{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "L4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lPyZo-rMcUZ5", "outputId": "46a63def-1e83-41e2-80cf-2909c1ddf994" }, "execution_count": 1, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "!pip -qq install ultralytics" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "YC0R60jBePnc", "outputId": "10d5a8ee-9574-487d-c526-2300f3b97609" }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m25.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m103.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m94.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m53.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m17.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m101.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h" ] } ] }, { "cell_type": "markdown", "source": [ "# STEP 1: Training YOLOv8 using 14 Classes Dataset\n", "\n", "[Hyper-parameters tuning ranges](https://docs.ultralytics.com/modes/train/#train-settings)" ], "metadata": { "id": "H6tIs4ezcjHS" } }, { "cell_type": "code", "source": [ "# Tuning YOLO over 14 classes dataset\n", "\n", "from ultralytics import YOLO\n", "\n", "model = YOLO(\"yolov8l-seg.pt\")\n", "data_path = \"/content/drive/MyDrive/Repair Project/report/data/14c\"\n", "result_path = \"/content/drive/MyDrive/Repair Project/report/results/tuning/14c\"\n", "\n", "\n", "search_space = {\n", " \"lr0\": (1e-5, 1e-1),\n", " \"momentum\":(0.6, 0.98),\n", " \"weight_decay\":(0.0, 0.001),\n", " \"hsv_h\": (0.0, 0.1),\n", " \"hsv_s\": (0.0, 0.9),\n", " \"hsv_v\": (0.0, 0.9),\n", " \"scale\": (0.0, 0.9),\n", " \"box\": (0.02, 0.2)\n", "\n", " }\n", "\n", "model.tune(\n", " data= data_path + \"/data.yaml\",\n", " epochs=20,\n", " iterations=50,\n", " optimizer=\"AdamW\",\n", " project=result_path,\n", " space=search_space,\n", " plots=True,\n", " save=True,\n", " val=False,\n", " device=\"cuda\"\n", ")" ], "metadata": { "id": "T474WqE8cX_G" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Training over Best Found Hyper-parameters\n", "from ultralytics import YOLO\n", "import torch\n", "torch.cuda.empty_cache()\n", "\n", "model = YOLO(\"yolov8l-seg.pt\")\n", "data_path = \"/content/drive/MyDrive/Repair Project/report/data/14c\"\n", "result_path = \"/content/drive/MyDrive/Repair Project/report/results/training/14c\"\n", "\n", "model.train(\n", " data= data_path + \"/data.yaml\",\n", " project=result_path,\n", " imgsz=800,\n", " epochs=250,\n", " batch=16,\n", " name=\"train_250_800_16\",\n", " device=\"cuda\",\n", " augment=True,\n", " cache=False,\n", " save=True,\n", " save_period=100,\n", " lr0 = 0.01,\n", " momentum= 0.937,\n", " weight_decay= 0.0005,\n", " hsv_h= 0.015,\n", " hsv_s= 0.7,\n", " hsv_v= 0.4,\n", " scale= 0.5,\n", " box= 7.5,\n", " verbose=True,\n", ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "skhX5jncdL62", "outputId": "dc2bc732-4bbe-4fab-fbbb-f7ff54bf3a2d" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "\u001b[34m\u001b[1mengine/trainer: \u001b[0magnostic_nms=False, amp=True, augment=True, auto_augment=randaugment, batch=16, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=/content/drive/MyDrive/Repair Project/report/data/14c/data.yaml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=250, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=800, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=yolov8l-seg.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train_250_800_16, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=/content/drive/MyDrive/Repair Project/report/results/training/14c, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=/content/drive/MyDrive/Repair Project/report/results/training/14c/train_250_800_16, save_frames=False, save_json=False, save_period=100, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=segment, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=8, workspace=None\n", "Overriding model.yaml nc=80 with nc=14\n", "\n", " from n params module arguments \n", " 0 -1 1 1856 ultralytics.nn.modules.conv.Conv [3, 64, 3, 2] \n", " 1 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 2 -1 3 279808 ultralytics.nn.modules.block.C2f [128, 128, 3, True] \n", " 3 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 4 -1 6 2101248 ultralytics.nn.modules.block.C2f [256, 256, 6, True] \n", " 5 -1 1 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] \n", " 6 -1 6 8396800 ultralytics.nn.modules.block.C2f [512, 512, 6, True] \n", " 7 -1 1 2360320 ultralytics.nn.modules.conv.Conv [512, 512, 3, 2] \n", " 8 -1 3 4461568 ultralytics.nn.modules.block.C2f [512, 512, 3, True] \n", " 9 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 3 4723712 ultralytics.nn.modules.block.C2f [1024, 512, 3] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 3 1247744 ultralytics.nn.modules.block.C2f [768, 256, 3] \n", " 16 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 3 4592640 ultralytics.nn.modules.block.C2f [768, 512, 3] \n", " 19 -1 1 2360320 ultralytics.nn.modules.conv.Conv [512, 512, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 3 4723712 ultralytics.nn.modules.block.C2f [1024, 512, 3] \n", " 22 [15, 18, 21] 1 7899802 ultralytics.nn.modules.head.Segment [14, 32, 256, [256, 512, 512]]\n", "YOLOv8l-seg summary: 231 layers, 45,946,842 parameters, 45,946,826 gradients, 220.9 GFLOPs\n", "\n", "Transferred 651/657 items from pretrained weights\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1mtrain: \u001b[0mFast image access ✅ (ping: 0.3±0.1 ms, read: 170.3±190.3 MB/s, size: 319.8 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/14c/train/labels.cache... 324 images, 3 backgrounds, 0 corrupt: 100%|██████████| 324/324 [00:00\n", "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)', 'Precision-Recall(M)', 'F1-Confidence(M)', 'Precision-Confidence(M)', 'Recall-Confidence(M)']\n", "curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 0.000572, 0.000286, 0],\n", " ...,\n", " [ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 0.875, 0.875, 0],\n", " [ 1, 1, 1, ..., 0.002677, 0.0013385, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.33333, 0.33333, 0.41674, ..., 0, 0, 0],\n", " [ 0.25, 0.25, 0.34107, ..., 0, 0, 0],\n", " [ 0.22222, 0.22222, 0.23025, ..., 0, 0, 0],\n", " ...,\n", " [ 0.53333, 0.53333, 0.62341, ..., 0, 0, 0],\n", " [ 0.63636, 0.63636, 0.76114, ..., 0, 0, 0],\n", " [ 0.49057, 0.49057, 0.58979, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.2, 0.2, 0.26322, ..., 1, 1, 1],\n", " [ 0.14286, 0.14286, 0.20559, ..., 1, 1, 1],\n", " [ 0.14286, 0.14286, 0.14956, ..., 1, 1, 1],\n", " ...,\n", " [ 0.36364, 0.36364, 0.45287, ..., 1, 1, 1],\n", " [ 0.46667, 0.46667, 0.61439, ..., 1, 1, 1],\n", " [ 0.37143, 0.37143, 0.4984, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.5, 0.5, 0.5, ..., 0, 0, 0],\n", " ...,\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.72222, 0.72222, 0.72222, ..., 0, 0, 0]]), 'Confidence', 'Recall'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 0.000572, 0.000286, 0],\n", " ...,\n", " [ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 0.875, 0.875, 0],\n", " [ 1, 1, 1, ..., 0.002677, 0.0013385, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.33333, 0.33333, 0.41674, ..., 0, 0, 0],\n", " [ 0.25, 0.25, 0.34107, ..., 0, 0, 0],\n", " [ 0.22222, 0.22222, 0.23025, ..., 0, 0, 0],\n", " ...,\n", " [ 0.53333, 0.53333, 0.62341, ..., 0, 0, 0],\n", " [ 0.63636, 0.63636, 0.76114, ..., 0, 0, 0],\n", " [ 0.49057, 0.49057, 0.58979, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.2, 0.2, 0.26322, ..., 1, 1, 1],\n", " [ 0.14286, 0.14286, 0.20559, ..., 1, 1, 1],\n", " [ 0.14286, 0.14286, 0.14956, ..., 1, 1, 1],\n", " ...,\n", " [ 0.36364, 0.36364, 0.45287, ..., 1, 1, 1],\n", " [ 0.46667, 0.46667, 0.61439, ..., 1, 1, 1],\n", " [ 0.37143, 0.37143, 0.4984, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.5, 0.5, 0.5, ..., 0, 0, 0],\n", " ...,\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.72222, 0.72222, 0.72222, ..., 0, 0, 0]]), 'Confidence', 'Recall']]\n", "fitness: np.float64(1.4177096550340642)\n", "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', 'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']\n", "maps: array([ 1.387, 1.387, 1.8905, 1.387, 1.6527, 0.85029, 1.1817, 1.0447, 1.2523, 1.5299, 1.373, 1.795, 1.6164, 1.0704])\n", "names: {0: 'background', 1: 'fragment_surface', 2: 'blue_bird', 3: 'yellow_bird', 4: 'red_griffon', 5: 'red_flower', 6: 'blue_flower', 7: 'red_circle', 8: 'red_spiral', 9: 'curved_green_stripe', 10: 'thin_red_stripe', 11: 'thick_red_stripe', 12: 'thin_floral_stripe', 13: 'thick_floral_stripe'}\n", "nt_per_class: array([ 0, 0, 2, 0, 2, 2, 9, 5, 45, 14, 22, 4, 7, 18])\n", "nt_per_image: array([ 0, 0, 2, 0, 1, 1, 6, 3, 8, 14, 17, 4, 4, 5])\n", "results_dict: {'metrics/precision(B)': np.float64(0.8681240793422045), 'metrics/recall(B)': np.float64(0.7989992946832962), 'metrics/mAP50(B)': np.float64(0.8415805630276157), 'metrics/mAP50-95(B)': np.float64(0.7201500531686704), 'metrics/precision(M)': np.float64(0.8755151396128515), 'metrics/recall(M)': np.float64(0.8046980249208364), 'metrics/mAP50(M)': np.float64(0.8527533296773526), 'metrics/mAP50-95(M)': np.float64(0.6668235754575155), 'fitness': np.float64(1.4177096550340642)}\n", "save_dir: PosixPath('/content/drive/MyDrive/Repair Project/report/results/training/14c/train_250_800_16')\n", "seg: ultralytics.utils.metrics.Metric object\n", "speed: {'preprocess': 0.25680455000838265, 'inference': 17.657204575016294, 'loss': 0.0004052499889439787, 'postprocess': 1.5282967000075587}\n", "stats: {'tp': [], 'conf': [], 'pred_cls': [], 'target_cls': [], 'target_img': [], 'tp_m': []}\n", "task: 'segment'" ] }, "metadata": {}, "execution_count": 1 } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "qJ2QEpNAJXgD" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "def evaluate_yolo_box_seg(model_path, data_yaml):\n", "\n", " model = YOLO(model_path)\n", " results = model.val(data=data_yaml, split='test', verbose=False)\n", "\n", " metrics = {}\n", "\n", " # Bounding box metrics\n", " if results.box is not None:\n", " metrics[\"box_precision\"] = results.box.p.mean().item()\n", " metrics[\"box_recall\"] = results.box.r.mean().item()\n", " metrics[\"box_map50\"] = results.box.map50.item()\n", "\n", " # Segmentation metrics\n", " if results.seg is not None:\n", " metrics[\"seg_precision\"] = results.seg.p.mean().item()\n", " metrics[\"seg_recall\"] = results.seg.r.mean().item()\n", " metrics[\"seg_map50\"] = results.seg.map50.item()\n", "\n", " return metrics" ], "metadata": { "id": "1M_xzeBqdxj1" }, "execution_count": 4, "outputs": [] }, { "cell_type": "code", "source": [ "evaluate_yolo_box_seg(\n", "\"/content/drive/MyDrive/Repair Project/report/results/training/14c/train_250_800_16/weights/best.pt\",\n", "data_path+\"/data.yaml\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "UmEXegghccsi", "outputId": "743e7bfc-2b78-4f64-f444-9d32f569f9f3" }, "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "YOLOv8l-seg summary (fused): 125 layers, 45,922,682 parameters, 0 gradients, 220.2 GFLOPs\n", "\u001b[34m\u001b[1mval: \u001b[0mFast image access ✅ (ping: 0.4±0.1 ms, read: 0.2±0.1 MB/s, size: 227.1 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/14c/test/labels... 39 images, 1 backgrounds, 0 corrupt: 100%|██████████| 39/39 [00:11<00:00, 3.48it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/drive/MyDrive/Repair Project/report/data/14c/test/labels.cache\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:02<00:00, 1.11it/s]\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 39 84 0.787 0.866 0.844 0.699 0.896 0.811 0.903 0.711\n", "Speed: 6.4ms preprocess, 30.8ms inference, 0.0ms loss, 2.4ms postprocess per image\n", "Results saved to \u001b[1mruns/segment/val2\u001b[0m\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "{'box_precision': 0.7865616846032591,\n", " 'box_recall': 0.8658896650404496,\n", " 'box_map50': 0.8438613385936378,\n", " 'seg_precision': 0.8961427609220894,\n", " 'seg_recall': 0.811297847642913,\n", " 'seg_map50': 0.9025302776148787}" ] }, "metadata": {}, "execution_count": 5 } ] }, { "cell_type": "code", "source": [ "import numpy as np\n", "import cv2\n", "\n", "def get_yolo_masks(weights_path, image_path, conf_threshold=0.5):\n", " model = YOLO(weights_path)\n", " results = model(image_path, conf=conf_threshold, verbose=False)\n", " masks = []\n", " for result in results:\n", " if result.masks is None:\n", " continue\n", " for m in result.masks.data.cpu().numpy():\n", " binary_mask = (m > 0.5).astype(np.uint8) * 255\n", " masks.append(binary_mask)\n", " return masks\n", "\n", "def plot_masks(masks):\n", "\n", " if not masks:\n", " print(\"No masks found.\")\n", " return\n", "\n", " height, width = masks[0].shape\n", " combined_mask = np.zeros((height, width), dtype=np.uint8)\n", "\n", " for mask in masks:\n", " combined_mask = np.logical_or(combined_mask, mask > 0).astype(np.uint8)\n", "\n", " mask_rgb = np.zeros((height, width, 3), dtype=np.uint8)\n", "\n", " purple = [100, 0, 100]\n", " yellow = [200, 200, 0]\n", "\n", " mask_rgb[:, :] = purple\n", " mask_rgb[combined_mask == 1] = yellow\n", "\n", " plt.figure(figsize=(10, 10))\n", " plt.imshow(mask_rgb)\n", " plt.axis('off')\n", " plt.show()" ], "metadata": { "id": "lTk_D00UJZNT" }, "execution_count": 3, "outputs": [] }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "\n", "masks = get_yolo_masks(\n", " weights_path=\"/content/drive/MyDrive/Repair Project/report/results/training/14c/train_250_800_16/weights/best.pt\",\n", " image_path=\"/content/drive/MyDrive/Repair Project/report/data/14c/test/images/RPf_00481.png\"\n", " )\n", "\n", "plot_masks(masks)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 807 }, "id": "NV6M8tO7JldU", "outputId": "7f1eb355-8be8-467e-b15b-811a1986c998" }, "execution_count": 42, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAMWCAYAAADLajMwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWERJREFUeJzt3XeYVdWh/vF3n3OmV4YOQ+8gIh1EVLCLHXvXxCTmJrlJbspNcvNLu+n33iSmx0RU7AV7wwJKVxCk996ZYXo9Zf/+QFCkTTl7r733+X6ex+dxhjNrvYNw5nXttde2bNu2BQAAAEeFTAcAAABIBZQuAAAAF1C6AAAAXEDpAgAAcAGlCwAAwAWULgAAABdQugAAAFxA6QIAAHABpQsAAMAFkaa+8B7rHidzAAAA+Nb99v2nfA0rXQAAAC6gdAEAALiA0gUAAOACShcAAIALmryRHgD8JJwRU077GtMxVHcwS9HadNMxAHgApQtAIHU4bb+m/PlV0zE060fnatMbfU3HAOABXF4EAABwAaULAADABZQuAHBIybq2qtmXYzoGAI+gdAGAQ9a9MEB7l3U2HQOAR1C6AAROVlGtek3aYjoGAByFuxcBBEpmYZ1G3POhBl291nQUADgKK10AAiWrqM4ThWv73G7at7yj6RgAPITSBSAwMgrqNeLzH5qOoR3zi7X4b6N0cGNb01EAeAiXFwH4XiQzqok/mKO0rKi6n7XDdByVrm9L4QJwDEoXAF8LpcV1/q/fUvHYXaajSJK2zemuDa/2Mx0DgAdRugD4lhVO6NI/vapOw/aZjnJE9Z5cVWwvNB0DgAexpwuAb1mW7anCtW1Ody1/5HTTMQB4FKULgD9Ztq55dIbpFEdpqMhQzf5c0zEAeBSXFwH4kK0bn3tCuZ1qTAc5YseCYi26b6zpGAA8jJUuAL6U09E7hUuSYvURNVRmmo4BwMMoXQB857Y3p8uyTKf4xO7FnTX7x+eajgHA47i8CMBX7njnQUWyYqZjHCURDynewNspgJNjpQuAr4TT455a5dq3ooPe+MZFpmMA8AFKFwDfuHP2NFlh23SMo9mSneCtFMCp8U4BwBesUEKy5KlVLtuW7ISHAgHwNEoXAF+4beZ0RTLipmMc5eDGIr38pctNxwDgE5QuAJ4XyYpKLCgB8DlutwHgaRn59br2yWeUnhM1HeUoibilxqp00zEA+AgrXQA8K6ttra55ZIay2tSbjnKMql15euXLl5mOAcBHKF0APGvKn19RToda0zGOkYhZqtqdbzoGAJ+hdAHwpIIe5Qqne2vj/GF1B7P0+tcvNh0DgM9QugB4TlG/Ul3wmzeV16XadJRjJGKW9q/sYDoGAB9iIz2AFus6ZqdCkYQkacf8bkrWLYbjv7lAhT0qkjJWsjVWp+vt759vOgYAH6J0AWiSziN3K6uo7qjPTfzeHKVlH3oO4qz/d642zeyj1havTmfsUVabulO/EAB8htIF4KQ6j9ytgm4VOu3GlSrseeLVp3N/Mvvj0tVyXUbt0rivLzzpPCYlYpY2vNrPdAwAPkXpAnBCXUbv0ph/e1/tBpY6PlfXsTs1+ssfqKhvmeNztVS8MaxF940zHQOAT1G6ABxX1zE7Nerexa4ULknqNXmL2g1wZ66WSMQtLX1guOkYAHyM0gXgKB2H7VWvSVvUcdg+tR9U4sqc3SduU4fT9rsyV0vZcUvLHxlmOgYAH6N0ATiiw9B9GvvVRepw2gFX5+10xl4V9fHuZUU7Ic355UTTMQD4HKULgCSp/ZD9Gv/NBa6tbh3W67zN6jFxm6tzNpdtW9r4GhvoAbQOpQuA2g4o0Vnfnau2/Q+6Om/Pc7do9L0fKL+4ytV5AcAESheQ4tr0PqhzfzxbbXqVuz53bqdqzxcu25Ze/iIPtgbQejwGCEhxadlRI4Wrxzlbdfqty12ftyV47A+AZGClC0BSPH39dU1+bfH4HTrru3OVVVTvYKLkePq665SsxxsBSG2ULgBJUbkzX00pJ51H7takn8xSRn6j86GS4ND3BQCtR+kC0GqPTrlZsk/9ug6n7dMFv3lT6TlR50MBgMdQugC0WkNFhk61ylXUr1SX/vlVRTLi7oRKgofOu910BAABQukC4LiC7uW6atrzCkWasBzmIbG6iNjPBSBZuHsRSGmtL0EPTb5didjJ3koOzeG3wjXtnDtlJyhcAJKHlS7Ac+wTL67YUjJXXtr0KdPl97/UqjEOFZMTB87tVK1rn3ymVXO4zU6c6vsCgOajdAEeU9irXNc+/uxxf23JP0Zo6QMjkjaXZdmyHOsVtrLa1unG5590agLHPHTeHUpEw6ZjAAgYLi8CcICtrKI63fLKY6aDNFusnrIFwBmULgBJF06P65ZX/Ve4JOnxK29SrC7NdAwAAUTpAjzECiWUWej9U9pP7tAqlx/VHcxk8zwAx7CnC/ACy1Ze5yrldKjRZX995YQvS89rVFpOo6I16UmZNh4Nq+ZAtnLa1yZlvLwulbLCtq5/+umkjOe25+64Wo1VGaZjAAgoShdglK02vcuUlh3VFf889V2EQ29aqUQ0pI+mD0tKOajYVqi3v3dek+Y+lcJeZZr62LMObsx3VsX2/FMcfQEArUPpAoyw1X7wAVlhW1c088iGYbcvV8X2Aq1/eYBD2Zqn3aASxRvCuuKfL/q2cEnSG/9xkerLskzHABBglC7AZZ1H7pZl2brkj6+1uKQU9ixXZps6T5SEk10O9Yv9q9orVs/bIQBn8S4DuKjbhO264DdvKhRu3ensp9+6QrZtacVjQ1tdvBoqM7RvRQd1HLq/VeP42dxfnqXaAzmmYwAIODYwAC7oOWmL+l68Qef/6q1WF67Dht22XKffslyZha27U7Bie6E+vD95B676zY4FxWpg8zwAF7DSBTik1+TNymxz6PiH0V/+QOk50aTPcfqtK2SFbC176Aw1VGS2eJzqfbnasaBY3cbvTGI6f1j6wHDV7Ms1HQNACqB0AUnWa/Jm5RdXatDUNcrtWOP4fENvXqkNr/VrVemq2FaodS8MSLnStenN3qo9kG06BoAUQekCkqTHOVvVfvAB9Zq8RQXdKk3HabayzW20+e1e6n3eFtNRXLHx9T5a8o+Rqt6bZzoKgBRB6QJaqXj8DnWfsF2dR+xRm97lRjIMu/0jLfi/8a3aVF+xvVBL/jFSez7srOKxO9Xj7O1JTOg9W9/tqard+aZjAEghlC6ghTqdsUcDrlynor4H1bbfQaNZ+lywWZGMmBo/dVL9e/99tux48+6VqdhWqIpthdq7tJOskK3uZ+1IdlRPWPv8AB1Y3d50DAAphtIFtECHofs07hsL1W5AqekoR3x2ZWrOLybKjrdsrLLNRXr/T2NkhWx1OzN4+7z2rejI5nkArqN0Ac3Qps9Bjfv6QmUV1amoT5npOI4q39pGVbuDt99p1dODtXNhsekYAFIQpQtogpyO1TrvF28rLTuqNr3KTcdBC62ZMVDLpp2huoPcsQjAfZQu4BSyimp16R9fVUF3/92RiKPVHMihcAEwhtIFHMXWDTOePOozVth25bwtOGvNcwO1+unBpmMASGGULuAz8rpUm44ABzRWp6uxmsf9ADCHZy8COK7hn/tQA65YZzoGAAQGpQvAcUUyYgqnJ0zHSIq1zw/Qkr+PNB0DQIrj8iKAQNs0s7fm/WaC7AT/jwnALEoXEBBPX3+tKnYUfPIJu6Uj2Rp2+0c6/bblyYhllG1LdsKicAHwBEoXEBC2bUm21dpRNPi61Rp172JZrR3KA7a910Ozf3yu6RgAIInSBQRCPJqclZx+l27Qmf+xICljmWYnJDtuSQpAewQQCKy5AwHwwt1XqvLTlxZbwAonFE5v4cMaPWjvsk4nXeUKp8cUyYrKCgXjZgEA3kfpAiArnFCfCzfprP+cZzpK0nQesVeTfjZLkhRKiysjv/6ofyb//B3dOeshdR2z65hfa8WGOAA4IS4vAikuFImr56StOvdH75qOknSRjJiy29eo3yUbNPrLi4/7mot//8Yxn3v6+msVrUs78nHtgRzHMgJIHZQuwOeq9+Uo0cI9XaG0uHqcvU2TP14RCpricbt080uPN/vrrnvqmSP/btvS09ddd8xrErGQqvfmtSofgNRC6QJ8btYPJ6l8a5sWfW1hj3Kd9/N3kpwoWCxLuv6Zp4/5fPXeHL32tUtUsb3Q/VAAfIk9XUCKCqfHVNTvoOkYvpXbqUYX/d8b6nj6XhX2KjMdB4APsNIFfMaOBcVH/j2cFleXUXsMpjm5A2vaqaGq+Q9xDqXF1efCTTr7v+Y4kCp15BdX6fJ/vKyStW21+G+jVHMgR2WbikzHAuBRlm3bTbpN5x7rHqezAJ6Tlt2oST+bpe4TdpiOclyv/fvF2rWo+NQv/JRQJK5+UzZo4vfmOpQqde1e0lkLfz9OBze0NR0FgMvut+8/5Wu4vAicRLQ2XfN+PcF0jKSxwgkNumYNhcshXUbu0divLVK7gQdMRwHgQZQuwKe2z+um6r25TX69FUpo6E0rNP6bCx1M5S47Ia18YojWzBhoOsoRXUfv1qh7F1O8AByD0gWcQmNNulY9Pdh0jGNseKWfKrYVNvn1VsjWmK984Fwgl9m29OG/Rmjh78frg7+ONh3nKMVjd1G8AByDjfTAKURr0rXqqSEact1q01GO2PRmb5U2Z9+QZWvMV953LpDLFt03RnbC0sonhpqOckLFY3fJCtl6/09jVLqunek4ADyA0gX40K5FXZvxrEVbZ/3nXA28cp2jmdwy99cTtPa5gfLDg6y7jt6twp7llC4Akri8CDRJXWmW3v+zty5hNdWkn80KTOGa/eNztPZ5fxSuw4Zct4rLjAAkUbqAJonWpmvnwuYdzeCUNc8N1K73uzbptRf8dqZ6n7/Z4UTuePv7k7VpZh/J9k/hkqQOpx3QhO/OU1HfUtNRABhG6QKaqHJnvub/z3jTMVS+pVA1+5t212K3M3fI8ldHOa6Z375AW2f3lJ3w51tW+0ElyihoMB0DgGHs6QKaKFaX1rzN6w5Y/eygQ6s9TXDFP1+QFWrS2cee9sY3L9TORcW+LVwAcBjvYkAzlKxtpzm/PMvY/HWlWaovzzrl666c9rzaDzng+1WuI4Ur7v+3qnN++K7a9OFZl0Aq8/87GeCieENEG1/rq3m/OdP1udfMGKiVT57WpNcWdK/wf+H6j+AULunQA7IjGTHTMQAYFIx3M8BF8caI1r00QAv+b5yr8zbWpCtak37K1137xNNKy466kMg5M799gXYuDE7hAgCJ0gW0SCIa1poZg1w7RmLdS/215B8jT/m6a594WgU9/L3K9fb3J2vHvG4ULgCBw7sa0EKJWFgrHh2qaWffqRWPN+2yX8vnCikRDZ/ydWnZUV8Xrtk/OUdbZvVq9qb5xqp0PXHVDQ6lAoDkoHQBrWAnQoo3RrTovrFa+8IAR+bY9GZvzfvNhFO+burjzyi7fa0jGdww91cTtPH1vi08h8tSvAmlFABMonQByWBbmvvLs/TPcZ/T9rndkjy2mlBEbIXCCd+uctm2ZCcs3x182myWdOg/KIBUROkCksaSicfTWKGErn74ORV0r3R97mSwE9KiP4zVuhcHmo7iuCv++aLa9C4zHQOAIZQuwMdCkbgu+9vLatvfn+c/JeKWltw/UiufGNr6wWwp3ujttzTLkkJpCbHaBaQmb79DAT4Uq4+osSYtaf/EGk784IgL/2emOp6+38XvLnni0ZCWTz9dy6YNT8p4dQez9fQN1yVlLCdd/dDzyu1cbToGAAN4DBCQZO/813muzJOW3ahQJOHKXMkWbwxpzYxBWvw3d47c8JrMgnpV780N/h42AEdhpQvwoYz8ek362Sx1GbXHdJQW2fZeDy38ffIfHm7HLdWWnPoxSaZd9eALajegRDkdq4/8wyVHIPhY6QJ8JrNNnSZ8Z566T9hhOkqLRGsjqjmQ48jYNftz9drXLtHUx2Y4Mn4yXfXgC0d9/M/xn6N3AQHHShfgM2fcuUy9Jm01HaNForURrX+5vxb9wd1HKAGAF1C6AB/J7VylnPY1pmO0yOHCteD/nH1YeLQuTSXr2jo6BwC0BKUL8JH+l61Xr8lbTcdoNrcKlyRV78nT3F+d5fg8ANBc7OkCfKKwZ5kvD9aM1kW09vmBWnQflxQBpDZWugCf6H7Wdt/t5Yo1hLXqqSGuF676sszkP44JAFqJ0gX4QFHfUnUavtd0jGaL1qZp8V/dP4urem+eVjyehFPuASCJKF2Ax7Xpc1Cj7l3suyMi4o0hffTwMNMxAMAzKF2Ax7XpXea7wpWIWVr4+3FaaXC1qXJHvta92N/Y/ADwWZQuwMOK+pVq0NVrTMdotkQ8pDUzBhvNULM/V9vndjeaAQA+jdIFeFSb3gc14dvz1HmEv/ZyJeKWZv1wkukYkqQDq9tr5RNDTMcAAEkcGQF4UkH3cp39X++p/eAS01FaZNt7PU1HkCTVluTowOr2pmMAgCRWugBPSsuJ+rJw2bb08hcvMx0DADyJ0gV4TF7XSk366SzTMZrNtqUZt16j/Ss7mo5ylB3zu2nptDNMxwAALi8CXpLdvkZT/vyKcjv58/mKZZvamI5wjMbqDNUeyDYdAwBY6QK8JBRJ+LZwedmGV/ux2gXAOEoX4BGZbep09cPPmY4RSLH6NEVr0kzHAJDiKF2AR1iWrYy8RtMxAmvlE6fpo+mnm44BIIVRugAPSM9t0I0vPGE6RqtYlnTXe9NMxzihRCysxX8dpQfOuksbXu1rOg6AFMRGesCwcEZMt82cLisA/wsUSkvorjkPaNrEu01HOS47EZKdkN792TmKZMXU89ytkg4VRjc9OfV6Ve3O+0w4dzMAcB+lCzDKlmXZgShc0qHyYoVsybIl2+Um0xy2pbe/d54k6bK/v6yOQ/dJljvly05IdsLy9u8PAEcE5K0e8CcrbOvO2Q+ZjpFUobCtO2c/aDpGE1iSLL38xcv1rzM/r/KthUrErKP+sZO8+pSIWXr2lqmq3pN36hcDCBxWugBjbEUyY6ZDOCacEVO8wT9vMc/edO0xn7v97YcUCickSZHMeIvHjjeGZCcsvfyly1S+xXtnmQFwh2XbTft/uXuse5zOAqQQWxn5Dbpt5iOmgzimsSZND593h+kYSWGFErr19ZP/twqlJZSW9UmJjtWHFW8MS5Jm/WiSdi7o5mhGAGbdb99/ytf4539DgQDJalunm19+zHQMNJGdCGn6hbef9DXdztyuid+fc+TjpdOGa82zg52OBsBHKF2AATe/9Jjrd8zBWTvmd9djl91iOgYAD2MjPeCywl5lpiO4wrJsFfQoNx0DADyD0gW4qN3AA7pm+ozAHBFxMmnZMV32t5dNxwAAz0iBt37AOy7728sKRTgFEwBSEaULcEnx+B2HDg4FAKQkNtIDLug5aYvO/dFshdMTpqMAAAxhpQtwwZnfmt+qwzUBAP5H6QIcNuia1UrLipqOAQAwjMuLgINOu3GFRnz+Q6VlB/dxPwCApmGlC3DQgCvXKT03dVe50rKjGvmFxaZjAIAnULoAh4z4/BLltK8xHcOoSEZc/S7dYDoGAHgClxcBB4z60gcaNHVNSq9yAQCOxkoX4ICOp+9TRl6j6RgAAA+hdAFJNvZrC9V2QKnpGJ6R1bZOk3/+tukYAGAcpQtIsoLuFUrP4bLiYeG0hIr6HjQdAwCMo3QBAAC4gNIFJNGE78xV1zG7TMfwnPziSl1y36umYwCAUZQuIInScxt5vuJxhMK2MgoaTMcAAKMoXUCSjP+P+ep13hbTMQAAHkXpApIknBZXKGybjgEA8ChKF9BqtsZ8ZZEGXLnOdBBPa9u/VFP+8rLpGABgDKULaKXhdy/V0FtWyLJMJ/E2y5LE7xGAFEbpApKAwgUAOBVKF9AKoUhcoTTuVgQAnBoPvAZaKJQW19CbV2j4XctMRwEA+AArXUAL9b1oo0bfu9h0DACAT1C6gBaIZEWVVVRnOgYAwEcoXUALdBu/Q6O/zCoXAKDpKF1AM6XnNaigR4XpGAAAn6F0Ac3UYch+jfriEtMxAAA+Q+kCmiGjoF4dh+0zHQMA4EOULqAZCnuWc0REC9VXZGjH/G6mYwCAMZQuoIkyC+vU+7zNpmP4VvXeXC2fPsx0DAAwhtIFNFF2+1oNuX616RgAAJ+idAEAALiA0gU0QVZRrYbfvdR0DACAj1G6gCZIy4mq16StpmMAAHyM0gUAAOACShdwCplt6jTpJ7NMxwAA+BylCziFcFpc7QeXmI4BAPA5ShdwEul5DZryl1dMxwAABAClCzgJK2Qrv7jKdAzfq9yZpze+cZHpGABgFKULgOMS8ZDqDmabjgEARlG6gBNIy27UDTOeNB0DABAQlC7gJNJzoqYjAAACgtIFHEc4Pabb3pxuOgYAIEAoXcAJhMK26QiBYNuS+K0EAEoXcCxbFoUraWr25eiZG681HQMAjKN0AZ9hhWzdOesh0zECxjIdAACMo3QBAAC4gNIFHMVWZmG96RCBYSekhsoM0zEAwBMoXcBn3PLqY6YjBEZ9Raaeu/0a0zEAwBMoXQAAAC6gdAEAALiA0gV8Sqfhe01HCIxE3NL+FR1MxwAAz6B0AUfYmvKXV0yHCIxYfURvfudC0zEAwDMoXQAAAC6gdAEfG3DlOtMRAAABRukCPjbhO/NkcXA6AMAhlC5A0vDPfSjL4nmLyZKIWVo27QzTMQDAUyhdgKQz7lwmi78NSZOIh7T8kWGmYwCAp/BjBilvwnfmKhROmI4BAAg4ShdSXt9LNrLKBQBwHD9qACRVIm5p5rc4nwsAPovShZR20e9eVzg9bjpG4Oz+oKvpCADgOZQupLT2gw8oFOauRQCA8yhdAJLGtqWnr7/OdAwA8CRKF1LWVQ89p4y8BtMxgsWWqnblm04BAJ5E6ULKyiqq465FAIBr+JEDIClsW3rovDtMxwAAz6J0ISVd+8TTym5XazpG4MTqIqYjAIBnUbqQkkKRBA+3BgC4itIFIDk4eQMATorSBSAp/jXhc5JYPgSAE6F0IeWE02N0AwCA6yhdSDlX/OtF5XetMh0DAJBiKF0AWq22NMt0BADwPEoXgFZ74sobJZtrtgBwMpQuAK1StqXQdAQA8AVKF4BWeeGuK5WIhU3HAADPo3QhpbQbeEBp2VHTMQAAKYjShZQy/j8WcOdiEu2YX6xEnLcRAGgK3i0BtNisH01SIsqlRQBoCkoXAACACyhdAFpk1dODFW9klQsAmorSBaBFlj14huINEdMxAMA3KF0AAAAuoHQhZZx+20fKL640HSMQFv5hrBqr003HAABfoXQhZXQdvUtZbepNxwiEbe/24NIiADQTpQtAs8z5xVmqLck2HQMAfIfSBaBZ9q/qoHgjq1wA0FyULgAAABdQugA02ZvfPV8V2wpMxwAAX6J0IWW8/YPzdGBNO9MxfK22JFuJGAeiAkBLULqQMhqrMpSI8UceAGAGP4EANMkb37xQB1a3Nx0DAHyL0gWgSeKNYcm2TMcAAN+idCHl2LbpBP7D7xkAtB6lCynlpXsu18GNRaZj+M5b3z1fuxd3MR0DAHyN0oUUw+WxluP3DgBag9IF4KTijSEl4rxVAEBr8U4K4KTm/HKidszrbjoGAPgepQvACTVUpStWz3MWASAZKF0ATmjx30Zp66xepmMAQCBQupBS8osrFMmImY7hC7UlWaovzzQdAwACg9KFlHLOj95VQfdK0zF8YeWTp2nL271NxwCAwKB0AThG5a48Ve3OMx0DAAKF0gXgGJvf6s0qFwAkGaULKaN43A5ltakzHcPzyrYUqmRNO9MxACBwKF1IGUNvXqH84irTMTxv9+Iu2jqbOxYBINkoXUgJvc7brLwuFK5TKd1QpJ0Lik3HAIBAonQhJfS5YBOrXE1Qur6tdszn9HkAcAKlCwAAwAWULgCSpP2r2mvNs4NMxwCAwKJ0AZAk1ezP0YHVHUzHAIDAonQBAAC4gNIFQPtWdND7fxxjOgYABBqlCylh/v+eqX3LuXR2ItHaNFXtzjcdAwACjdKFlFB7IEex+ojpGJ5UsratZv/4XNMxACDwKF1AiotHw6ovyzIdAwACj9IFpLCDm9rota9eYjoGAKQESheQwuyEpVh9mukYAJASKF1Aiqrcmafn77jKdAwASBmULiAF2bZk25bsBG8BAOAW3nGBFFRbkq2nr7vOdAwASCmULiDF2LYUbwxLskxHAYCUQukCUkxDRYaemnqD6RgAkHIoXUAKsW2pviLTdAwASEmULiBF2LZUsa1Az9zAXi4AMIHSBaSIRCykZ26kcAGAKZQuIAXYtlS6rq3pGACQ0ihdQAqwE5Ze/PyVpmMAQEqjdAEBZ9vSjvndTMcAgJRH6QICbvObvfXmty8wHQMAUh6lCwi4Wf9vkjgIFQDMo3QBAbbisdNMRwAAfIzSBQTY+38aI1a5AMAbKF1AQC26b4xsm8IFAF5B6ULKWP7o6arcmWc6hivm/eZMrXziNInSBQCeQelCyti1qFh1ZVmmY7hi4+t9ZSf46w0AXsK7MhAwb39/smL1EdMxAACfwTszECBvfud8bZ/XnVUuAPAg3pmRUmb/+FxVbM83HcMxB9a0lx3nrzUAeBHvzkgpVbvyFWsI5gLvq1+9RHUHU2PPGgD4EaULCIDXvnax9nzYmVUuAPCwYP4vP5BCXv/GRdq9uAv7uADA43iXBnwuWpNG4QIAH+CdGillyl9fVlHfg6ZjJM0b37xQ+1Z0NB0DANAElC6kEFuhSEJWQA5pt20pEQ9x6jwA+ASlCynjkvteU4fT9puOkRS2Lb3zg8natair6SgAgCZiIz1SghVKSJYCs8o15+cTteWd3qZjAACagZUupITzfvG2uo7ebTpGUsSjoUOXFQEAvsJKFwIvkhlVKC1hOkZSxBrCWvi7cdr4Wj/TUQAAzUTpQqCl5TRq4vfnqPuEHaajJMVHDw3T2ucHmY4BAGgBrlEg0EZ9abF6n7fFdIykaKhKV0NVhukYAIAWYqULgZXZpk6ZBfWmYyRFQ2W6lk4brtVPDzEdBQDQQpQuBFJ2uxqNunex+ly42XSUpNj8dm+tfHyo6RgAgFbg8iICqd+lG9R/ygbTMZKitjRL5VsLTccAALQSpQuBk9elUoW9yk3HSIra0iyteHSoVj15mukoAIBWonQhUPK6VGrE5z9Uv0s2mo6SFAdWt9eKx043HQMAkASULgTGkcJ1aTAKV83+bO2Y1810DABAkrCRHoGQ27lKI+4JzgpXbUmWPvzXCK17YaDpKACAJKF0wfdyOlZr9L0fBOZORUmq2Z9D4QKAgKF0wXcimVGN+cr7Rz7OKqpTr8lbzQVKstqSLC1/hH1cABA0lC74Tjg9rsHXrjEdwxH15Rma+6uztH1uD9NRAABJxkZ6wEOitWkULgAIKEoX4BENlema9aNJpmMAABzC5UXAA6K1Eb36lUtVur6d6SgAAIew0gV4QCIeonABQMBRugDDYg1hPXfb1aZjAAAcxuVF+E5DVYYevfTmoz7X6Yy9Ou8X7xhK1HKJmKUnrrpR9WVZpqMAABxG6YL/2JbqDmYf9amGqgxDYVrOTkiPXHyrGqv9lx0A0HxcXkQg7F7cRe/8l3/u/LNt6cFJd1K4ACCFsNKFYLAtxaNh0ymaJd5wdN6solrd9OLjrR730Sm3qKEis9XjAACSi5UuBMa2d3to9k/OMR3jlGxbemDC3ZKsY34tFLFb/Q8AwJsoXQgQS7IP7ZXyqkTc0gNn3S07wV89AEg1vPMjUDa+3k8L/m+86Rgn9NDkO2THj/fXzlYokpy2GE6LS2LFCwC8htIFuCRad+ItlOm5jbrpxSeSMs/NLz+urLZ1imRFRfkCAO9gIz0CJ94YVqw+rEhm3HSUIxoq0/XE1Tcq3nC8v3K2MvIbkjrfLa88Jkl65OJbZCcsNVSysR4ATGOlC4Gz7sWBWvrAcNMxjqgtzdLT11+naE36cX89nBHXDTOecmTuW19/VLe+8Yiy29cou12NI3MAAJqGlS4EUkNVhhoq05WR32g0R9WeXL10z+WqLz/RifO28osrHc1gWdLNLz2ueDSkZ2+aKjthqWp3vqNzAgCOxUoXAmntc4O05rlBRjNUbM/Xq/92qWpLck74Gitsa+qjM1zJE05L6PpnntZVDz2vor6lKuhR7sq8AIBDKF2AAw5uaqOZ377wFCtKtjqevs+1TIdl5DXqmkee06V/fFVF/Updnx8AUhWlC3DA/P85UxXbCk/+Iku67K+vuJLneHI61OqCX7+p4nE71G7QAWM5ACBVsKcLgVW2qY0qd+Ypv7jK1Xn3ftRR9eXHv1uwxzlbFQp/fB7XsQfSuy6vS7Uu/v0bKt1QpHm/nqD9KzuajgQAgUXpQmBtmtlXHYbu15DrVrs25+4lnbXwd+NUvqXNcX990k9meeooi8Pa9juoM781Xwt/P057l3U2HQcAAonLiwi0PR92VvnWAlfm2vVBFy26b6wObmzrynzJ1m5gqcZ+bZE6j9htOgoABBKlC4G2dVYvHVjd3vF5dr3fRR/8ebRK17VzfC4ntR9cotH/9oG6jNplOgoABA6lC4G3aWYfHdx0/Mt9ybJzUbFK1jpf7tzQYcgBjbp3sTqPZMULAJKJ0oXA27mwmyp3OHcY6Pa53bRrUVfHxjehw5ADaj+YOxoBIJkoXUgJKx4bqoMbk7/atWN+sT74y2jf7uMCALiH0oWUsG95J9UdPNGjeFpm56KuWnTfWJVtLkrquF7Rf8p6dTtzu+kYABAYlC6kjIV/GKeyzYVJGWv3ks6a/z9nqnyrs3vFTCrsWaHcztWmYwBAYFC6kDLKNhWpsSY9KWPVl2eqcoc7R1EAAIKB0gU0095lHbXw9+NMx3DF8LuXqvvEbaZjAEAgcCI90AwHVrfTW/95vurLk7s/zKuy29YpPbfRdAwACARWupBS3vjmRSrbUtjir483hlOmcAEAkovShZTSWJWhRKxlf+wPbmyj179+cZITAQBSBaULaIKKHfl6/s6rFKtPMx3FdWf/4D11P4t9XQDQWuzpAk6hel+OnrnhWtmJ1Px/lFDElhWyTccAAN9LzZ8iSGnP3Xa1KnfmyW5Cj7BtSbZStnABAJKHnyRIQZaeuvZ61ZZkn/KVDRUZeuKqG13IBAAIOkoXUpSleGP4pKtdtn3obkXJci2VFyViluxEav8eAEAyULqQsp6aeoMaKjNO+OvR2jQ9fsXNLibypvd+fra2z+1hOgYA+B6lCwAAwAWULgAAABdQugAAAFzAOV1IaQc3FJ3w2YLRutQ7CBUA4BxKF1Laq1+ZYjoCACBFcHkRAADABZQuAAAAF1C6AAAAXEDpAnBS3cbvUH5xhekYAOB7lC4AJ9Xnws1q07vMdAwA8D3uXgRwSv0vX6/OI/Yc+XjptOFqqMg0mAgA/IfSBeCUekzcftTHq54aQukCgGbi8iIAAIALKF0AAAAuoHQBAAC4gNIFAADgAjbSAy569papsiz70AeWdP3TT5sNBABwDaULcFHVrvxPPjhcvgAAKYHLiwAAAC6gdAGm2NLD599mOgUAwCWULsAYS9G6NNMhAAAuYU8XYJDlk31dtj9iAoCnUboAUyxbd82ZZjrFKdm29OZ3LtD2Od1NRwEAX6N0AQbZcUtWxLvLSIm4pXd/eo62z+lhOgoA+B57ugBTbEvTzrnLdIoTikdDmvebCdr0Rl/TUQAgEFjpAnCMWENYH/xltNa9MNB0FAAIDEoXgKNE6yJa9uAZWvXkaaajAECgcHkRMKxqd67pCEdEayNa8ehQffTQGaajAEDgULoAg+x4SM/ceK3KtxaYjqLGmjStemqIPvznSNNRACCQKF2AYfHGiJ6/6yrtX9Ve+1e118GNbVzP0FidpjUzBmnx30a7PjcApAr2dKW4nA7VKuhecdLX7FveUfFG/qg4KVaXphc/d6UkKbdTlSb+YI4y8hrUbmCp43M3VqdpzXOD9MGfxzg+FwCkMn6Sprie527V+G8uPOlrnrj6BlXvyXMpEar35um1r16qziN2a8pfXnV8vrItbShcAOACLi8CAAC4gNIFAADgAi4vAh5VvTdXyx4a5vg8NftyHJ8DAEDpSmntBh5Q97O2m46BE6jana/Ff+VuQgAICi4vpqiifqUa85X31XXM7lO+duQ9S5SW0+hCKgAAgovSlaLyiyvVZdSeJr2236UbdfYP3lMkM+pwKgAAgovSlYLa9i/RsNs+atbX9Jq8Vef94m2F0uIOpQIAINgoXSkos0292g8uafbXdTtzpy7+/euywgkHUgEAEGyUrhRT1LdU47+5oMVf32XkHl1x/4uSZScxFQAAwcfdiymkoHu5zv/1W8rvWtWqcdoPLtHUR5+VnbA049apSUoHAECwUbpSSDg93urCdVib3uWybemGGU8o1hDRszddm5RxAQAIKkpXisjrWqlL/5zc5/hZlpTXpVq2Ld38yqOqL8/UjFtY+QIA4HgoXSnCCtnKLGhwZmxLym5bp6w2dbrtzYeP+rWdC4s164eTHZkXAAA/oXSlgOz2NbrmkRmOz2OFpIy8ow9R7TV5i3pMnCZJWvnEaVr8N05YBwCkJkpXiohkmDlfKxS2FQofmnvY7R8p1hDRsmnDjWQBAMAkjowINFsZBfW66YXHTQeRdGglbOQXlmjIDStNRwEAwHWUrgBLy47q1tcfkeWh/8qWdWh/mcQ5XwCA1OKhH8dILluhtIQsy3SOY43790Xqf9l60zEAAHAVpSugQmkJ3fbGI6ZjAACAj1G6AAAAXEDpCiRbOe1rTIcAAACfQukKICtk64YZT5mOcUJ1ZZlqrEk3HQMAAFdRugLHVlHfg6ZDnNSyB8/Q1lm9TMcAAMBVlK4Auuqh501HAAAAn8GJ9PC99NwGdTht/wl//eDGItWW5LiYCACAY1G6AqbX5C2mI5xU2eZCVe7IT9p4aTmNGjR1jUbfu/iEr1n11GDtXdbpyMc7FxUryp4yAIDLKF0BM/nn73jyQNTDNr/dWzvmd0/aeHmdq05auCRpyPWrNeT61Uc+XnL/CK18/DRFayleAAD3ULoCZMj13n6mYcnatjqwqn3SxkvLaVSfizY1++tG3vOhQuGE6isyJUmrnxksO872RgCAsyhdATL23xd5epVr9+Iu2rmwW9LGyyys17Dblrfoa4ffveyocRLRkJZOGy7ZHv4NBAD4GqUrIEb/2/uyLO8+RHrfig7aPjd5lxWTafhdyyRJ6XmNWvSHsZIoXgCA5KN0BcRpN6yU5dErZAdWt9P7fxqjfR91OvWLDRp600qlZUWP+ly0Lk2L/jDOUCIAQJBQugLg7B++q1AkYTrGCVXuyk964UrPa9D4by5I6piSNPCqdUd9XF+eQekCACSFR9dG0By9Jm3x7CrX/lXttXz66UkfN5weV/cJO5I+LgAATvHoj2oERX1ZpkrXtzMdAwAA4yhdPnfpn19RJDNmOsZxlaxtqwW/G5/0cdNyGnXJfa8lfVwAAJxE6fK5oj4HPXtpMVqbpqpdyTt9/rBQOKGiPmVJHxcAACd59Mc1muLKB55XRn6D6RgAAKAJKF0+lt2+1rOrXKXri/Tmdy4wHQMAAM/gyAgkXfm2Ar30hcsVq09L+tiRzKhueO7JpI8LAIDTPLpOglOZ+tgzym5XazrGcdkJy5HCdVh6TvTULwIAwGMoXT4VSkt4+jmLAADgaJQuX/LuMxar9uTq2ZumOjJ2KBLXHbMecmRsAACcRunyoaunP6eCbpWmYxzDtg9dWnTygdGs7gEA/IrShaSpL8vUU1NvMB0DAABPonT5TCQzKivkvcuLtn3oMFQHZ1AaG+gBAD7GkRE+c8kfX/PkaeyN1el66lrnVrmskK3b3njEsfEPs22pvjzzyMcNlRmOzwkASA2ULrSabUs1+3NMx0iaRy+51XQEAEAAcXnRR3I6VCuS4b2HW8cbwppxizN3LB5iq6BHhYPjf6J8a6Er8wAAUg+ly0cm/mCO2vY/aDrGUWxbKl3f1vF5pj72rONz2LYcO+4CAABKF1rFjlt66QtXmI4BAIDnUbp8ou2AEmUW1puOcRTblnbM72Y6RtLsXFBsOgIAIMAoXT5xxp3L1G5AqekYR7OlN79zoePT9L5gs+NzSNLMb10oJw92BQCkNkoXPG/ST2dxEj0AwPcoXWgR25ZWPDbUdAwAAHyD0uUDPc/doja9vHcg6vt/GuP4HCM+v8TxOSTpw38Ol22znAYAcA6lywe6T9yuwp7unFPVVIv+MNaVec64a5krlxaXPXiGROkCADiI0oUWWfnkaWLTOQAATUfpQrO9/YPJkgvP3J7003c8+XBvAABagtKFZtv2bg+5scrV45xt3LUIAAgMSpfHnXbTCnU7c4fpGEe88m+XKhEL1h+bV79yiRLxYH1PAADv4SeNx+V1qVJWG++cRL9/ZQe5scp1+f0vKpwWd3we6ePviU30AACHUbrQZM/dcZXijWFX5mrTu0wWfzoBAAHCjzU0WdWuvMCtCD1z01TF6iOmYwAAUgClC03yzI1T1Vid7spc1z31lNKyo67MVVeaJY6+AAC4gdKFJmmoypBb5SQ9r5G7FgEAgUPp8rAR9yzR4KmrTcfQU9dd9/GKkPOuf/ZJZRa6c+PAE1fdoIbKDFfmAgCA0uVhoXDC+GZy29bHR0S4sfRkKxRJuLLK5e73BQAApQun8OzNU1W9J9eVua598hnldKhxZa6nrr1etSXZrswFAIBE6UKTOL8aZIUTsizb5b1crHIBANzDvfIeZYUTssJmnzsYawi78ozFcHpMV/zzRRV0r3R+MgAADGGly6OG3rxCw25bbjTDK/dOUfnWNo7Pc8l9r6lt/4OOz3NYY02a7ASrXAAAd1G6cFz1FRmuPGMxPa9BobSE4/N82stfvEzVe/JcnRMAAEoXjuvt752n0vXtHJ9n0k9nqcOQA47PAwCAaZQuD8rIr1dWUZ2x+av35ihal+b4PDkdqpWW5c7J84dV7spTrIGtjAAA91G6PKj3BZs19KaVxuaf/z9nqmRNe8fnGfu1Rep0xj7H5/m02T86V5U7ClydEwAAidIFQwp7lhldzQMAwG2ULhylZG1b1R10/pE/Q29Zoc4j9jo+z6ftW96Bx/4AAIyhdOEoKx4bqgOrOzg6R7uBB5Rf7P6ZXEvuH6mK7YWuzwsAgETp8pyC7uXqPHyP6RiO6nvxRnUe7u4q1475xarZn+PqnAAAfBqly2PaDSpR7/O3mI7hmI7D9qrdoBLX5137wkBVbCt0fV4AAA6jdOGIre/2UOmGto7O0XX0LnUa5u4diwAAeAGlC0fsXFCs8i3OPfany+hd6nbmDsfGBwDAyyhdkCRterO3di/p4ugcbfuXqv1g9y8trnluoErWOH+6PgAAJ0PpgiSpdF1bRw8N7Tp2p/pPWe/Y+Cezb3lH1ezPNTI3AACHUbrgitxO1WrTu9z1eVc9NVi73u/q+rwAAHwWpQta91J/bXitn+kYjqjYXqC60mzTMQAAoHRBqj2Q7WgxKR63QyM+/6Fj45/IyieGaNPMPq7PCwDA8VC64Lj03EbltK91fd66g1lqqMx0fV4AAI6H0uUhxeN2aMK357k659oXBuij6cMcG7/rmJ2a8F13vydJWvnkEK16aojr8wIAcCKULg8Jp8eVnht1dc5YfUSxujTHxg+lJZSR1+jY+CcSq48oVu/c9wUAQHNRuuCYjsP26vxfvmU6BgAAnkDpSmHrX+mnRX8Y69j4VshWOD3h2PgnsvrZQVry95GuzwsAwMlQulKYnbBkJ5z6I2A7NO4pZrWd/r4AAGgZfjKlKNuWo72o3cASTfnLK85NcAIbX++rBf873vV5AQA4FUpXito6q6fm/OJsh0a3FYokZFkODX+iWRNSIhaS5PLEAAA0QcR0AASMZavdgBJd8c+XXJ9623s9NOfnThVJAABah5WuFBSPhhStdeA4BctWUZ+DuurBF5I/9ikkYpaiDh59AQBAa1G6UtCeJZ313n+fk/RxMwvrdc0jzyV93KbY82FnvfuTc43MDQBAU1C6kByWrfyulUamjjWEVXMgx8jcAAA0FaULrWfZ6jh0n5F9XJJ0cEOR3vtZ8lfuAABIJkpXimmsSVPZ5jZJHTOcHtfl/3g5qWM2VbQuooMbi4zMDQBAc1C6UszBjUVadN+45A1o2eo6Zlfyxmumyp35mvuricbmBwCgqShdaBUrZOvC375pZO5obUS73u9qZG4AAJqL0pVC6isytGNetySOaKv/ZeuTOF7z1B3M0vt/dO7ZkQAAJBOlK4XU7M/RRw+fkbwBLWni9+Ymb7xmiNZFtP6V/kbmBgCgJShdHpHbuUq9z9/s2Pj1FRla+9zAJI5oa/jdS5M4XvNEa9K0bNpwY/MDANBcPAbII/K7VqrPhc6VroaKDK2ZMThp44356vsaevOKpI3XHLH6sD785wgjcwMA0FKULjTbhO/M1cCr17r+QGtJijeGNPfXZ2nja/3cnxwAgFagdKHJJv7gPUUyY+p93mYjhUuSEvEQhQsA4EuUrhRQX56hOb9s3VlW5/xotvpcsEmhiJ2kVM2XiFl66z/PNzY/AACtQelKAfHGsPYu7dyirz3n/81WbudqdThtv9HCJUm2bWnXomKjGQAAaClKF07onB/NVq/JWxTJiJuOIjshvXD3laZjAADQYhwZgeM6+4fveqZwSYdWuQ5uaGs6BgAALcZKF44x8fvvqc8FmxROT5iOIkmybenJa24wHQMAgFZhpQtHmfCduep78UbPFK7DavblmI4AAECrsNKFI8Z9fYEGXLHO+Ib5z3r4/NslGTqjAgCAJKF0BVx9RYaenHrqS3OjvvSBBl+3WqGwtwrXg5PuUKyOP6YAAP/jp1nQ2VIiGj7hLw++bpXGfX2hLMuW5cGLzfGGsFjlAgAEAaUrJdg6fnGxZYVsz61uSYc2zz94zp2yExQuAEAweHBtA8mUWdigm158XFbo8MZ4W1YoISuU0IAr1mnc1xcazXciD59/u+KNEbHKBQAICla6UkBOh1pd++QzmnHLNeowdL+m/PlV05FOKt4YOrQ4BwBAgHi4dNlKy46aDnFC8cawErET75XymoJulbrrvQdNx2iSx6+4SdHadNMxAABIKs+WrlBaQne887DpGCf03s8nav1LA0zHCJz6igzZNpcUAQDBw54ueEZtSZZm3HKNGioyTUcBACDpKF3wjJfvvUy1JZw8DwAIJkpXC+V2qlZ6XoPpGIFRvrVA8Ub/7JEDAKC5PLuny+tGfG6pZEu7l3RR6fq2itaw8bs1Zv2/SarZl2s6BgAAjmGlqxVGfH6pLvvrKxp09Rql5TSajuNb+1Z0UCOlFQAQcKx0JcGYr3wgK2xr9dODOeqgmfZ82Elzf32Wqnblm44CAICjWOlKktH3LlZ2u9oWf33NgRztXNg1iYn84aOHh6liW6HpGAAAOI7S5REV2wq1ZsYg0zFctW1Od1XtzjMdAwAAV1C6YMzG1/uqYnuh6RgAALiC0uUhBzcVacNrfU3HcMWmmb1Vur6t6RgAALiG0uUhVbvytXNhsekYjts0s7eW3D9SlTsKTEcBAMA1lK4kGv8fC5RRUG86huftX9WBwgUASDmUriQqHrtLkcxYq8bYvbiLVj09OEmJvGfDa3217d0epmMAAOA6zunymLrSbJVvLTQdwxEb3+ijxX8dpZr9nDwPAEg9rHTBNbUHsilcAICURenyoI2v99XyR4aajpFUm97srY+mDzMdAwAAY7i86EHRmnTVV2SajpE0297rrnm/nqDG6gzTUQAAMIaVLo9a9eQQrXj8NNMxkiLWEKFwAQBSHqXLo+KNEcUbwqZjtNqO+cV696fnmI4BAIBxlC44yk5YSkT9Xx4BAGgtSlcSPXPjVNXsy0naeIv/Nkqrn/HnQ7BtW9rzYSfN/PaFpqMAAOAJbKRPIjthSbKSOKIl207meO6wbalkTTu98uUpSu7vBwAA/kXpQtKVby3UC3dfZToGAACewuXFJIk1hJO+KhWKxBUKJ5I6ptNsW4G4AQAAgGTz9EpXQ2X6kX+3QrbSc6MG05zcS1+4POkPcR7x+Q816Jq1SR3TadV7c/X8nVebjgEAgOd4tnQlomFNv/D2Ix/ndanUlQ+8oMzCBoOpjq++IkOJGIuGdkKqLw/Ooa4AACSTb5pC1e58vfqVS03HOK63vnu+yjYVJXXM9NwGpec2JnVMJ9kJqWRtO71w11WmowAA4Em+KV2pZuDVazX42jWmYzRZY006m+cBADgJX5WuWH1EZVsKTcc4Svm2AkVr05I6ZmabOuV2rE7qmE6yE1LpuramYwAA4Gm+Kl2VOws05xcTTcc4ysLfj1Pp+nZJHbPX5C2+WeWybWnnwmK9+pUppqMAAOBpvipdXnNgTTvVHcxK6pg5HapV1PdgUsd0kh239MY3LzYdAwAAz/Nd6aovy9SuD7qYjiFJWvHoUJWuS94qV06Hap1x5zINutofx0TYtrTxjb6mYwAA4Au+K12VOwu0fPrppmNo9+LOqkjiuVw5Hap1xl3LfHMul21Lq58ZrPd+do7pKAAA+ILvSpckVe3O09bZPYxm2PhG36SuchV0r/DNCtdhC/53vOkIAAD4hi9LV+XOAn3wl9Ha8k5PI/Nvn9dNJWuSe1lxwBXrkjaeW0bdu9h0BAAAfMOzJ9KfSsX2Qm2f1129Jm91fe7dH3TRwY3JOSIhu12Nxv77IvU+b0tSxnOLZUnDbv9I6TmNikfDWvSHcaYjAQDgab4tXZK0d1knbXitr/pdstF0lBbJLKzTWf85V93P2mE6SotYljT42jVKxC1lFtYrWpOm+f8zwXQsAAA8ydelq2pXvj68f4Qsy1bfize5MuemN3tr25zk7CdLy476tnB9Wihsq98lGxVvDCmUltDcX3rrLDUAALzA16VLOvRMxsV/HyUrbKvPBZsdnWvz2720+K+jVLU7v9VjZeTX69wfz259KA8JpyfU9+KNyutSpYrtBZr/W1a9AAA4zPelS5Kq9+Tp/T+OUSiSUK9JW52bZ29uUgpXWnajLvnja2o3oDQJqbwlkhFX19G71eG0/Wo3sET7PuqoRfex3wsAAF/evXg8NftzteB/x+vZm6/R7sWdkz7+lnd6asWjQ5MylhW2A1m4Pi0tK6YOQw5owJXrNOari0zHAQDAuECsdB1WW5Kj2pIcvfPDyYpkxnTBr99U2/7JeaROQ1WG6g5mt3qccEZM10yfkYRE/pCeE9Wga9YoEQ1p8d9Gm44DAIAxgSpdh9WXHXoe4qtfuVShSEJXPvCCcjvVtHi8re/20KL7xrY6VygS143PPaGsovpWj+UnaVkxnXbjSsUbw1r6wAjTcQAAMCKQpeuwhspMSdKzt0yVZdmSpJtffkyRzHiTx9i5sKtm/+hcxerTkpIp1QrXYZHMuM64c5ni0bCWTx9mOg4AAK4LdOk6LFqTfuTfp19025F/v3P2g7Ks439Nybq2eukLl8tOWEpEw60PYdm6/a2HWz+Oj4XTExr1xcWK1UW0+pkhpuMAAOCqlChdnxZv+ORbfuCsu0/6WjuerPsMbN095wGFInaSxvOvUMTWuG8sVLQ2TRte7W86DgAArkm50vVpyStVp2aFKVyHhcK2zv7he4o1RLTl7V6STrDcCABAgATmyAivskIJfW7+v054GTNVWZY0+b/fUbczd0iikAIAgo/S5bC73psmi9/l47Is6aL/m6nOI/eI4gUACDrqgIMiWVHTEXxhyp9fVcfT90kWxQsAEFyULoek5zXo1tcf8fTm+XhjSPUVGaqvyFCsIQl3aLbC5f94We0HHaB4AQACi9LlgKy2tbrphccVyWj6eWBuizWEtfqZwXrkotv0yEW3adm0MxStM3tfxZUPvKh2A0soXgCAQKJ0OeCa6TOUlh0zHeOEonURrXtxwFEPol724HBtfL2vwVSHXDXtBWUWpOYBsgCAYKN0JVlhzzKFIgnTMU4oWhfRhlf7acH/nnnU57Pa1iojv8FQqqO16V0mK+Td30MAAFqC0pVEbQeU6NI/v6qM/EbTUY4rWhfRxtf6av5vJxzza6fduFK9z9tiINWxpvzlVUUyvbtSCABAS1C6kqTD0H264DdvKrttnekox3V4hWveb84yHaVJuo7Zxd4uAECgULqSoPOI3Tr3x7OV27HGdJTjitWHte7FAcdd4fKq83/1tsJp3r0RAQCA5krpxwAlQ9cxO3Xmt+Yrv2uV6SjHFW8MafWzg/X+H8eajgIAQEqjdLVQl9G71KZ3mQZetVYF3StNxzmueDSkFY8N1eK/jTYdpUUGX7taKx4fKtk8QwkA4H+UrhboOmanRn/5A7UbWGo6ygkl4pY+/OcIffTQGaajtNjYr72vlU+cJpvSBQAIAPZ0NZMfCpck2XHL14ULAICgoXQ1g28KV0Ka56NN8wAApAIuLzZR55G7NeYr76tt/4Omo5yUbUvv/HCytrzd23QUAADwKZSuJuh0xh6N/8YCFfUtMx2lSba83ct0BAAA8BmUrlPocNo+nfWfc1XYs8J0lCZ55d4pkth4DgCA11C6TqLtgBKd++PZyi/25hlcn/X8nVeqZG070zEAAMBxULpOoLBXmS749ZvK7eTNU+aPp3R9W7HKBQCAN3H34gmE0+O+KlxPXXud7ASFCwAAr2Kl6zjyiyt06R9fNR2jyZ64+gZV78kVq1wAAHgXpeszcjpU6+qHn1Nadsx0lCahcAEA4A+Urk/JLKzT9c88pXB6wnSUJovWponCBQCA91G6PpaW06ibX3lMobBtOkqTPX7ljWqoyDAdAwAANAGlS7bCGXHd/tbDsny0YPTUtdepZl+OgrzKNe3sO7k5AAAQGCl+96KtcHpcd85+0FeFKxG3ZNuWgly4PpEK3yMAIBWk9EpXOCOuu9590HSMZolHQ3r+jqtUtSvfdBQAANAMKbzSZevO2Q+aDtFsr9w7RWWbi0zHAAAAzZSypSuzsN50hGZrrE5TIpay/8kAAPC1lPwJntOhWre8+qiv9nHVl2do5rcuVMna9qajuKJ6X87H+9YAAAiGlNvTVdC9XFMfe1aWj+pmbUmW3v3pOdq7rLMj42cU1CuzwFsrf8/eNFWJaNh0DAAAksZH1SM5rn74OYUi/jmLS5I++Mto7Xq/2LHxB12zRgOuWO/Y+AAAIMVKV4eh+2SF/FW4Knbkq7Y023QMAADQSil1efGi/33DV4/4Kd9WoEX3jdWuRc6tcgEAAHekVOnyk7IthVr811HaMa+76SgAACAJUubyYt+LNyicHjcdo8m2z+mube/1NB0DAAAkSUqsdA24cq3Gfm2RIpn+KF2l64u0d1kn0zEAAEASBb50Db52lUZ+cYnSc6KmozRJ6YYiffDX0dq5oJvpKAAAIIkCf3lx4NVrlZHXaDpGkxzc1Ebv/2mM64Vr16Ku2vVBF1fnBAAg1QS6dJ1x11LltK8xHaPJKnfmG7lT8cDqDipZ2871eQEASCWBvbw44vNLNOT6VcrI98kq18Y2Wj79dNMxAACAQwK70tXpjL2+KVzl2wr03n+frf0rOxrLsO7FAdo+j31kAAA4JZArXaO//L7aDSwxHaNJKnfm6e3vn6eyTUVmc+woUM3+HKMZAAAIssCtdI269wMNumaN0nO9f7dizf5svf6Ni40XrsOWPjCc1S4AABwSuNKV27HaF4WrrixTL33hclXuKDAd5YjaAzma8/OJ3MkIAIADAlW6Rt37gXqeu9V0jCax45aq9+aZjnGMuoPZeucHk7VveQdjGZ695RpF69KMzQ8AgBMCVbrScxt9cep8Q1W6nrnpWtMxTqihMlOvf/1iTb/wVpVvc38lrq40S7It1+cFAMBJgSldI7+wWAOvXGs6xilF6yJ6/PKb1FiVYTrKSUVr09VQmannbr9a1XvZYA8AQGsF5u7FUFpCoYhtOsZJxaMhTb/gNiViYdNRmizeENFT114vSbrltUcdP93/yWuuV315pqNzAABgQiBK17A7lun0W5ebjtEkfipchx3OPP3C2yRJd703TaFIQlYSrwDatvTMjdeqaneeJC4tAgCCJwCly5Zl2UktAE5IxCxNm3iX6Rit8/E+q8Pfx+fm/0uSZLXyIrWdkJ6/8ypVbCsQhQsAEFT+Ll2WrSHXr9KoLy0xneSk4tHQx0UlKIXi0PfxrzM/Lyuc0F3vTpOkZl/eTcQtyZZe+fIUla7n2Y8AgGDzdenqd+kGjf/GQtMxTmna2UEqXEez4yE9cNbnlJbTqFteefSTX7CkSMaxd5ImYpYSsUNLY7N/fK62zu7lVlQAAIzybekKReKKZMZMxzilhsp00xFcEa1J14PnfnL5tKhfqab8+ZVjXvfRw8O0/JFhbkYDAMATfFu6up+1XRO+Pd90jJOqLc3S45fflJJnTh3c0FbTL7zddAwAADzDl+d0hTNiyiqqMx3jlJ68+gbZCV/+FgMAgCTzXSMIZ8TU9+KNmvAdb69ylW0plJ2CK1wAAOD4fFe62vYv1cTvzTUd46RK1rXVC3ddqUTUf2dyAQAAZ/iqdEWyomo3sMR0jFN6/esXK1bPA5sBAMAnfFW68rtW6sz/WGA6xkntXNRV8UZWuAAAwNF8U7rSshvVbcIO0zFOac4vJipakxrHRAAAgKbzTenKalun0fcuNh3jpDa+0UfRWi4rAgCAY/midKVlN2rgVWtNxzilpf8arsaqDNMxAACAB/mjdOVEdfotK0zHOKlVTw9WfXmm6RgAAMCjPH8ifSQzqlFf8vZlxZVPDNGyB89QQyWlCwAAHJ/nS1c4I67+UzaYjnFCyx8dquWPnK768izTUQAAgIf54vKil+1e3EX1ZRQuAABwcp4uXeGMmM7/1VumY5zQ0gfO0IHV7U3HAAAAPuDp0mWFbHUevtd0jBMq29xGDRXs4wIAAKfm2dIVisR15QMvmI5xQkv+MUI7FnQzHQMAAPiEJzfSW6GErnvqaeV1qTYd5YRqDuQ0+eT56599UpZlO5LjuTuu5mwwAAB8wIOly9ZNLz2u7LZ1poOc0JL7R2jTzD5Nfn1e5ypZDq0pWiFnyhwAAEguD5YuKavIu4Xro4dP10cPD1MiykOtAQBA03mudN0x6yFZlukUx7fyySFa/PdRsuOe3QoHAAA8ynPtIZIZMx3hhBKxEIULAAC0iIdWumzdPfcBz65y2WydAgAAreCZZZu73pumUMSbzca2pXUvDND7fxzTsq9PeLRJAgAA13iidIUicdMRTmrzW70191cTJbWsPD1w1t2slAEAkOI8Ubpumzld4fSE6RjHlYhbijdypyIAAGgd46UrPa/BdIQTSsQsbXm7l9772TmtHquhkgNMAQBIZcZL1/VPP6W0bG/esbhvRUfN+n+TkzCSpUcuvjUJ4wAAAL8yWrpyO1fJCrPZCQAABJ+rR0bkdalUWnb0yMeX3PeaMvIa3YzQZLH6sCp35puOAQAAAsLV0jXhO/NUPG6Xm1O2SKw+rE1v9tGcn59tOgoAAAgI43u6vKh6by6FCwAAJBWl6zOidRHtXFhsOgYAAAgYStdn1JdnauHvx5uOAQAAAobS9Smx+rDWv9TfdAwAABBAlK5PidamaekDI0zHAAAAAUTp+lisIawl9480HQMAAAQUpetjiWhIa58bZDoGAAAIKEqXpHg0pPf+28kjImxN/tk7Do4PAAC8jtIlyY5b2jq7l6Nz9Dpvi6PjAwAAb0v50pWIW3rta5eYjgEAAAIu5UuXbGnf8k6mUwAAgIBL6dJl29KzN091fJ6pjz8ry3J8GgAA4GEpXbpkSxXbCx2fprBHueNzAAAAb0vZ0mXb0qNTbjEdAwAApIiULV2SVF+W6fgct74xXeLSIgAAKS9lS9eD597pyjzpOY3s5wIAAKlbuuKNYbEEBQAA3JKSpeuBiXdJtvPz3Dl7mqywCxMBAADPS7nSlYhbHxcuF1a5LHFpEQAASErB0vXQ5DuUiIUdnyeUFnd8DgAA4B8pV7rccuvrjyiSQfECAACHpFTpqi/PMB0BAACkqIjpAG566rrrFW/w97dcW5qlRPSTrmwn2DQGAIAf+LuBNEPFjvxAFJS3vnu+9q/saDoGAABoppS5vPjyly5TtCbddAwAAJCiUqJ07V/V/qhLck7rMHSfrBDncwEAgE+kROl6578mq6HS+ecsHnbBr99UWlbMtfkAAID3Bb507ZhfrFhdymxdAwAAHhX40vX+n8aovjzLdIyk2D6vm+oOBuN7AQAg1QS+dAXJqieHqGp3vukYAACgBQJdutY8N9D1laGhNy9XhP1cAADgMwJduta/1N/1S4tDrl/FJnoAAHCMwJauj6afrqrdeaZjAAAASApw6dq5sNj1Va7x35yvzMJ6R8Ze/shQlW5o68jYAADAeYEsXR/+c7gObihyfd6uY3cpkhl3ZOz9Kzuovow7FwEA8KtAlq7S9W1dPQwVAADgVAJXuj74yyjtXtLF9Xkn/ewd5XWucn1eAADgD4ErXdX7co082LqgW4XC6QlHxl70xzHauajYkbEBAIA7Ale6TDj/V2+qTZ8yx8avL8tUrC7NsfEBAIDzAlW6Ft03Rlve6eX6vBkFDQqnObPKBQAAgiFQpStWH1EiGnZ1zvN++ZY6nr7P1TkBAID/BKp0mRDJiCkUth0bf8HvxmnDa/0cGx8AALgjMKXr/T+P1poZg1ydc9JP31Hx+J2OzmHHLcm2HJ0DAAA4LxCly7YlO2FJcrmcWJJFHwIAAE0QiNL10UPDtOLR012d0wolZFnOXVYEAADB4vvSlYhZiru8eV6SzvrPuep9/hbX5wUAAP7k+9K1ZsYgLf3XCNMxHBFrCCve6H6hBAAAyef70mVCWnajwhnOPNj605Y+MFzrXhzo+DwAAMB5vi5d0dqI6ivcf7D1iHs+VN+LNrk+LwAA8C9fl64t7/Ry/dJiZmGdMgvqXZ0TAAD4X8TNycq3FSo9r/HIx237l/ru8TmDpq5Rv0s3Oj5PbUmWakuyHZ8HAAC4w9XStfB344/6ePJ/v62e525VKNL8oxfqyjJVvrUwScmaJqdjtfK6VLky14ZX+2nDK/1dmQsAADjP6OXFd/7rPDVWp7foa/cu66TljwxLcqKT633eZvWfssHVOQEAQDAY39O1+e3eSsS8f6x7fnGF2g0sMR0DAAD4lPHSNf+3E5p9FlX1vhztXFDsUKLj6zxij/pcuNmVuQ5uaqN9Kzq6MhcAAHCH8dIlSSseG6pEvOmrXeVbC109v6qwZ5njD7b+tL1LO2n7nB6uzQcAAJznidL14T9Hym5i6arak6v1L7m7wbyo70H1mrTV1TkBAECweKJ0SdKC342X3YTTI2oPZGvzW32cD/SxNr0Pqv9l612b78Dqdtr8Vm/X5gMAAO7wTOla+9wgzf7JubJPcnpE9b4cLX1guGuZJCm3U7WKx+1ybb6K7QXau6yza/MBAAB3eKZ0SdKmN/rqze9ccMLi1VCZoZ0Lu7mWp7BXmYbfvdS1+QAAQHB5qnRJ0vY53U1HOCKzoF4dTjtgOgYAAAgAz5UuSXrpnsuP+Vz1vhzN/tG5rmUo6FGuCd+d59p8krRnaSctuX+kq3MCAAB3eLB0WTqwuv0xn403hFW2uci1FJHMmNr0KndtPunQ5dOqXfmuzgkAANzhwdJ1rNrSLL3yb1NMxwAAAGgxX5QuO26p9kCOa/PlF1fokvtec20+AAAQfBHTAbwmp0O1rnroeaXnRF2dd8+HnVzdswYAANzli5UuN1kh2/XCJUmJeEix+jTX5wUAAO7w5EqXnbD0rwl3uz5vZmGdrn/mKdfnBQAAwefJ0iVZTX4WY/LYkiWFIic5Et8h+1e112tfvcT1eQEAgHu4vPixtJyobnn1UYMJ3C6ZAADATZQuSZKtcFpcloHeY9tSIsZ/BgAAgo6f9rKVWVivW183s8pVtqmNXv7isSfwAwCAYEn50mWFbWOFCwAApI4UL122ctrXmA4BAABSQAqXLlv53Sp14/NPGkuQiFmq3ptrbH4AAOCeFC5d0nVPPW10/up9uZr5rYuMZgAAAO5I2dLVYeh+0xEAAEAKSdnSdfnfXzJyRMRh8caQ9i7tZC4AAABwVUqWrp7nbjEdQQ2VGXrvv88xHQMAALgkJUvXpJ/NkpWS3zkAADAl5arHoKmrZYXcf77ip8Uawlr7wkCjGQAAgLtSrnSN/eoihcJmS1e8IawP7x9pNAMAAHBXSpWukV9crFAkYToGAABIQSlVugZPXa1QxPAqV2NIC3433mgGAADgvpQqXV6QiIe08bV+pmMAAACXpUzpOudHs5WWHTUdAwAApKiUKV1dR+8yfmkxEbP0+r9fbDQDAAAwIyVK14X/84YyC+tNx5BtW9q3nFPoAQBIRYEvXRf8dqa6jjW/ymUnpBm3XGM0AwAAMCfQpeuC385U8bidCqd545iIiu2FpiMAAABDIqYDOOGc/zdbxeN2KiO/wfgKFwAAgBTA0nXW9+aoz4WbPFW2bFt6+PzbTccAAAAGBap0jf/mfPW/bL3xx/wcT7Q2zXQEAABgUKD2dFlh25OFa9rEuyRZpmMAAACDAlS6bFmW9wqXdOgUegAAkNoC0wZG/9sHGnTNWtMxjpGIs8IFAAACVLq8atrZd0k2xQsAgFTn2430VjihSEbsyMfhtLjBNAAAACfn29LVY+I2nf+rt03HOKn68gzTEQAAgEdwedFBj19xk2w20QMAAFG6HFOxPV82e7kAAMDHKF0Oef7Oq5SIhk3HAAAAHkHpcsC+5R1kJ1jlAgAAn6B0OeDN716gWD2P/QEAAJ+gdCXZtve6K97IZUUAAHA0SleSzf/fMxWtSTcdAwAAeAylK4nWvdRf0RouKwIAgGNRupJo+fTT1VjNgagAAOBYlK4kWf7oUNWVZZmOAQAAPIrSlSSbZvZRYxWrXAAA4PgoXUmw+O8jVbUrz3QMAADgYZSuJNi7tBN7uQAAwElRulpp4R/GqnR9W9MxAACAx1G6Wql8a6GitZzLBQAATo7S1QoLfjdOe5d2Mh0DAAD4AKWrFepKs3jGIgAAaBJKVwst+L9x2jq7p+kYAADAJyhdLRStS1MixoOtAQBA01C6WmDRH8do/cv9TccAAAA+QulqJtuW7Lgl2ZbpKAAAwEcoXc209F/DtfKJ00zHAAAAPkPpagY7IdkJSxKrXAAAoHkoXc2w4vGhWvrACNMxAACAD1G6mijeGFK8gbsVAQBAy1C6mmjDa/205B+jTMcAAAA+RelqgmhtRPXlmaZjAAAAH6N0NcH2ed21+K+jTccAAAA+Ruk6hYaqdFXuzDcdAwAA+Byl6yQaqtK15tlBWvJ39nIBAIDWiZgO4GUHNxZp8d+OvazYpvdB5XWtOuHX7VxYrESUOx0BAMAnKF0nUF+RoV2Luh71ucKeZWo3sER9LtqkbuN3nvBr5/32TK19fqDsOAuJAADgEErXcTRUpmv5I6dr+fRhRz5X2KtMo764WD3P3XbKr5/w7fna+FpfRWvTnYwJAAB8hKWY46g7mHV04epZppFfWNKkwgUAAHA8rHR9RkNVulY8PlSSlNu5SgOvWqs2vcrU4+zthpMBAAA/o3R9RmN1uta9MFA5Has17t8Xtmh16/0/j1a8kY30AADgE1xePIHMwvoWX05c/3J/JWKULgAA8AnfrnTtW9FRM799wZGP+09Zn7Q9V9ntazTu3xcmZSwAAABJsmzbtpvywnuse5zO0ir5xRXK7VStYbd/pK5jdrd4nFhDWKXr26rj0P3N/tp3f3q2avbnaO+yTqx0AQCQQu637z/la3y70vVZlTsLVLmzQFV78pRZUC9JOvu/3lOb3uXNGieSEW9R4Zr9k3O05e1eijcG5rcUAAAkUeAaQtWufFXtOvSsxJnfulCRzJgu/v3ryulQ6+i8ZZvbULgAAMAJBbolVO0+VL5e/PwVssK2rpk+Q+m50aTP8/YPJqtsc5ukjwsAAIIj0KXrsJr9uZKkp667XpZl68YXnlA4LdGqMRf+fqw2zewjSWqozGAPFwAAOKmUKF2H1ZdlSZIeveQW3TZzuqwmHJixc2FXvfNfk4/5fKw+QtECAABNllKl67DG6gw9OOnOJr3WTlhKRClXAACgdVKydElSvCFlv3UAAGAAJ9IDAAC4oMmHowIAAKDlWOkCAABwAaULAADABZQuAAAAF1C6AAAAXEDpAgAAcAGlCwAAwAWULgAAABdQugAAAFxA6QIAAHDB/wfnx6qZHerduwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# Training over Best Found Hyper-parameters\n", "from ultralytics import YOLO\n", "import torch\n", "torch.cuda.empty_cache()\n", "\n", "model = YOLO(\"yolov8l-seg.pt\")\n", "data_path = \"/content/drive/MyDrive/Repair Project/report/data/7c\"\n", "result_path = \"/content/drive/MyDrive/Repair Project/report/results/training/7c\"\n", "\n", "model.train(\n", " data= data_path + \"/data.yaml\",\n", " project=result_path,\n", " imgsz=800,\n", " epochs=250,\n", " batch=16,\n", " name=\"train_250_800_16\",\n", " device=\"cuda\",\n", " augment=True,\n", " cache=False,\n", " save=True,\n", " save_period=100,\n", " lr0 = 0.01,\n", " momentum= 0.937,\n", " weight_decay= 0.0005,\n", " hsv_h= 0.015,\n", " hsv_s= 0.7,\n", " hsv_v= 0.4,\n", " scale= 0.5,\n", " box= 7.5,\n", " verbose=True,\n", ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "iTDovu8Fc_Hw", "outputId": "f98ce4d1-e850-408c-a15a-36ab3c89fe56" }, "execution_count": 7, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "\u001b[34m\u001b[1mengine/trainer: \u001b[0magnostic_nms=False, amp=True, augment=True, auto_augment=randaugment, batch=16, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=/content/drive/MyDrive/Repair Project/report/data/7c/data.yaml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=250, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=800, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=yolov8l-seg.