement Mixer
|
||||
45: Ground Grader
|
||||
46: Hut/Tent
|
||||
47: Shed
|
||||
48: Building
|
||||
49: Aircraft Hangar
|
||||
50: Damaged Building
|
||||
51: Facility
|
||||
52: Construction Site
|
||||
53: Vehicle Lot
|
||||
54: Helipad
|
||||
55: Storage Tank
|
||||
56: Shipping container lot
|
||||
57: Shipping Container
|
||||
58: Pylon
|
||||
59: Tower
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.utils import TQDM
|
||||
from ultralytics.data.split import autosplit
|
||||
from ultralytics.utils.ops import xyxy2xywhn
|
||||
|
||||
|
||||
def convert_labels(fname=Path("xView/xView_train.geojson")):
|
||||
"""Converts xView geoJSON labels to YOLO format, mapping classes to indices 0-59 and saving as text files."""
|
||||
path = fname.parent
|
||||
with open(fname, encoding="utf-8") as f:
|
||||
print(f"Loading {fname}...")
|
||||
data = json.load(f)
|
||||
|
||||
# Make dirs
|
||||
labels = Path(path / "labels" / "train")
|
||||
os.system(f"rm -rf {labels}")
|
||||
labels.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# xView classes 11-94 to 0-59
|
||||
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
|
||||
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
|
||||
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
|
||||
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
|
||||
|
||||
shapes = {}
|
||||
for feature in TQDM(data["features"], desc=f"Converting {fname}"):
|
||||
p = feature["properties"]
|
||||
if p["bounds_imcoords"]:
|
||||
id = p["image_id"]
|
||||
file = path / "train_images" / id
|
||||
if file.exists(): # 1395.tif missing
|
||||
try:
|
||||
box = np.array([int(num) for num in p["bounds_imcoords"].split(",")])
|
||||
assert box.shape[0] == 4, f"incorrect box shape {box.shape[0]}"
|
||||
cls = p["type_id"]
|
||||
cls = xview_class2index[int(cls)] # xView class to 0-60
|
||||
assert 59 >= cls >= 0, f"incorrect class index {cls}"
|
||||
|
||||
# Write YOLO label
|
||||
if id not in shapes:
|
||||
shapes[id] = Image.open(file).size
|
||||
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
|
||||
with open((labels / id).with_suffix(".txt"), "a", encoding="utf-8") as f:
|
||||
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
|
||||
except Exception as e:
|
||||
print(f"WARNING: skipping one label for {file}: {e}")
|
||||
|
||||
|
||||
# Download manually from https://challenge.xviewdataset.org
|
||||
dir = Path(yaml["path"]) # dataset root dir
|
||||
# urls = [
|
||||
# "https://d307kc0mrhucc3.cloudfront.net/train_labels.zip", # train labels
|
||||
# "https://d307kc0mrhucc3.cloudfront.net/train_images.zip", # 15G, 847 train images
|
||||
# "https://d307kc0mrhucc3.cloudfront.net/val_images.zip", # 5G, 282 val images (no labels)
|
||||
# ]
|
||||
# download(urls, dir=dir)
|
||||
|
||||
# Convert labels
|
||||
convert_labels(dir / "xView_train.geojson")
|
||||
|
||||
# Move images
|
||||
images = Path(dir / "images")
|
||||
images.mkdir(parents=True, exist_ok=True)
|
||||
Path(dir / "train_images").rename(dir / "images" / "train")
|
||||
Path(dir / "val_images").rename(dir / "images" / "val")
|
||||
|
||||
# Split
|
||||
autosplit(dir / "images" / "train")
|
||||
Reference in New Issue
Block a user