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train_250_800_162, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=/content/drive/MyDrive/Repair Project/report/results/training/7c, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=/content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_162, save_frames=False, save_json=False, save_period=100, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=segment, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=8, workspace=None\n", "Overriding model.yaml nc=80 with nc=7\n", "\n", " from n params module arguments \n", " 0 -1 1 1856 ultralytics.nn.modules.conv.Conv [3, 64, 3, 2] \n", " 1 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 2 -1 3 279808 ultralytics.nn.modules.block.C2f [128, 128, 3, True] \n", " 3 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 4 -1 6 2101248 ultralytics.nn.modules.block.C2f [256, 256, 6, True] \n", " 5 -1 1 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] \n", " 6 -1 6 8396800 ultralytics.nn.modules.block.C2f [512, 512, 6, True] \n", " 7 -1 1 2360320 ultralytics.nn.modules.conv.Conv [512, 512, 3, 2] \n", " 8 -1 3 4461568 ultralytics.nn.modules.block.C2f [512, 512, 3, True] \n", " 9 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 3 4723712 ultralytics.nn.modules.block.C2f [1024, 512, 3] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 3 1247744 ultralytics.nn.modules.block.C2f [768, 256, 3] \n", " 16 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 3 4592640 ultralytics.nn.modules.block.C2f [768, 512, 3] \n", " 19 -1 1 2360320 ultralytics.nn.modules.conv.Conv [512, 512, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 3 4723712 ultralytics.nn.modules.block.C2f [1024, 512, 3] \n", " 22 [15, 18, 21] 1 7894405 ultralytics.nn.modules.head.Segment [7, 32, 256, [256, 512, 512]] \n", "YOLOv8l-seg summary: 231 layers, 45,941,445 parameters, 45,941,429 gradients, 220.8 GFLOPs\n", "\n", "Transferred 651/657 items from pretrained weights\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1mtrain: \u001b[0mFast image access ✅ (ping: 0.8±0.8 ms, read: 0.3±0.2 MB/s, size: 319.8 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/7c/train/labels... 324 images, 65 backgrounds, 0 corrupt: 100%|██████████| 324/324 [00:48<00:00, 6.62it/s]\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/drive/MyDrive/Repair Project/report/data/7c/train/labels.cache\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, method='weighted_average', num_output_channels=3), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))\n", "\u001b[34m\u001b[1mval: \u001b[0mFast image access ✅ (ping: 0.8±0.3 ms, read: 0.1±0.1 MB/s, size: 109.8 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/7c/val/labels... 40 images, 7 backgrounds, 0 corrupt: 100%|██████████| 40/40 [00:08<00:00, 4.60it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/drive/MyDrive/Repair Project/report/data/7c/val/labels.cache\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "Plotting labels to /content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_162/labels.jpg... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.000909, momentum=0.9) with parameter groups 106 weight(decay=0.0), 117 weight(decay=0.0005), 116 bias(decay=0.0)\n", "Image sizes 800 train, 800 val\n", "Using 8 dataloader workers\n", "Logging results to \u001b[1m/content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_162\u001b[0m\n", "Starting training for 250 epochs...\n", "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 1/250 15.6G 1.113 2.045 3.547 1.371 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.06it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.89it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.659 0.339 0.368 0.254 0.735 0.381 0.372 0.232\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 2/250 16G 0.9499 1.242 2.051 1.212 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.07it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.92it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.648 0.322 0.233 0.149 0.632 0.294 0.21 0.129\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 3/250 16.2G 1.129 1.44 1.968 1.317 32 800: 100%|██████████| 21/21 [00:19<00:00, 1.08it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.94it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.205 0.157 0.0319 0.0175 0.193 0.0943 0.0177 0.00765\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 4/250 16.1G 1.127 1.403 1.83 1.322 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.91it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.0257 0.456 0.0403 0.0162 0.0638 0.205 0.042 0.0211\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 5/250 16G 1.175 1.444 1.696 1.32 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.95it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.085 0.571 0.0752 0.0619 0.0849 0.575 0.0725 0.0507\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 6/250 16.1G 1.094 1.364 1.627 1.283 30 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.93it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.224 0.221 0.101 0.0593 0.207 0.233 0.0761 0.0429\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 7/250 16.2G 1.129 1.455 1.595 1.337 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.97it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.198 0.535 0.285 0.135 0.206 0.559 0.304 0.137\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 8/250 16.1G 1.114 1.368 1.507 1.279 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.98it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.279 0.606 0.407 0.261 0.278 0.614 0.414 0.235\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 9/250 15.9G 1.028 1.299 1.374 1.245 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.03it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.768 0.459 0.535 0.339 0.745 0.44 0.516 0.323\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 10/250 16.2G 1.053 1.277 1.377 1.264 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.03it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.637 0.383 0.396 0.219 0.327 0.545 0.435 0.217\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 11/250 16.1G 0.9857 1.176 1.322 1.234 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.682 0.428 0.468 0.302 0.702 0.436 0.472 0.316\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 12/250 16.2G 1.015 1.243 1.33 1.228 34 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.04it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.422 0.731 0.543 0.341 0.417 0.713 0.524 0.33\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 13/250 16G 1.025 1.246 1.317 1.265 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.04it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.449 0.677 0.537 0.35 0.761 0.416 0.495 0.323\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 14/250 16.2G 0.985 1.264 1.226 1.237 31 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.769 0.334 0.357 0.231 0.612 0.344 0.363 0.224\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 15/250 16.1G 0.9833 1.208 1.202 1.209 39 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.559 0.471 0.468 0.33 0.579 0.463 0.462 0.302\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 16/250 16.1G 0.9527 1.166 1.198 1.21 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.08it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.72 0.354 0.454 0.306 0.747 0.364 0.499 0.322\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 17/250 16G 0.9874 1.128 1.192 1.211 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.03it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.674 0.462 0.544 0.378 0.391 0.698 0.606 0.398\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 18/250 16.1G 0.9343 1.116 1.145 1.2 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.696 0.449 0.505 0.353 0.699 0.453 0.501 0.337\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 19/250 16.2G 0.8994 1.085 1.086 1.157 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.00it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.647 0.362 0.405 0.252 0.703 0.314 0.381 0.226\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 20/250 16.2G 0.9055 1.141 1.091 1.143 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.08it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.03it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.59 0.593 0.451 0.312 0.589 0.593 0.473 0.281\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 21/250 16.5G 0.954 1.161 1.138 1.223 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.7 0.665 0.648 0.411 0.687 0.624 0.624 0.412\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 22/250 16.1G 0.9131 1.131 1.054 1.191 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.97it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.468 0.659 0.645 0.466 0.495 0.694 0.685 0.46\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 23/250 16.1G 0.8946 1.102 1.044 1.184 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.756 0.556 0.624 0.407 0.767 0.551 0.609 0.349\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 24/250 16G 0.9257 1.133 1.05 1.194 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.78 0.757 0.805 0.604 0.76 0.751 0.789 0.563\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 25/250 16G 0.8547 1.099 1.08 1.139 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.76 0.548 0.609 0.424 0.759 0.566 0.614 0.431\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 26/250 16.1G 0.8537 1.046 0.9871 1.158 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.817 0.48 0.573 0.385 0.805 0.473 0.585 0.389\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 27/250 16.2G 0.8954 1.067 1.038 1.168 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.667 0.579 0.56 0.352 0.679 0.6 0.589 0.365\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 28/250 16.1G 0.9265 1.136 1.246 1.193 2 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 2.00it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.708 0.631 0.651 0.45 0.708 0.631 0.659 0.443\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 29/250 16G 0.8501 1.049 0.972 1.154 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.8 0.568 0.667 0.484 0.817 0.59 0.702 0.501\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 30/250 16.2G 0.8873 1.066 1.058 1.186 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.00it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.641 0.383 0.402 0.279 0.343 0.456 0.337 0.19\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 31/250 16.2G 0.8206 1.03 0.9664 1.114 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.722 0.368 0.396 0.283 0.648 0.369 0.373 0.219\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 32/250 16.1G 0.798 1.09 0.9798 1.103 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.704 0.561 0.614 0.433 0.737 0.514 0.63 0.419\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 33/250 16G 0.7838 1.022 0.9351 1.113 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.794 0.57 0.638 0.449 0.785 0.556 0.652 0.442\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 34/250 16.1G 0.821 1.088 0.9938 1.136 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.809 0.464 0.577 0.412 0.809 0.476 0.582 0.398\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 35/250 16.1G 0.8015 1.029 0.9246 1.119 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.701 0.502 0.498 0.339 0.717 0.513 0.537 0.343\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 36/250 16.2G 0.8052 1.017 0.9389 1.125 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.701 0.47 0.443 0.297 0.674 0.448 0.406 0.237\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 37/250 15.9G 0.8054 1.037 0.9113 1.123 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.742 0.764 0.736 0.563 0.73 0.761 0.728 0.522\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 38/250 16G 0.7868 1.005 0.8362 1.098 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.608 0.711 0.75 0.54 0.611 0.707 0.754 0.512\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 39/250 16.2G 0.7525 0.9912 0.8356 1.102 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.67 0.607 0.606 0.438 0.702 0.631 0.632 0.416\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 40/250 16.1G 0.7626 0.9889 0.8485 1.074 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.545 0.57 0.527 0.343 0.541 0.558 0.504 0.251\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 41/250 16G 0.7438 0.9855 0.7873 1.084 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.82 0.626 0.656 0.477 0.807 0.619 0.654 0.452\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 42/250 16.1G 0.7498 0.9277 0.8194 1.075 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.713 0.499 0.561 0.382 0.66 0.468 0.525 0.354\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 43/250 16G 0.7446 1.021 0.7878 1.093 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.589 0.461 0.485 0.334 0.572 0.458 0.477 0.316\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 44/250 16G 0.7275 0.9575 0.7624 1.08 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.01it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.377 0.549 0.435 0.303 0.354 0.506 0.399 0.26\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 45/250 15.9G 0.7029 0.872 0.7432 1.064 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.619 0.727 0.702 0.537 0.628 0.739 0.716 0.506\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 46/250 16.2G 0.7524 0.9758 0.7825 1.085 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.59 0.684 0.658 0.486 0.606 0.703 0.687 0.469\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 47/250 16.1G 0.7071 0.943 0.7856 1.06 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.678 0.599 0.661 0.477 0.687 0.606 0.679 0.46\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 48/250 16.1G 0.7631 0.9501 0.7834 1.087 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.81 0.662 0.708 0.519 0.818 0.675 0.733 0.51\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 49/250 16G 0.7299 0.9447 0.7614 1.074 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.848 0.587 0.671 0.466 0.86 0.598 0.678 0.475\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 50/250 16.1G 0.7288 0.9034 0.7028 1.056 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.98it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.567 0.406 0.385 0.255 0.397 0.416 0.327 0.231\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 51/250 16.1G 0.6765 0.8978 0.6763 1.047 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.85 0.592 0.672 0.468 0.855 0.602 0.668 0.502\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 52/250 16.1G 0.6968 0.9454 0.6992 1.071 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.648 0.593 0.711 0.52 0.664 0.6 0.723 0.507\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 53/250 16.1G 0.6875 0.9077 0.7044 1.04 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.573 0.746 0.665 0.482 0.592 0.759 0.675 0.5\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 54/250 16.2G 0.7025 0.9272 0.7256 1.054 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.846 0.449 0.548 0.416 0.83 0.468 0.564 0.394\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 55/250 16.1G 0.677 0.908 0.7179 1.039 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.823 0.698 0.758 0.592 0.841 0.717 0.775 0.577\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 56/250 16.2G 0.723 0.9694 0.7593 1.088 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.827 0.6 0.685 0.519 0.833 0.609 0.698 0.497\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 57/250 16G 0.6804 0.9293 0.7096 1.034 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.585 0.76 0.692 0.529 0.595 0.767 0.706 0.494\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 58/250 16.1G 0.6883 0.9232 0.7256 1.03 41 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.59 0.65 0.692 0.529 0.605 0.669 0.72 0.513\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 59/250 16G 0.6683 0.9191 0.735 1.044 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.662 0.72 0.707 0.532 0.675 0.739 0.728 0.515\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 60/250 16.1G 0.6692 0.8808 0.6905 1.03 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.665 0.8 0.799 0.565 0.906 0.667 0.721 0.53\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 61/250 15.9G 0.6812 0.9071 0.6667 1.039 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.754 0.758 0.766 0.599 0.767 0.774 0.787 0.587\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 62/250 16.1G 0.6425 0.8399 0.6465 1.03 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.513 0.614 0.622 0.419 0.513 0.61 0.626 0.384\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 63/250 16G 0.6777 0.8978 0.7004 1.061 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.678 0.757 0.76 0.595 0.68 0.757 0.746 0.556\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 64/250 16.2G 0.6545 0.8659 0.6797 1.033 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.716 0.697 0.756 0.563 0.641 0.859 0.782 0.572\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 65/250 16.1G 0.6613 0.8858 0.7416 1.041 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.529 0.714 0.724 0.565 0.516 0.699 0.74 0.539\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 66/250 16.1G 0.6606 0.9182 0.6331 1.036 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.706 0.592 0.631 0.493 0.77 0.631 0.674 0.42\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 67/250 16G 0.6686 0.8534 0.6912 1.038 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.59 0.715 0.689 0.53 0.59 0.715 0.697 0.499\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 68/250 16.1G 0.6549 0.9243 0.6602 1.04 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.879 0.652 0.742 0.574 0.867 0.648 0.73 0.536\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 69/250 15.9G 0.6605 0.898 0.6529 1.028 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.774 0.684 0.791 0.608 0.784 0.692 0.817 0.61\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 70/250 16.2G 0.6292 0.8606 0.6235 1.013 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.703 0.713 0.71 0.548 0.689 0.706 0.696 0.522\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 71/250 16.1G 0.6345 0.8278 0.6185 1.028 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.616 0.8 0.722 0.547 0.626 0.81 0.734 0.532\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 72/250 16.1G 0.6304 0.8374 0.5974 0.9937 32 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.725 0.754 0.82 0.649 0.728 0.758 0.829 0.616\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 73/250 15.9G 0.6308 0.8577 0.5862 1.01 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.819 0.793 0.857 0.677 0.826 0.8 0.865 0.656\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 74/250 16.1G 0.6069 0.8122 0.5838 1 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.594 0.879 0.806 0.542 0.625 0.763 0.749 0.531\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 75/250 16.1G 0.6327 0.844 0.6092 1.006 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.736 0.781 0.832 0.617 0.718 0.763 0.813 0.619\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 76/250 16.1G 0.6287 0.8764 0.5999 1.007 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.693 0.582 0.653 0.521 0.697 0.595 0.669 0.488\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 77/250 15.9G 0.5906 0.8059 0.5751 1.002 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.869 0.671 0.697 0.537 0.851 0.653 0.693 0.519\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 78/250 16.1G 0.5984 0.7986 0.5827 1.003 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.87 0.673 0.741 0.562 0.869 0.69 0.756 0.561\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 79/250 16G 0.6152 0.8538 0.6086 0.9992 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.84 0.64 0.783 0.603 0.623 0.789 0.775 0.587\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 80/250 16.1G 0.5961 0.8386 0.5562 0.979 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.67 0.631 0.704 0.534 0.678 0.641 0.719 0.488\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 81/250 15.9G 0.5939 0.7867 0.5332 0.9909 31 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.732 0.73 0.76 0.597 0.665 0.825 0.756 0.55\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 82/250 16.1G 0.6173 0.8136 0.5677 1.007 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.643 0.818 0.82 0.641 0.664 0.845 0.841 0.635\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 83/250 16.2G 0.6066 0.8022 0.5237 0.9778 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.83 0.722 0.845 0.643 0.841 0.738 0.864 0.627\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 84/250 16.1G 0.5784 0.8117 0.5459 0.9871 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.836 0.683 0.713 0.531 0.86 0.714 0.743 0.516\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 85/250 16.1G 0.575 0.7939 0.5298 0.9709 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.792 0.634 0.674 0.518 0.815 0.657 0.708 0.504\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 86/250 16.2G 0.6222 0.8597 0.6249 1.011 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.809 0.539 0.639 0.507 0.772 0.59 0.652 0.481\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 87/250 16.2G 0.5898 0.801 0.5621 0.996 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.04it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.543 0.713 0.633 0.461 0.894 0.483 0.632 0.404\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 88/250 16G 0.6008 0.7899 0.5812 1.022 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.89 0.694 0.743 0.593 0.9 0.701 0.759 0.585\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 89/250 16.5G 0.5941 0.7887 0.572 0.9959 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.685 0.846 0.824 0.607 0.702 0.864 0.845 0.574\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 90/250 16.1G 0.5742 0.7912 0.5497 0.9752 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.845 0.703 0.781 0.596 0.853 0.71 0.792 0.563\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 91/250 16.1G 0.5489 0.7491 0.5122 0.9727 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.698 0.776 0.758 0.55 0.678 0.762 0.747 0.536\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 92/250 16.1G 0.5669 0.7731 0.4993 0.9858 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.795 0.743 0.781 0.587 0.775 0.813 0.818 0.595\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 93/250 16.1G 0.5744 0.764 0.5182 0.9875 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.848 0.835 0.878 0.606 0.864 0.847 0.901 0.653\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 94/250 16.1G 0.605 0.7787 0.5266 1.009 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.739 0.819 0.861 0.678 0.76 0.842 0.887 0.678\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 95/250 16.1G 0.5876 0.7809 0.5273 1.005 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.699 0.809 0.755 0.578 0.695 0.804 0.744 0.575\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 96/250 16.1G 0.5528 0.7684 0.5143 0.9698 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.664 0.794 0.775 0.604 0.691 0.823 0.809 0.562\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 97/250 16G 0.5728 0.7868 0.5479 0.9701 40 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.811 0.835 0.882 0.705 0.818 0.841 0.901 0.69\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 98/250 16.1G 0.5827 0.7899 0.5448 0.9824 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.872 0.7 0.874 0.7 0.877 0.704 0.891 0.674\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 99/250 16.1G 0.5688 0.7685 0.5392 0.9921 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.864 0.692 0.809 0.641 0.864 0.692 0.809 0.629\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 100/250 16.1G 0.5925 0.8259 0.5495 0.996 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.703 0.662 0.693 0.469 0.671 0.633 0.661 0.465\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 101/250 16G 0.5739 0.7648 0.5212 0.9905 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.738 0.762 0.737 0.553 0.742 0.766 0.739 0.548\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 102/250 16.1G 0.5422 0.7747 0.5202 0.9696 38 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.845 0.673 0.777 0.585 0.828 0.658 0.763 0.568\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 103/250 16.1G 0.5434 0.7595 0.4854 0.9532 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.738 0.746 0.815 0.634 0.722 0.732 0.813 0.622\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 104/250 15.9G 0.5396 0.8094 0.4932 0.9769 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.856 0.651 0.797 0.627 0.864 0.662 0.813 0.63\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 105/250 15.9G 0.5374 0.7286 0.4727 0.9617 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.765 0.727 0.764 0.595 0.78 0.742 0.782 0.591\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 106/250 16.1G 0.5476 0.7656 0.5034 0.9767 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.661 0.752 0.773 0.594 0.671 0.763 0.798 0.593\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 107/250 16.1G 0.5687 0.7634 0.5149 1.008 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.612 0.74 0.685 0.484 0.597 0.718 0.656 0.433\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 108/250 16.2G 0.5515 0.7692 0.5232 0.9794 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.784 0.729 0.803 0.623 0.809 0.751 0.828 0.622\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 109/250 15.9G 0.5592 0.752 0.5037 0.9848 43 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.677 0.7 0.68 0.507 0.664 0.689 0.68 0.489\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 110/250 16.1G 0.5298 0.7474 0.4874 0.9669 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.69 0.843 0.823 0.566 0.688 0.843 0.811 0.569\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 111/250 16.1G 0.5254 0.7649 0.4904 0.9603 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.679 0.852 0.847 0.637 0.671 0.829 0.841 0.634\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 112/250 16.1G 0.5162 0.7092 0.5047 0.9625 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.792 0.652 0.761 0.584 0.806 0.672 0.781 0.572\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 113/250 16G 0.5319 0.7537 0.496 0.9762 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.767 0.718 0.772 0.624 0.774 0.725 0.778 0.587\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 114/250 16.1G 0.5159 0.7429 0.4726 0.9505 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.786 0.763 0.825 0.651 0.775 0.749 0.813 0.611\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 115/250 16.1G 0.5094 0.7007 0.4844 0.9517 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.75 0.893 0.897 0.722 0.752 0.906 0.917 0.705\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 116/250 16.1G 0.5167 0.744 0.4689 0.9493 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.616 0.674 0.689 0.523 0.742 0.542 0.692 0.476\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 117/250 15.9G 0.5061 0.7435 0.4955 0.9579 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.819 0.844 0.885 0.72 0.831 0.855 0.904 0.684\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 118/250 16.1G 0.5234 0.7646 0.5188 0.9694 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.694 0.729 0.719 0.548 0.698 0.733 0.732 0.527\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 119/250 16G 0.5064 0.7152 0.5389 0.9559 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.849 0.526 0.643 0.465 0.872 0.543 0.656 0.413\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 120/250 16.2G 0.5201 0.7191 0.4743 0.9654 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.848 0.68 0.811 0.666 0.856 0.687 0.836 0.614\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 121/250 15.9G 0.4958 0.7007 0.4837 0.9271 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.829 0.73 0.779 0.637 0.848 0.755 0.815 0.614\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 122/250 16.2G 0.51 0.7144 0.488 0.9582 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.821 0.629 0.679 0.509 0.849 0.576 0.662 0.487\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 123/250 16.2G 0.4742 0.6884 0.4238 0.9376 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.677 0.743 0.752 0.616 0.684 0.751 0.771 0.593\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 124/250 16.1G 0.488 0.6795 0.4422 0.9308 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.868 0.728 0.797 0.647 0.878 0.735 0.817 0.637\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 125/250 16G 0.5113 0.7179 0.4428 0.9443 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.71 0.782 0.827 0.652 0.721 0.793 0.846 0.655\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 126/250 16.1G 0.5016 0.7454 0.4582 0.9553 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.88 0.709 0.838 0.669 0.889 0.716 0.855 0.659\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 127/250 16.1G 0.5072 0.7243 0.4487 0.9405 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.87 0.708 0.829 0.644 0.882 0.723 0.855 0.62\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 128/250 16.3G 0.5014 0.7399 0.4679 0.9454 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.711 0.891 0.836 0.633 0.734 0.922 0.861 0.603\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 129/250 15.9G 0.5101 0.7182 0.492 0.9387 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.764 0.737 0.785 0.557 0.777 0.748 0.804 0.574\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 130/250 16.1G 0.5208 0.6814 0.4742 0.968 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.72 0.851 0.839 0.645 0.712 0.871 0.848 0.633\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 131/250 16G 0.4973 0.7391 0.4671 0.9583 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.852 0.455 0.543 0.372 0.844 0.444 0.537 0.328\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 132/250 16.1G 0.4741 0.7 0.4403 0.9239 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.87 0.731 0.848 0.682 0.873 0.734 0.856 0.657\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 133/250 16G 0.4628 0.6367 0.4194 0.94 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.781 0.757 0.792 0.646 0.788 0.764 0.802 0.617\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 134/250 16.2G 0.4806 0.7105 0.4357 0.952 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.667 0.732 0.752 0.578 0.665 0.73 0.722 0.56\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 135/250 16.1G 0.4883 0.6894 0.4664 0.9548 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.748 0.808 0.815 0.625 0.747 0.83 0.817 0.615\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 136/250 16.1G 0.4765 0.6901 0.4586 0.9403 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.818 0.853 0.867 0.705 0.81 0.845 0.856 0.678\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 137/250 16G 0.4654 0.6829 0.4325 0.9269 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.863 0.661 0.785 0.637 0.882 0.676 0.806 0.624\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 138/250 16.1G 0.4628 0.6573 0.4389 0.9261 37 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.682 0.736 0.785 0.646 0.696 0.749 0.808 0.62\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 139/250 16.2G 0.4598 0.6562 0.4037 0.9187 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.858 0.649 0.869 0.713 0.876 0.664 0.888 0.691\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 140/250 16.1G 0.4765 0.698 0.4457 0.9372 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.66 0.817 0.764 0.618 0.674 0.832 0.78 0.595\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 141/250 15.9G 0.4648 0.7061 0.4318 0.9316 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.697 0.868 0.842 0.697 0.709 0.879 0.858 0.671\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 142/250 16.1G 0.4743 0.697 0.457 0.9328 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.02it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.836 0.806 0.872 0.716 0.845 0.813 0.88 0.69\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 143/250 16.1G 0.4726 0.6822 0.4676 0.9395 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.814 0.835 0.858 0.704 0.831 0.85 0.876 0.68\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 144/250 16.1G 0.4741 0.6557 0.4371 0.9358 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.819 0.806 0.861 0.681 0.826 0.813 0.864 0.655\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 145/250 16G 0.4426 0.6651 0.3997 0.9092 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.791 0.835 0.873 0.69 0.798 0.841 0.884 0.669\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 146/250 16.1G 0.4866 0.6996 0.4523 0.9374 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.862 0.762 0.877 0.667 0.871 0.769 0.888 0.643\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 147/250 16.1G 0.4777 0.694 0.4375 0.9393 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.823 0.763 0.823 0.64 0.83 0.771 0.838 0.632\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 148/250 16.1G 0.4433 0.6429 0.4007 0.9197 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.663 0.758 0.747 0.551 0.669 0.765 0.779 0.541\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 149/250 16G 0.4498 0.6504 0.4149 0.9305 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.863 0.802 0.852 0.653 0.904 0.784 0.871 0.641\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 150/250 16.1G 0.4446 0.6396 0.3765 0.9222 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.826 0.768 0.87 0.707 0.838 0.779 0.891 0.685\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 151/250 16G 0.4433 0.6633 0.4141 0.9194 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.766 0.867 0.875 0.685 0.777 0.878 0.89 0.661\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 152/250 16.1G 0.4363 0.6784 0.3947 0.921 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.867 0.819 0.888 0.714 0.875 0.827 0.908 0.691\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 153/250 16.1G 0.4336 0.6561 0.3965 0.9258 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.755 0.828 0.82 0.643 0.8 0.875 0.876 0.639\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 154/250 16.1G 0.4313 0.6773 0.3926 0.9192 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.727 0.762 0.791 0.623 0.735 0.769 0.788 0.616\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 155/250 16.1G 0.4564 0.6439 0.4027 0.9269 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.663 0.8 0.82 0.563 0.654 0.785 0.803 0.567\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 156/250 16.1G 0.4515 0.6694 0.411 0.9362 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.7 0.827 0.77 0.588 0.703 0.831 0.776 0.573\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 157/250 16.5G 0.4682 0.6591 0.4447 0.9331 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.793 0.848 0.859 0.673 0.808 0.862 0.884 0.651\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 158/250 16.1G 0.4368 0.6326 0.4138 0.9164 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.81 0.807 0.85 0.69 0.853 0.802 0.866 0.678\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 159/250 16.1G 0.4107 0.6288 0.3777 0.9094 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.818 0.773 0.863 0.693 0.829 0.793 0.874 0.667\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 160/250 16.3G 0.4148 0.6042 0.3911 0.9087 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.733 0.803 0.838 0.671 0.787 0.787 0.854 0.66\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 161/250 15.9G 0.4215 0.6501 0.3848 0.9214 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.726 0.871 0.862 0.695 0.731 0.869 0.846 0.68\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 162/250 16.1G 0.4424 0.6153 0.3871 0.9183 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.784 0.875 0.888 0.71 0.779 0.869 0.878 0.694\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 163/250 16.2G 0.419 0.5789 0.394 0.9075 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.79 0.796 0.845 0.67 0.801 0.807 0.856 0.647\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 164/250 16.2G 0.4048 0.5984 0.349 0.9092 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.747 0.862 0.842 0.661 0.771 0.884 0.869 0.65\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 165/250 16.1G 0.4294 0.6107 0.3763 0.9128 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.04it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.704 0.782 0.795 0.614 0.704 0.778 0.792 0.591\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 166/250 16.1G 0.4309 0.6467 0.4098 0.9306 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.756 0.871 0.833 0.681 0.776 0.892 0.865 0.655\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 167/250 16.1G 0.4108 0.637 0.3924 0.905 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 2.00it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.747 0.68 0.726 0.588 0.735 0.722 0.756 0.56\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 168/250 16.1G 0.4081 0.6416 0.3709 0.9037 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.846 0.714 0.779 0.617 0.87 0.733 0.816 0.613\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 169/250 16.4G 0.3999 0.6297 0.3634 0.9066 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.722 0.761 0.762 0.573 0.683 0.743 0.701 0.519\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 170/250 16.2G 0.403 0.6052 0.3786 0.9079 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.798 0.577 0.6 0.433 0.714 0.515 0.511 0.347\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 171/250 16.1G 0.4097 0.6114 0.3848 0.9065 36 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.856 0.718 0.797 0.635 0.865 0.725 0.82 0.598\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 172/250 16.1G 0.4127 0.6106 0.3704 0.9149 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.802 0.81 0.845 0.685 0.832 0.811 0.876 0.673\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 173/250 16G 0.3989 0.5909 0.3627 0.9084 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.818 0.825 0.857 0.7 0.844 0.844 0.885 0.695\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 174/250 16.1G 0.4072 0.604 0.4015 0.9161 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.807 0.714 0.803 0.631 0.83 0.736 0.846 0.637\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 175/250 16.1G 0.4084 0.6259 0.3558 0.9168 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.824 0.755 0.823 0.666 0.844 0.774 0.861 0.67\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 176/250 16.2G 0.3897 0.5869 0.3713 0.9038 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.856 0.84 0.882 0.703 0.869 0.851 0.907 0.693\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 177/250 16.1G 0.3981 0.5933 0.3557 0.8997 37 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.866 0.837 0.893 0.719 0.864 0.834 0.895 0.728\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 178/250 16.2G 0.4045 0.6376 0.3752 0.9141 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.863 0.832 0.898 0.717 0.887 0.839 0.919 0.728\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 179/250 16.1G 0.3923 0.5898 0.3627 0.9073 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.825 0.823 0.886 0.735 0.889 0.807 0.901 0.711\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 180/250 16.1G 0.3996 0.5714 0.3561 0.9154 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.03it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.791 0.851 0.875 0.717 0.809 0.87 0.904 0.702\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 181/250 16G 0.3973 0.5899 0.3368 0.9063 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.825 0.787 0.875 0.712 0.841 0.802 0.89 0.702\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 182/250 16.1G 0.3957 0.5891 0.335 0.9068 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.844 0.833 0.888 0.716 0.837 0.825 0.861 0.707\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 183/250 16.2G 0.3786 0.5647 0.3357 0.896 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.881 0.824 0.896 0.726 0.899 0.839 0.915 0.705\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 184/250 16G 0.3844 0.5845 0.351 0.8939 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.97it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.846 0.736 0.863 0.697 0.859 0.748 0.867 0.671\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 185/250 15.9G 0.3838 0.563 0.3419 0.9016 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.822 0.839 0.879 0.684 0.834 0.849 0.883 0.689\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 186/250 16.1G 0.3763 0.5715 0.3521 0.8998 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.831 0.825 0.865 0.698 0.848 0.84 0.884 0.696\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 187/250 16.1G 0.3631 0.5284 0.3121 0.893 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.871 0.842 0.885 0.713 0.883 0.853 0.903 0.696\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 188/250 16.1G 0.3667 0.5246 0.3212 0.8958 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.874 0.857 0.895 0.723 0.886 0.868 0.914 0.707\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 189/250 15.9G 0.3652 0.5666 0.3331 0.898 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.861 0.847 0.882 0.713 0.878 0.861 0.899 0.693\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 190/250 16.1G 0.3617 0.5618 0.3289 0.8832 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.803 0.852 0.868 0.706 0.82 0.866 0.892 0.682\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 191/250 16.1G 0.3799 0.5906 0.3352 0.8948 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.776 0.713 0.782 0.64 0.792 0.728 0.81 0.621\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 192/250 16.1G 0.3717 0.5486 0.3207 0.8884 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.77 0.721 0.757 0.603 0.79 0.739 0.786 0.587\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 193/250 16G 0.3659 0.5623 0.3262 0.8973 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.707 0.746 0.769 0.633 0.721 0.761 0.787 0.596\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 194/250 16.2G 0.3576 0.5352 0.3166 0.8899 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.8 0.831 0.852 0.706 0.811 0.842 0.866 0.655\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 195/250 16.1G 0.3817 0.5862 0.3426 0.9054 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.834 0.754 0.82 0.654 0.85 0.769 0.845 0.636\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 196/250 16.1G 0.3737 0.5768 0.3514 0.8957 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.745 0.842 0.832 0.685 0.752 0.849 0.838 0.659\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 197/250 15.9G 0.3704 0.5886 0.3606 0.9038 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.88 0.859 0.887 0.722 0.892 0.87 0.902 0.703\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 198/250 16.1G 0.3644 0.5432 0.3418 0.9049 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.838 0.863 0.884 0.717 0.85 0.874 0.897 0.693\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 199/250 16.1G 0.3623 0.5644 0.3161 0.8934 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.786 0.826 0.863 0.71 0.791 0.794 0.84 0.688\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 200/250 16.1G 0.3623 0.5785 0.3215 0.8937 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.83 0.82 0.83 0.678 0.844 0.832 0.849 0.66\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 201/250 16G 0.3527 0.5453 0.3653 0.8819 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.79 0.826 0.847 0.696 0.802 0.837 0.865 0.652\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 202/250 16.1G 0.3508 0.5426 0.3023 0.8921 36 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.858 0.785 0.864 0.691 0.892 0.79 0.882 0.66\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 203/250 16.1G 0.3383 0.5246 0.3054 0.8831 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.843 0.843 0.885 0.688 0.852 0.851 0.897 0.68\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 204/250 16.1G 0.3454 0.5433 0.3097 0.8828 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.856 0.844 0.9 0.718 0.834 0.825 0.871 0.699\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 205/250 15.9G 0.3403 0.5253 0.3201 0.881 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.813 0.868 0.876 0.709 0.813 0.868 0.883 0.691\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 206/250 16.1G 0.3387 0.5551 0.3153 0.8917 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.86 0.759 0.864 0.689 0.86 0.759 0.874 0.667\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 207/250 16G 0.3421 0.5398 0.2952 0.8911 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.836 0.774 0.884 0.692 0.841 0.777 0.89 0.684\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 208/250 16.2G 0.34 0.5394 0.2992 0.8812 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.849 0.775 0.877 0.711 0.867 0.789 0.901 0.717\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 209/250 15.9G 0.3237 0.5329 0.2925 0.8865 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.791 0.833 0.859 0.697 0.795 0.836 0.86 0.684\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 210/250 16.1G 0.3478 0.5508 0.3142 0.8846 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.76 0.87 0.852 0.707 0.767 0.877 0.864 0.68\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 211/250 16.2G 0.3344 0.5321 0.3 0.8877 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.903 0.786 0.882 0.731 0.909 0.792 0.884 0.692\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 212/250 16G 0.3262 0.5275 0.2947 0.8671 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.923 0.789 0.894 0.743 0.933 0.795 0.901 0.712\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 213/250 15.9G 0.3299 0.5315 0.289 0.8767 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.903 0.825 0.905 0.75 0.912 0.833 0.912 0.715\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 214/250 16.1G 0.3322 0.5353 0.2881 0.8876 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.903 0.839 0.915 0.744 0.911 0.846 0.921 0.715\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 215/250 16.2G 0.319 0.5136 0.2731 0.8621 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.877 0.792 0.873 0.715 0.895 0.806 0.896 0.701\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 216/250 16G 0.3231 0.5094 0.2846 0.8832 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.829 0.77 0.838 0.69 0.824 0.766 0.836 0.677\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 217/250 15.9G 0.314 0.5 0.2983 0.8794 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.84 0.78 0.847 0.707 0.838 0.78 0.861 0.69\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 218/250 16G 0.3135 0.5123 0.2916 0.8784 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.794 0.783 0.828 0.694 0.812 0.798 0.861 0.677\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 219/250 16.1G 0.2964 0.4801 0.2576 0.8587 29 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.876 0.736 0.862 0.729 0.895 0.751 0.897 0.713\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 220/250 16.1G 0.3237 0.5285 0.297 0.864 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.872 0.781 0.866 0.731 0.89 0.795 0.899 0.71\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 221/250 16.1G 0.3182 0.5087 0.2776 0.8816 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.855 0.774 0.866 0.725 0.873 0.789 0.904 0.713\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 222/250 16.1G 0.3112 0.5061 0.2817 0.8713 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.828 0.787 0.869 0.727 0.845 0.802 0.908 0.703\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 223/250 16.1G 0.3314 0.527 0.283 0.8767 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.884 0.817 0.882 0.729 0.901 0.832 0.917 0.727\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 224/250 16.1G 0.3102 0.5204 0.27 0.8763 34 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.867 0.82 0.873 0.728 0.885 0.835 0.909 0.716\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 225/250 16.5G 0.3072 0.5117 0.2739 0.8723 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.83 0.729 0.822 0.687 0.848 0.744 0.857 0.672\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 226/250 16.1G 0.3218 0.5103 0.2895 0.8871 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.834 0.787 0.835 0.682 0.847 0.798 0.864 0.668\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 227/250 16.1G 0.3106 0.492 0.2706 0.8773 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.806 0.854 0.868 0.72 0.809 0.859 0.882 0.691\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 228/250 16.1G 0.3029 0.4957 0.2654 0.8737 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.823 0.799 0.877 0.728 0.827 0.802 0.887 0.707\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 229/250 15.9G 0.3064 0.5052 0.2644 0.863 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.853 0.794 0.859 0.724 0.865 0.803 0.885 0.702\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 230/250 16.1G 0.3081 0.5152 0.2837 0.8772 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.884 0.791 0.861 0.722 0.905 0.81 0.892 0.712\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 231/250 16.1G 0.2975 0.496 0.2601 0.866 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.886 0.803 0.876 0.724 0.898 0.814 0.896 0.716\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 232/250 16.2G 0.2899 0.4905 0.2691 0.8666 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.883 0.799 0.878 0.725 0.896 0.809 0.902 0.712\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 233/250 16G 0.3143 0.5214 0.3003 0.8762 32 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.868 0.787 0.869 0.73 0.89 0.806 0.9 0.711\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 234/250 16.2G 0.294 0.5047 0.2731 0.8664 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.876 0.786 0.869 0.728 0.898 0.804 0.894 0.704\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 235/250 16.1G 0.3041 0.5223 0.2771 0.8612 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.842 0.784 0.88 0.732 0.859 0.799 0.906 0.715\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 236/250 16G 0.3023 0.4945 0.2678 0.8776 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.751 0.865 0.853 0.702 0.763 0.876 0.874 0.681\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 237/250 15.9G 0.2934 0.4828 0.2581 0.8662 30 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.865 0.792 0.875 0.716 0.878 0.803 0.896 0.697\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 238/250 16.2G 0.2942 0.4933 0.259 0.8746 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.872 0.793 0.858 0.702 0.885 0.804 0.88 0.687\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 239/250 16.1G 0.2947 0.4973 0.2474 0.8751 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.884 0.786 0.859 0.714 0.898 0.797 0.883 0.702\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 240/250 16.2G 0.2957 0.4968 0.2576 0.8693 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.876 0.788 0.874 0.73 0.89 0.799 0.894 0.712\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "Closing dataloader mosaic\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, method='weighted_average', num_output_channels=3), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))\n", "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 241/250 15.9G 0.2336 0.4209 0.2264 0.8462 6 800: 100%|██████████| 21/21 [00:20<00:00, 1.01it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.864 0.791 0.883 0.73 0.877 0.803 0.905 0.713\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 242/250 16.1G 0.239 0.4154 0.2187 0.8535 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.873 0.793 0.881 0.736 0.886 0.804 0.902 0.706\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 243/250 16G 0.2136 0.4101 0.1845 0.8279 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.877 0.789 0.879 0.728 0.89 0.801 0.902 0.703\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 244/250 16G 0.2357 0.4114 0.1979 0.8481 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.87 0.789 0.877 0.732 0.883 0.8 0.899 0.716\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 245/250 15.9G 0.2198 0.4089 0.2008 0.8202 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.868 0.791 0.878 0.731 0.881 0.802 0.899 0.719\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 246/250 16G 0.236 0.4087 0.2079 0.8478 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.863 0.789 0.879 0.732 0.876 0.8 0.899 0.719\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 247/250 16G 0.2252 0.4125 0.2106 0.8319 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.868 0.794 0.881 0.735 0.881 0.805 0.902 0.722\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 248/250 16.1G 0.2161 0.408 0.1997 0.8314 2 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.874 0.796 0.873 0.731 0.887 0.807 0.892 0.708\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 249/250 16.4G 0.214 0.3984 0.1867 0.833 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.876 0.793 0.869 0.731 0.889 0.805 0.888 0.703\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 250/250 16.1G 0.2171 0.4049 0.2006 0.8297 31 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 96 0.875 0.793 0.869 0.727 0.888 0.805 0.888 0.703\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", "250 epochs completed in 1.535 hours.\n", "Optimizer stripped from /content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_162/weights/last.pt, 92.4MB\n", "Optimizer stripped from /content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_162/weights/best.pt, 92.4MB\n", "\n", "Validating /content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_162/weights/best.pt...\n", "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "YOLOv8l-seg summary (fused): 125 layers, 45,917,285 parameters, 0 gradients, 220.2 GFLOPs\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\r Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 0%| | 0/2 [00:00\n", "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)', 'Precision-Recall(M)', 'F1-Confidence(M)', 'Precision-Confidence(M)', 'Recall-Confidence(M)']\n", "curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 0.006864, 0.003432, 0],\n", " [ 1, 1, 1, ..., 0.008098, 0.004049, 0],\n", " [ 1, 1, 1, ..., 0.7, 0.7, 0],\n", " [ 1, 1, 1, ..., 0.019679, 0.0098396, 0],\n", " [ 1, 1, 1, ..., 1, 1, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.22222, 0.22222, 0.28608, ..., 0, 0, 0],\n", " [ 0.53333, 0.53333, 0.59886, ..., 0, 0, 0],\n", " [ 0.59701, 0.59701, 0.64474, ..., 0, 0, 0],\n", " [ 0.56, 0.56, 0.70102, ..., 0, 0, 0],\n", " [ 0.6087, 0.6087, 0.69162, ..., 0, 0, 0],\n", " [ 0.4, 0.4, 0.47163, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.125, 0.125, 0.16691, ..., 1, 1, 1],\n", " [ 0.38095, 0.38095, 0.48687, ..., 1, 1, 1],\n", " [ 0.44944, 0.44944, 0.50581, ..., 1, 1, 1],\n", " [ 0.38889, 0.38889, 0.53967, ..., 1, 1, 1],\n", " [ 0.44681, 0.44681, 0.54226, ..., 1, 1, 1],\n", " [ 0.25, 0.25, 0.30859, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.88889, 0.88889, 0.77778, ..., 0, 0, 0],\n", " [ 0.88889, 0.88889, 0.88889, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.95455, 0.95455, 0.95455, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0]]), 'Confidence', 'Recall'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 1, 1, 0],\n", " [ 1, 1, 1, ..., 0.006864, 0.003432, 0],\n", " [ 1, 1, 1, ..., 0.008098, 0.004049, 0],\n", " [ 1, 1, 1, ..., 0.7, 0.7, 0],\n", " [ 1, 1, 1, ..., 0.019679, 0.0098396, 0],\n", " [ 1, 1, 1, ..., 1, 1, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.22222, 0.22222, 0.28608, ..., 0, 0, 0],\n", " [ 0.53333, 0.53333, 0.6317, ..., 0, 0, 0],\n", " [ 0.59701, 0.59701, 0.64474, ..., 0, 0, 0],\n", " [ 0.56, 0.56, 0.70102, ..., 0, 0, 0],\n", " [ 0.6087, 0.6087, 0.69162, ..., 0, 0, 0],\n", " [ 0.4, 0.4, 0.47163, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.125, 0.125, 0.16691, ..., 1, 1, 1],\n", " [ 0.38095, 0.38095, 0.51313, ..., 1, 1, 1],\n", " [ 0.44944, 0.44944, 0.50581, ..., 1, 1, 1],\n", " [ 0.38889, 0.38889, 0.53967, ..., 1, 1, 1],\n", " [ 0.44681, 0.44681, 0.54226, ..., 1, 1, 1],\n", " [ 0.25, 0.25, 0.30859, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.88889, 0.88889, 0.82155, ..., 0, 0, 0],\n", " [ 0.88889, 0.88889, 0.88889, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.95455, 0.95455, 0.95455, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0]]), 'Confidence', 'Recall']]\n", "fitness: np.float64(1.5019670143351331)\n", "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', 'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']\n", "maps: array([ 1.8421, 1.4669, 1.0974, 1.1926, 1.6045, 1.4103, 1.6544])\n", "names: {0: 'blue_bird', 1: 'yellow_bird', 2: 'blue_flower', 3: 'red_spiral', 4: 'curved_green_stripe', 5: 'thin_red_stripe', 6: 'thick_red_stripe'}\n", "nt_per_class: array([ 2, 0, 9, 45, 14, 22, 4])\n", "nt_per_image: array([ 2, 0, 6, 8, 14, 17, 4])\n", "results_dict: {'metrics/precision(B)': np.float64(0.9026551037449391), 'metrics/recall(B)': np.float64(0.8255537573125343), 'metrics/mAP50(B)': np.float64(0.9052384575341944), 'metrics/mAP50-95(B)': np.float64(0.7509562105939432), 'metrics/precision(M)': np.float64(0.9111520300493701), 'metrics/recall(M)': np.float64(0.8328031546853883), 'metrics/mAP50(M)': np.float64(0.912544969638021), 'metrics/mAP50-95(M)': np.float64(0.715920091203736), 'fitness': np.float64(1.5019670143351331)}\n", "save_dir: PosixPath('/content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_162')\n", "seg: ultralytics.utils.metrics.Metric object\n", "speed: {'preprocess': 0.2639171999817336, 'inference': 17.619013800003813, 'loss': 0.0004487249952944694, 'postprocess': 1.4502619500035507}\n", "stats: {'tp': [], 'conf': [], 'pred_cls': [], 'target_cls': [], 'target_img': [], 'tp_m': []}\n", "task: 'segment'" ] }, "metadata": {}, "execution_count": 7 } ] }, { "cell_type": "code", "source": [ "evaluate_yolo_box_seg(\n", "\"/content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_16/weights/best.pt\",\n", "data_path+\"/data.yaml\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "iir9eVWsdyX_", "outputId": "41ae1ac9-a01f-4846-c9f9-74cb842eb620" }, "execution_count": 8, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "YOLOv8l-seg summary (fused): 125 layers, 45,917,285 parameters, 0 gradients, 220.2 GFLOPs\n", "\u001b[34m\u001b[1mval: \u001b[0mFast image access ✅ (ping: 0.4±0.1 ms, read: 0.3±0.3 MB/s, size: 351.0 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/7c/test/labels... 39 images, 10 backgrounds, 0 corrupt: 100%|██████████| 39/39 [00:09<00:00, 4.26it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/drive/MyDrive/Repair Project/report/data/7c/test/labels.cache\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:02<00:00, 1.30it/s]\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 39 62 0.824 0.858 0.92 0.795 0.824 0.858 0.92 0.792\n", "Speed: 5.3ms preprocess, 27.2ms inference, 0.0ms loss, 2.2ms postprocess per image\n", "Results saved to \u001b[1mruns/segment/val3\u001b[0m\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "{'box_precision': 0.8241512399625393,\n", " 'box_recall': 0.857753181853182,\n", " 'box_map50': 0.9203596167916207,\n", " 'seg_precision': 0.8241512399625393,\n", " 'seg_recall': 0.857753181853182,\n", " 'seg_map50': 0.9203596167916207}" ] }, "metadata": {}, "execution_count": 8 } ] }, { "cell_type": "code", "source": [ "from ultralytics import YOLO\n", "import matplotlib.pyplot as plt\n", "\n", "masks = get_yolo_masks(\n", " weights_path=\"/content/drive/MyDrive/Repair Project/report/results/training/7c/train_250_800_16/weights/best.pt\",\n", " image_path=\"/content/drive/MyDrive/Repair Project/report/data/7c/test/images/RPf_00481.png\"\n", " )\n", "\n", "plot_masks(masks)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 807 }, "id": "72NIq34lgOJb", "outputId": "c0daa091-6e40-4b90-e0c8-c7ac65047f9f" }, "execution_count": 7, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAMWCAYAAADLajMwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV0tJREFUeJzt3XeYFFWi/vG3OkyeYWbIOWeQHAUFFXPOOe6um+/ddHd/u/dujm7eveveDeaIAUVRFEVQRKIIknPOw+TcoX5/qAgCw4TuOlXV38/z+Dz20F3nZYTp13NOn7Js27YFAACApAqYDgAAAJAKKF0AAAAOoHQBAAA4gNIFAADgAEoXAACAAyhdAAAADqB0AQAAOIDSBQAA4ABKFwAAgANCjX3i563PJzMHAACAZ/3L/tdpn8NMFwAAgAMoXQAAAA6gdAEAADiA0gUAAOCARm+kBwCvCWVElNWm2tj4NSWZilSlGRsfgLtQugD4VuexezXtvjeNjb/wvolaP2OQsfEBuAvLiwAAAA6gdAEAADiA0gUAAOAAShcAX8psXa1OY/aZjgEAR7GRHoDvZBZWa8RdH2jQteuNZTiwqr2KtxQaGx+A+1C6APhKRn6NRn5+hQZetcFojl0Luunghx2MZgDgLpQuAL6RnlersV9bqn6XbDaaY++yTtr3fiejGQC4D6ULgOcF06Oa8I1FCmdF1Pv8bUaz7FveUcvuH6Oi9W2N5gDgPpQuAJ4WCMc09Sfz1GPKTtNRJEkl2wooXABOitIFwLOsYFzT7ntDXSfsMR0FAE6L0gXAmyxbl/ztFXUYftB0kqN2v9dFa6YPMR0DgEtxThcAz3JT4ZKkmuJMVezNMx0DgEtRugB4kK1rn3rOdIjj7FnSWcv+PsZ0DAAuxvIiAM+54YXpyulQaTrGcSLVYdUcyTIdA4CLMdMFwHNy2lfKskyn+NT+FR30zs/PMh0DgMsx0wXAU259/THJRYXr0Nq2eu0bFypWx49TAA3jpwQAz7jtjUeVllPvqlkuO2ZRuAA0CsuLADwjGI65qnABQFNQugB4wm1vPKpgesx0jOMUbynQy1+4zHQMAB5B6QLgelYgLsuyXTfLZduWXLXBDICrUboAuN7Ns55UWk7EdAwAaBFKFwBXC2VGXDmZZMelaA0b6AE0HqULgGul5dbp2qefU2ZBrekoJyjfk6eXv3C56RgAPITSBcC1Lv/XS8ppX2U6xgniMUvVRZw+D6BpKF0AXCmnY4UC4bjpGCdVcyRTr3z5UtMxAHgMpQuAK537y7nK61xhOgYAJAylC4DrFPY9onCWOz+tGI9aOrSmnekYADyIj94AaLKOI/cplBE9+nj3oq6SnbiPGE745iLldy9L2PUSqb4yTXO/f57pGAA8iNIFoFE6jtqnzMIaSdKEbyxSZuGnnyic/+OzteW1PkrE2Q4dhu9XZkFNi6+TDPGopR3ze5iOAcCjKF0AGtRx1D616lqmITeuUX6Pk88+Tfnx29ryeh/JbtlYnUbv1fj/XHzKcUyL1Qf17q8nm44BwKMoXQAa1O+STep78RZHxup/+UYV9ilxZCwAcBob6QGcVOexezTqC8vVut+RRj1/1BfeV0umurqftUMFvd1buOIxSx88OMJ0DAAeRukCcIJOY/Zq9JeWa8TdKxs98zT8zpXNHq/b5J0ade/7KnRx6bJjlj58fJjpGAA8jOVFAMfpNHqvxn5lqdoMaNwMVyJ0GH7A3YUrLi34FXu5ALQMpQvAUR1H7tO4ry9R637Fjo3Z89xt6j55p2PjNZVtS3O/f652zO9pOgoAj6N0AZAktT/jgCZ8a5GjM049pmzXmC8tU14Xd588zzERABKB0gVAbQcd0uQfLGjRgaSz7m36vQhzOlS6vnABQKKwkR6A0nLqW3wC/MHV7dWUw1G7n71DZ9z6YYvGdMILt12lRBz6CgDMdAFwXJcJuzXpu+8ed6q9WxVvKTQdAYBPMNMFoMWevvKGJh3RFc6KeKJwAUAiUboAtFh1UZYauwTXacxenfWDd5IbKEEev/AW0xEA+AjLiwBa5PELb1E82rj/f2t/xgGd/7s5CqXHkpwqMerK08V+LgCJQukC0CLR2pAaU0wK+x7RJfe/okCohXfFdsjDU++QHadwAUgcSheAZnvsgls/Ll0Na9WtVFc98oIsj2xosG19PHtH6QKQOJQuwFXs07/P25JbysBHM0GnD2wFbM8ULkl69NzbFY94KDAAT6B0AS6S07FSN74wvcHnLPrDeK19ZohDiVrClhW0ldO+Utc+/bzpME1i240pkwDQNJQuAEkRzorojrceNR2jyaK1QdMRAPgU8+cAksBWWm696RDN8tQVNylaEzYdA4APUboAt7BsZeT748DQYFpMN8182nSMJqspzuATiwCShuVFwA0sW20HHtYVD7502qemt6pTOKtekeo0B4I1la3cThUKpnnjHK5jVR7M1sy7rlB9RbrpKAB8itIFGGWroFeJwlkRXf7vlxv1ipH3fKB4NKC1zwxWpMpdxaugV4mueXKG6RjN8upXL1ZNcZbpGAB8jNIFGGGr7aDDsoK2Lv9X48rWsUbf+77smKV1zw9KSPGqr0pT2e48tepa3uxrtBl4WFc8OLPFWUwo3lqgWB0b6AEkF3u6AId1HLVPnUbv0+UPvNSswvWJMV9ernZDDiUk0+G17bTsb2NadI0rHpgpy6Pboeb/aIqqDuWYjgHA55jpAhzU9cxdmnbfGwoEE3MrnPZDD6pofRvVlWe0+FrVRVkq2thabfofafRruk7crUi1tz/pd2Ble9W7bJkWgD9RugCH9Dpvq87+0dsJK1ySNPJzH2jv0s46+GGHFl/r0Jr2Wjt9sM7+4TuNfs3Un8xv8bimLf3bWFXuzzUdA0AKoHQBSdT7/C1Hz6sa97UlCobjCR+jx5QdKt2Zr7qyls92pZqdC7qp5kim6RgAUgSlC0iC3udvUU6HSg25cY0yC5N79tbQm9do8+y+CSldxVsLtWdJZ3UZtzcBydxv3XODVLEvz3QMACmC0gUkUK/ztqqwb7H6XLBFOR2qHBt38PVrtfR/x7a4eB3Z2EbL7h8j2VKX8f4uXlte663y3RQuAM6hdAEJ0P3sHeo8Zq86j92rVt2af+xCc/W/bJOC4ZjqKz/dEL7ojxNkx5r+AeUjG9to2d/HSJZ8O+O1eXYfrfj3SGa5ADiK0gW0QOdxe9Tnwi1q079IBb1KjWbpc+HW4x4v/vN42c08GP7IxjZa9rcx2jK7jwZctUEdhh1MQEL32Le8kyr2UrgAOIvSBTRDu6EHNey2VcrtXKHC3iWm4yTFkU1tdGRTG3Ueu9dXpWvDi/21b3kn0zEApCBKF9BEbQYe1qTvvevbsuV3xVsLVXWQg1ABOI/SBTRBYd8jmvLj+crvXmY6Cpph/YwB2j63p+kYAFIUpQtohJwOFTr/93MUyogqr3OF6Thoho0v99P7/xyl2lLO5QJgBqULOI3M1tW67J8vK7tdtekoaIHa0gwKFwCjKF1AA9LzanX14zOUWZDcA07dasyXl6rnudtNx2ixTa/01QcPjjAdA0CKo3QBx7F12xuPHX1kWbbSciIG85gVzooolN7McydcJFobUrTG2zfmBuB9lC7gM9I/vldiqhv1heUacOUG0zEAwDeaflw1gJQQCMUVCNmmY7TY1jm9tOj3E0zHAABmugC/ePb6a1W2u9WnX2h2X7I17PZVOuO2DxMRy6id73TTvB9OlWSZjgIAlC7AD+y4ZNuWZLe0XNgadN06jf7Sclke7ym2LdlxSxQuAG5B6QJ84IU7rlL5sbNczWHZ6nfpJk381qLEhDJs//sd9eb3ppmOAQBHUboAyArE1eu8bTrrBwtMRwEA36J0ASnOCsbV/aydmvrT+aajJEw8aqm+Ks10DAA4Dp9eBDyupiRD8Wjz/yq3HXhY5/1qbgITmRWPWtqzpIve/C5LiwDchdIFeNyb3z1PpdsLmvXaQDim7PZVCU5kzieFa863LjAdBQBOQOkCUlQgHFP3yTt17i/eMh0lIeJRS3uXdqZwAXAt9nQBHlayLb/Ze5dy2lfq3F/6o3BJH93Q+vVvXtjgc7LbVyqnfeUpf/3wuraKR4OJjgYAkihdgKct/vN4lWwtbPLrAuGYOgw/kIREZsSjlva936nB5+R2KtfoLy5X7/O3nfI58340Rdvn9qR4AUgKShfwGdvm9jz678G0mLpP3mUwTeIFQjH1vXizJv+/d01HSYh4zNKW1/vonZ+dfcrn5HYu18jPrWiwcEnS1J/M157FXVRXRukCkHiULuA4lt76wblHH4UyI5r8/QXqPa3hN2sT9i3vqOrDWU16jRWMa+DV6zXhm4uTlMpZdlzaOLO/Ft43qcHn5bSvVH730kZds88FW7Tu+UGyY2x5BZBY/FQBGhCtCWvpX8eajnFS62cMVMm2pi0tBtNi/ilctrTm6SGnLVyStH9FJy27f4zWPD1YRzY1/D2b8M3FCqbFEhUTAI5ipgtIEVYgrmG3rzIdIyFsW/rggRFa8e9RjX7NvuWdtW95Z3WZsFvthhxSz3O2q6Bn6UmfO+z2VVrxr5Gy4/x/KYDEoXQBp1FfmaZVj56hYbd/aDpK81m2xn19iYbcuNZ0khZb8texsuOW1jw1pFmv37Ooq/Ys6qqi9W2U17Vcg69bq9xOx3+iccRdKxXOjGjxn8cn4CbiAPARShdwGpHqNG18ub+rStemV/qqaEObRj7b1qTvvasBV2xMaiYnLPztRK2fMTAhRWjXu90lST2nbj+hdEnSkBvXKpQZ1bu/miSJ4gWg5ShdQCPUHMnU0r+N0divLDMdRZJ04IMOqtiX16jnTv3ZPFd+EKCp3v7ZWdoyu4+jM08DrtiocFbk6ONYfbDBT0kCQEMoXUAjRKrTtGdxF9eUrsaa9ts56jbJ+0dezPvRFG17s1fC91iN+sJy5fcobfA5xxbWeMxSRn6t6srS9fZPpyQ0CwD/Y5co0Ejle/L03u8mmI7RJF0n7pbl8ZWxud8/R9vn9kzKEQ7b3uylN/5rmsp2N27WMBC01e3M3ep13jZN+cm8hOcB4G/MdAGNFK0Ja9Mr/SRJE7+9yFiODx8fqp3vdD/t8y7/90xZAduBRMnz5vfO1a53uyXthPhPjtyY8+3zddGfZyunQ5Ve+fLFqq/86NZKVzw0U4Hgid/DYFpcPaduV36PUhVvLtQ7P2fJEcDpUbqAJojWhFW+p3GzIslSdShbdeUZDT7niodeVJsBRZ6e5Xrz/yW3cB2rbGe+XvnyJQqE4yrfnXd0GfP5m6/RtU8/d9LvYzAtrjb9jyhWx+n1ABqH5UWgifav6KiF9000MvbqJ4do06x+DT7nqkdnqE1/bxeuud8/R7sWOFO4PlGxL09lO/OP2zdWtjP/tK9rM6BIU37MUiOA06N0AU0Uqw9p48v9tegP4x0dd+2zg/T+P0cpUp3W4POy21XJ8vDf7Hk/nKKd73T3zE2ng2lxZRTUmo4BwAM8/KMZMCceCWr9jIFa+rcxjo0ZrQ0pWhtu8DnXPv2s0lvVOZQo8d75+WRtm9vLM4XrE51G79Ptcx/RxO8sNB0FgItRuoBmikeDWv3EUD101p1a3czT0Rtrw8z+Wv5/o0/7vHBWxLPLigvvm6jNr/Z11Y2m75j3cKOeFwjaSsuOaMCVGzTu6/64tyWAxHPPTzfAg+x4QLH6kJb8ZZwemHi3tr7RK0njWKctI9c89Zyy2lYnZXwnxKMBV93r8I55DyuUEW1SiQ0EbQVC8eSFAuBp7vkJB3iZbcmOBzTvf6Zq17tdnR5cVz7ygvJ7lHpylsu2pSV/GauNL/U3HeU4zT1uY9B16zTq3uUJTgPADyhdQEI533ou/ccstel/xJuFKy6t+PdIrX7yDLnt/oYPn32n4pGA7CZ2L8v6uLBZ3j4jDUDiUboADwuEYrI8+uYej1n68Ikz9MEDI01HOQVLD511t2L1Td/UP/yOVRp2+ypZAZYaAXyKw1GBBIvWhlRf1fCnDJvqVAdwnv+7OWp/xqGEjuWUza/01bK/jTUd47QePvtO3bPogSbPJI750nLVV6Rp/YxByQkGwHMoXUCCvfXf5zoyTjir3rObtmP1AUWqE1tMk6m2NEOZTTiLK1obVKQmrGgdP2IBfIqfCIAHpefV6uwfva1Oo/ebjtJk0bqgNs3qp8V/8srNwy09ecnNuuGF6cppX9XgMyM1IdWVpWvts4O1+okzHMoHwCsoXYDHZBTU6Mz/WqhuZ+42HaXJorVBbZ7dV+/99kzTUZrEjgf0zDXX6+rHZ8gK2GrVrVzSRzN2Fftyjz5vx9s9tPzvzh2YC8BbKF2Axwy/c6V6Tt1hOkaTRWuD2vJ6Hy38zSTTUZolHg3quRuvU1pOnS7+31clSWW7W2ne/5xjOBkAr6B0AR6S07FC2W0bXuJyq9Kd+Xr3V5NNx2ix+sp0vXjnVaZjAPAgjowAPKTfpZvU85wdpmM0WaQ6pIOr2puOAQBGMdMFeER+jxIV9CoxHaPJIjUhbXhxgJb8ZbzpKABgFKUL8ID8HiUade/7ntvLFa0Lau0zg9lcDgBieRHwhA7DD3iucElSpDpM4QKAj1G6AJcr6F2sbpN3mY7RZLH6gFY9Osx0DABwDZYXARcr6FWssV9dqq4T9piO0iTxqKXFfxrPLXAA4BiULsDFcjtVeK5w2XHpnV+cpS2z+5qOAgCuQukCXKqgV7GG3b7KdIwmsW3pzf93nna+3cN0FABwHUoX4EKtupXqrP9+R20HFZmO0jS2KFwAcApspAdcKJwd8Vzhsm3p5XsvMx0DAFyL0gW4TG7nck396TzTMZrl0Op2piMAgGuxvAi4SFbbKl3yt1eU08F791d89vrrTEcAAFdjpgtwkUAo7snCJUnle/IkWaZjAIBrUboAl8goqNFVj75gOgYAIElYXgRcIC2nTjfMmK5wZtR0FABAklC6AMOC6VHdMvsJBcNx01EAAEnE8iLgAn4oXPcsfECSbToGALgWpQswyArGdef8h03HSAgrIN3z3gOSRfECgJOhdAHG2AqE4rJ89IE/KyDd/e6DpmMAgCtRugAjbIUyo7rr7YdNB0mKYDofCACAz6J0AQak5dbrjrceMR0jKQJBW7fNecx0DABwHUoXYMBtrz/mq2VFAMDpUboAh+V2KjcdAQBgAKULcNh1zzwri795AJBy+NEPOKjNgMOmIwAADKF0AQ7pMGK/LvvnywqE/H+OlRWw1WHEftMxAMBVKF2AQ6bd94aCad4/eb4xguG4zv/dHNMxAMBVKF2AA3pM3a5gOGY6BgDAIG54DSRZn4s2a+K331Mog9IFAKmMmS4gyUZ94X2lZUdMxwAAGEbpApJoyI2rlZ5bZzoGAMAFKF1AEvW/YqPScpjlAgBQuoCkGfm595Xdtsp0DACAS1C6gCQY/cVlGnzD2pSe5QqlR3X2D+ebjgEArkHpApKg/RkHlZ5bbzqGUYGQrS4T9piOAQCuQekCEmzc1xerdf8jpmMAAFyG0gUkWKtuZRwR8bH0vDpd9JdXTccAAFegdAEJNP4bi9Rp9D7TMVwjELTVqluZ6RgA4AqULiCBMgtqOHn+M7LaVuvSf7xsOgYAGEfpAhJk/H8uUo+pO0zHcJ1A0FZGfq3pGABgHKULSJBQRlTBcNx0DACAS1G6gAQY8+Wl6n/5RtMxAAAuRukCWsyWFbBl8bfplFp1K9OVD79gOgYAGMXbBNBCI+7+QENvWW06RqPZtmQ7vApqWZIsZ8cEALehdAEtYAXiH81yeahQ1JWl66nLbzIdAwBSDqULaIFB163TyM99YDpG01gfbfoHADiL0gU0UyAc82R5yWhVp+ufe9Z0DABIOZQuoJn6XLBFY7603HQMAIBHULqAZghlRpRZWGM6RqPYtlS2O890DABIeZQuoBm6TtitMV/2zizXczdcazoCAKQ8ShfQRGm5dWrVnZs4N1U4M6KC3sWmYwCAMZQuoInaDT6k0fe+bzrGae1Z0lm7F3XRnsVdTEeRJLXqVq6J337PdAwAMCZkOgDgJemtatV+2EHTMRplzrfPVzwSlPTReWIAALMoXUAT5Pco1Yi7VpqO0ST9Lt0oK2CbjgEAKY/SBfjY4OvXaPw3FrvixPyakgxtf6un6RgAYAx7uoBGyiysVr9LNpmO0SirHj1DdszSuP9Y4orCJUlVh7K17tnBpmMAgDGULqCRMlvXqP/l3ihdKx8ertFfWi7LYlkRANyC0gX4zOI/jVOsPqghN6yRxd9wAHANfiQDjZDZulpjv7LUdIxG2Ty7r+LRoOkYAIDPoHQBjRDOiqjL+L2mY5zW2z89S5GqsOkYAICToHQBPrJ3WWdmuQDApTgyAjiNzMJqTbvvDdMxGuXCP72mePSj/5cKhDgQFQDchNIFnEYgFFdBz1LTMRqlsHeJ6QgAgFNgeRFoQFpunS5/4CXTMTyvfE+uXv/GBaZjAIBRlC6gAVbAVnbbatMxPC8eC6imOMt0DAAwitIFAADgAEoXcArhrHrd/PKTpmMAAHyC0gU0IJjGJwABAIlB6QJOIpgW1e1zHzUdwxcqD2TruRuuNR0DAIyjdAGnYFmmE/gJ30wAoHQBJ7AVTIuZDgEA8BlKF/AZVsDW7W8+ZjqGL9i2FKnmXpAAIFG6ACRRbWmGnr+Z/VwAIFG6gM+wld2+ynQIAIAPUbqAz7jxhemmIwAAfIjSBSAp4jFLxVsKTccAANegdAHH6DDigOkIvhGtDWn21y42HQMAXIPSBRxl65L7XzEdAgDgU5QuAAAAB1C6gI/1v2Kj6Qi+EY9Z2vRyP9MxAMBVKF3Ax878r4Xc+idB4tGAFv9pgukYAOAqlC5A0oh7VsiybNMxAAA+RukCJA2/c6Us/jYAAJKItxkAAAAHULqQ8qb8ZJ4CwbjpGL4Rj1ma9z9TTccAANehdCHldT9rJ0uLCbbznR6mIwCA6/BWg5R2wR9fUzAtZjoGACAFULqQ0toOOqxAkE8tJoptSy/cfpXpGADgSpQuAIljSyVbuck1AJwMpQsp68pHXlB6bp3pGACAFEHpQsrKLKxhA30C2bb0+IW3mo4BAK7FWw6AhKkrTzcdAQBci9IFAADgAEoXUtJ1zzyjrDbVpmP4yoOT7pbEHcMB4FQoXUhJVsCWRT9IKDvONxQAGkLpAgAAcAClCwAAwAGULqSccFa9rACn0CdSXUWa6QgA4HqULqScS/8xS7mdKk3H8JUnLrpFstnTBQANoXQBAAA4gNIFoEVKtuebjgAAnkDpAtAiM++6QvFo0HQMAHA9ShdSSpsBhxXOipiO4Rv7P+jA+VwA0EiULqSUCd9apLzOFaZj+MYb/zVNsfqQ6RgA4AmULgAAAAdQugAAABxA6QLQLGufHaRYPRvoAaCxKF1IGf0u26icDhyKmigrHx6uWB37uQCgsShdSBm9p21Vdttq0zEAACmK0gWgyRb/eZzqK7nfIgA0BaULQJPtfLs7S4sA0ESULgBNsuCXk1RdlGU6BgB4DqULQJMcWtuOA1EBoBkoXQAabd4Pp6hsVyvTMQDAkyhdABqtfG+e4hHO5gKA5qB0IWXM/cG5Ory+jekYAIAURelCyqivSFc8yh/55prznWkqorQCQLPxDgSgUaI1IdlxfmQAQHPxExQAAMABlC6klJc/f5mKtxSYjuE5tm06AQB4H6ULKcaSbVumQ3jOm989T/uWdzIdAwA8jdKFlBOPBpi5aYJ41JIdtyRRVgGgJShdSDkz77pSFXtzTcfwjHd+cZZ2vdvddAwA8DxKF4BTitSEFKvnMFQASARKF4BTWvq/Y7V9bi/TMQDAFyhdAAAADqB0ATip6qJM1ZZmmI4BAL5B6ULKKex7RMG0mOkYrrdm+hCWFgEggShdSCltBx/StN+8oex21aajuFr53lxV7OMTngCQSJQupJTx/7lYuZ0qTcdwvW1v9mKWCwASjNIF4Dgl2/NVtL6N6RgA4DuULqSM7mfvUFZrlhVPZ9/yTtoxv6fpGADgO5QupIxB16xjafE0jmwu1J5FXUzHAABfonQBOOrIptba/V430zEAwJcoXUgJA69ep/wepaZjAABSGKULKaHz2L0cE3Eah9a21frnB5qOAQC+RekCIEmqOpStw+vamY4BAL5F6QKgw+va6P1/jDIdAwB8jdIFQHUV6SrdUWA6BgD4GqULAADAAZQuIMUVbWit+T+eYjoGAPgepQsp4e2fna39KzqYjuFKsUhQtSWZpmMAgO9RupASIlVpikf54/5ZxVsLNPtrF5mOAQApgXchIIXZcUvR2rDpGACQEihdQIoq35OrF++40nQMAEgZlC4gBdm2ZNuW7Dg/AgDAKfzEBVKMbUtVB7P17HXXmY4CACklZDoAAGfVlaXr6StvMh0DAFIOM11ACrFtKVLNxnkAMIHSBaSQaE1I06++0XQMAEhJlC4gRdi2VHUo23QMAEhZlC4gRcSjAT13I5vnAcAUSheQAmxbOrKxtekYAJDSKF2Az9m2tP/9jnrpc1eYjgIAKY3SBaSAV796sekIAJDyKF2Az217o5fpCAAAUboA35v3w6mSLNMxACDlUboAH1v95BDTEQAAH+M2QIBPrfj3CK14YKSY5QIAd2CmC/CplY8Ml2wKFwC4BaULKePDJ85Q+Z5c0zEcsfC+ibJjFC4AcBNKF1LG3iVdVFOSaTpG0r39s7O0YeYA2XH+egOAm7CnC/CReT+aou1ze8qOUbgAwG34yYyU8u6vJ/l6iXH/io6KR4OmYwAAToLShZRSsrVQkZqw6RhJMefb01RT7P/lUwDwKkoX4BOlO/NZVgQAF+MnNOADs79+oSr2+XfZFAD8gI30gMe99o0LtG95Jz6tCAAux09pwOMiVWEKFwB4AD+pkVIu+fssFfYpNh0jYV7/5vk6uLq96RgAgEZgeREpxFYgFJflk4Pa5/7gHO1+r6u4tyIAeAMzXUgZF/1lttoNOWQ6RkLYtmTHLVG4AMA7mOlCSrACccmSL2a54jFLC34xWTvm9TQdBQDQBJQupIRzfzlXncfsMx2jxWKRgBb/abw2v9rPdBQAQBOxvAjfC2VEFAjHTcdIiJUPDdf65weZjgEAaAZmuuBr4ex6Tf7+AnU7c7fpKC0WqQkpUu3PWxgBQCpgpgu+NvqLy9Xr3O2mYyTEuucGac3TQ03HAAA0E6ULvpVRUKOMVrWmYyREXXkaN7MGAI9jeRG+lNWmSqO/tFy9z99mOkqL1Zal68PHz9Cap5jlAgAvY6YLvtT34s3qd8lm0zESYu+SzvrwsWGmYwAAWojSBd/J7VSu/J6lpmMkRPWRTBVtaGM6BgAgAVhehK/kdirXyM+tUN+LtpiO0mLVRzL14WNnsHkeAHyCmS74xtHCdbH3C5ckle7Ip3ABgI8w0wVfyOlYoZGf98cMlyRVF2Vq65zepmMAABKI0gXPy25fqTFfWuaLTypKUk1xhpbdP4Zb/QCAz1C64DmhjIjGfnXp0ceZhTXqec4Oc4ESqLYsXYv+OEHb3mCWCwD8htIFzwmmxTTo2vWmYyRFpCpM4QIAn2IjPeASdRVpWvCryaZjAACShNIFuESsPqh9yzqbjgEASBJKF+ACkeqQXv/GBaZjAACSiD1dgGHRuqBevOtKle3MNx0FAJBElC54Tl1Fup6+6oajj1v3O6Jpv3nTYKIWskXhAoAUwPIivMe2VLk/9+g/u97tprnfP8d0qmaJRy09fdWNpmMAABzATBc8z44FVFeRbjpGk9lx6fELb1V9pfeyAwCajpku+MK+5Z301n9PNR2j0WxbenjqnRQuAEghzHTBH2xLsUjQdIomidUdnzezsFo3vfRUi6/7xCW3qK4so8XXAQAkFjNd8I2db3fX/J+cbTrGadm29OCZd0uyTvi1QMhu8T8AAHeidMFHLMn+aK+UW8Vjlh6cdLfsOH/1ACDV8JMfvrLltb5a9IcJpmOcVCwS0CPn3CE7lty/dsFwTBIzXgDgNpQu+E48GlAs4r4/2k9cdItidafaRmkrlBFNyDg3z3pKma1rFMqMiPIFAO7hvncmoIU2vDhQK/410nSM49SVp8m2T9zD9Ym0nHrdMOOZhI13yytP6s55jygjv1bpebUJuy4AoPn49CJ8KVIdVn1VWGnZEdNRVH0kUzNuuVqRqrRTPMNWVpvqpIx962tPyLalpy6/SbKl6qLspIwDADg9ZrrgS+ueG6x1zw0yHUMV+3P04h1XqrY08xTPsFXQu0TXPv180jJYlnTzy0/phhemK69LmXI7lSdtLADAqVG6gCQp25WnV79ycYOzS1bQ1jVPzHAkTzAc1/XPPasrH3lR+T1LHBkTAPApSheQBMVbCzTnO+erYl+e6SgnSM+t16V/n6X2ZxxQYd8jpuMAQMpgTxd8q2xXK1UeyFZOhypHxy3a0Fpv/+xsle3MP80zbXUZv8eJSCfIyK/TZf+cpYp9OVp435mqLctQ0fq2RrIAQKqgdMG3Nr/ST20GFGnwdescG/PQmrZ673cTVbK18KS/3v3sHQoEPz691ZLO/cVbjmU7mdxOlbrwT6/ryOZCLfzNmTq0pr3RPADgZ5QuIEEOrGqvJX8ep6INp54xmvqTeQplxBxM1Tit+xZr4rff0+I/jdeBlR1NxwEAX2JPF3xt/4qOKt3RKunjHFjZXkv/OlaH17VL+ljJ0mbAEY37+hJ1HLnPdBQA8CVKF3xtx7yeOrwuuXuV9n/QQcvuH+OLpbm2g4o05ivL1Gn0XtNRAMB3KF1AC+1f0VEHP+xgOkbCtBt8WKO/tFwdRzHjBQCJROmC722a1U9FG1sn5dp7l3XSrgXdknJtk9oNPqy2gw6bjgEAvkLpgu/tX9FJlftzEn7dfe931NK/jm1w4zwAAJ+gdAHNcGBVey3+43gd2dTGdJSk6XfJJnWduMt0DADwDUoXUsLyf4zW4fWJK0jVRVkq3pKcJUu3yO9RppyOlaZjAIBvULqQEkq3F6i+Ii0h1zr4YTst/d+xCbkWACB1ULqAJqqvSlPl/lzTMRwx4u4P1G3yTtMxAMAXKF1AExxe10Zv/+Rs0zEck9W6Rmk59aZjAIAvULqQMuZ+/9wW7esq3lqg2V+/SLWlmQlMBQBIFdx7ESmjvjJd8Wjz/j+jbHeeXrrnckVrwwlOBQBIFcx0AY1hi8IFAGgRShdSyqx7L1XxloImvabyYLaeu/HaJCUCAKQKShdSih0PyLYt2XYjn29Lsj96HQAALcE7CVLOC7ddpYq9pz/ywbalmuJMPX3ljQ6kAgD4HaULKchSLBJscLbLtqXa0gw9ecktkizHkgEA/IvShZT0/E3Xqroo65S/HqsP6omLbnUwEQDA7yhdAAAADqB0AQAAOIDSBQAA4ABOpEfKKt5SqJojJ7+lTywSdDgNAMDvKF1IWa9/40LTEQAAKYTlRQAAAAdQugAAABxA6QIAAHAApQtAg7pO2K28LmWmYwCA57GRHkCDep+/TVbAVtmuVke/tvqpoaqvSDeYCgC8h9IF4LR6nbf9uMebZvWjdAFAE7G8CAAA4ABKFwAAgAMoXQAAAA6gdAEAADiA0gUAAOAAShcAAIADKF0AAAAOoHQBAAA4gNIFAADgAEoXAACAA7gNEIDTsm3TCQDA+yhdABpk29Ib/zVNuxZ0Mx0FADyN0gXglOIxS2//9GztWtDddBQA8DxKF4CTikUCeu93E7X19T6mowCAL1C6AJwgWhfUsvvHaOPMAaajAIBvULoAB9UUZyqYFvv0C5aU1brGXKCTiNSEtPLh4Vo7fYjpKADgK5QuwEHTr77xuMdWMK7rnnlWVsBWbsdKQ6k+FakOafWTQ7XqkeGmowCA71C6AIPsWEDPXHODwln1uuxfLysYjqlVt3IjWeqrwlr37CCt+PcoI+MDgN9RugAXiFSnacYt1yizdbWm3feGJCktu175PcocGDukku0F2r+io5b/35ikjwcAqYrSBeV0rFBe55PPrhxa007R2rDDiVJXzZEsvXTPFZKkwr5HNO7rSyRJ2W2rklLAItUhbZrVT4v+MDHh1wYAHI/SBfW5cItG3/v+SX/tuZuuUen2AocTQZKKN7fW7K9dLEkacOV6TfrewoSPUb43j8IFAA7h3osAAAAOoHQBAAA4gOVFNKj/5Ru14t8jFalKMx0lpR3Z1ForHxmW8OvWHMlM+DUBACdH6Upx7YYeVOexe0/560NvWqO1zwymdBl2eF07HV7XznQMAEALsLyYwtoNOaixX1mqjiMONPi8UZ9/X+HseodSAQDgT5SuFNVm4GGN+48l6jD84Gmf2/fiLTrrB+8olBFxIBkAAP5E6UpROR0q1X7ooUY/v+c5O3TuL+cqEI6d/skAAOAElC40WteJe2QFbNMxAADwJEpXCmo7+JDGfHlZs1576f/NkhWMJzgRAAD+x6cXU0zrfkU65+dvKbdjZbNe33Zgka5+bIZs29KMW66WZCU2IAAAPkXpSiH5PUp0wR9eV1abmhZdp6BXqWxWGQEAaBKWF1NIIBRvceE61s2znkzYtQAA8DtKF5rFsqTM1jW6ZfbjpqMAAOAJLC+miLwuZbr8gZcSek3LkjLya3Xn/IdO+LWijW00697LEjoeAABeRulKFZYUSk/8GVuWJYUyTrxu+zMO6u53Hzj6eMPMAXrvt2cmfHwAALyC5UUkhWVJgZB99J+BV6/X2K8ukcQOfABAaqJ0pQTb+KGmliUNvWW1RtzzgdEcAACYQunyPVu5nSp03fTnTAeRZUlWwJYV4HBVAEDqoXT5mq3s9lW6YcYzpoMcNez2VRpw1QbTMQAAcByly8fCWRHdNPNp0zGOs/Lh4Vr//CDTMQAAcBylC46JVIcUqQqbjgEAgBGULiRcLBJQ2e48VR3KOu7r62cM1JqnhxpKBQCAWZQuJFz5njw9e931mvejqUe/VluWruqirAZeBQCAv3E4KpImUhXWgVXtJUm7FnRjlgsAkNIoXUiaI5uSfyugcFa92p9xsFHPPby+rerKMpKaBwCAU6F0IaEiNSHtXdLZsfFyO1Xowj+93qjnrnhghEq2FkiSdi/qqmgNm/oBAM6hdCGhaksztPhPExwZK5xVr+5n72z080cecxr+0r+NUW1phra81kfxSDAZ8QAAOA6ly48sW4OvX6tgWuJvcO0mGQW1GvX5Fc167divLJMkZRbWKFob0rpnB8mO87kSAEDyULp8ZsTdK2QFbI38nPP3OIzUhLR2+mDHx22JMV9aLklKz6uTHbP0wYMjJFlmQwEAfInS5TMjP79ClqHOEK0JOfYJxXBWvYbfsTJh1/tk6TEtp15L/jI+YdcFAOATlC54Uigzqv6Xb0r4dYfctEbhrMjRx5GasJb8mRIGAGg5SpePTP3pW6YjeJ5lSQOu3Hj0cW1pOqULAJAQ7Bz2kZ7nbje2tAgAABpG6YLnhLPqNe03b5iOAQBAk1C6fOLyB2bKCtjGxo9Uh/Tq1y52ZKxAKK52Qw47MhYAAIlC6fKJ1n2PGF1ajMcCKtlaaC4AAAAux0Z6j7vqsRlKz61TIBw3HQUAADSA0uVx2W2rlJFfZzRDtC6oZ6693pGxQhkRXffMs46MBQBAIrG86GHXTn9W6a3MFi5Jki3VlWU4NpzpkgkAQHNQujwsnBUxfkREPGrp0Wm3mw0BAIAHULrQYvFI0HQEAABcj9KFFrFt56baAqGY7pj3iGPjAQCQSJQuj7IC5j+taMelhybf5eiYppdTAQBoLkqXR107/Tllt602HUMSLQgAgMbgyAjgGLYtRarDRx8f++8AALQEpcuD0nLrFAiaXV60bam21LljIiRbGfm1joz06Ll3ODIOACC1sLzoQZfc/4pyO1WajqEnLr7FsbGsgK2bZz2V9HEqD+QkfQwAQGqidHlMTocKBdNipmP4km1L06+6wXQMAIBPUbo8ZurP5im/e5npGAAAoIkoXR5S0LtYadn1pmMYYKvD8ANJH+XAyg5JHwMAkLooXR4y7utLVNCr1HQMSdLu97o6Ot7Ff3s16WO8+pWLxREYAIBkoXShWeZ8+3xRUAAAaDxKF5psw8z+ku3ceAOu3ODcYAAAJAnndHlEt8k7lduxwnQMrXl6sJb8ZZycnOU687sLuf0PAMDzmOnyiL4Xb1arbuWmY2jZ38fIjvvvj82Kf49w9ObdAIDU4793T6AZVj48XKJ0AQCSiNIFV5v8/XdMRwAAICEoXR4w6Nq1ajfkkOkYmv+TsxWPOPtHpu8lm9nPBQDwBUqXB7QZWKTsttWmY2jXgm6+3M8FAIATeAdFynv1qxcpHuOvAgAguXingWtd8dCLsgLJPxDs0Jp2bKIHACQdpcvlRtyzQj2m7DAdQy997jLVV6U5OmZBr5Kk7+d68c4rFK3juDoAQPLxbuNyGfm1SsuOGM0w8+7LdXh9W0dng66d/qyCabGkj1OxL5dZLgCAI5jpwmnVlGQ6Xkyy2lTzqUUAgK9QutCgF++8QpUHchwd84YXnlY4K/mze89ce53qytOTPg4AABKlC6cRrQs5PssVyog6MssVrQ3JyXtIAgBSG6XLxUbdu1yDrl1nOobDkv9pRUmynRkGAICjKF0uZlm20X1Ndtz5MW+c+bQy8muTPs4z116v6qKspI8DAMAnKF04pZc+d7lKtxc4Np4V/KjlOVc0WVoEADiHIyNcygrGZQVTZw0smBbV1U/MUE77KtNRAABICma6XGrozas17LYPjY0fqQ45emucy/71slp1LXdkrPqqsOw4s1wAAGdRunBSc759vo5sbOPIWOl5tQoEndtANuveS1W5P9ex8QAAkChdOInqI5mO3hpn2n1vqLBPiWPjAQBgAqULJ3j3V5N0eG07R8bK6VChUEbUkbEkqXxvLvdaBAAYQelyoYyCGuW0rzQdwxFnfneh2gw44th48380ReW7Wzk2HgAAn6B0uVDPc7Zr0LXrTcdIuoJexcpolfwzuT5RtLG16ivTHBsPAIBjsc6C4xRtaK2a4sykj9O6X5EmfGuR2g4qSvpYn1j6v2NVusO5c8cAADgWM104zuonh+rwuuTv5xp03Tp1GHYw6eMAAOAWlC44rv2wA8rvUeromLvf66KqQ9mOjgkAwLEoXThq96IuKnHgtj89p25X+6GHkj7OsTbMHKCynfmOjgkAwLEoXS7Tul+Ruk/eaWTsnW93V/Hm1kkdo9OYvWp/BsuKAIDUQ+lymfyepeoyfq/j4+54u7sOrOqQ9HE6DDvg6OZ5Sdr8ah8Vby50dEwAAD6L0gVJ0qHV7VSa5KXFrhN3qfvZzs/i7V3WWRX78hwfFwCAY1G64Jj8nqVq3bfYdAwAAIygdEFbXuutbW/2SuoYXSfu0oArNyR1jJNZ+8wg7V3a2fFxAQD4LA5HhSr25aryQG7Srt957B5N/PZ7yu3k/K2Nyna1Us2RLMfHBQDgs5jpQtKl59UZKVxrnh6srXN6Oz4uAAAnQ+lKcZtm9dXqp4Ym7fqdRu/VhG8tStr1G1JTnKm68gwjYwMA8FmUrhRXX5Wm+or0pF0/mB5TZoFzN7X+xJrpg7X2mcGOjwsAwKlQuuBL0dqQorVh0zEAADiK0oWkaT/sgM771ZumYwAA4AqUrhS26ZW+WvLncUm7vhWwFUyLJ+36p7Lu+YF6/x+jHB8XAICGULpcpNvknZry4/mOjGXbkh23ZMeT80egzYDDuuT+V5Jy7YYk+/cFAEBz8c7kIpZly7KcGWvHvB5a8IvJSbq6LSvg3O/lWFte66NFv5/g/MAAAJwGpSulJacV5fco1RUPvpSUazfEjkvxaEDJ+n0BANASlC4klmUrlBE1MvTOd7prwS/OMjI2AACnQ+lKQbFIQJHqJBynYNkq7F2sKx+emfhrAwDgcZSuFLT//Y565+dnJ/y6Gfm1uvrxFxJ+3caI1QdUV568Q14BAGgpShcSw7KV17nc2PAHVnbQgl+ytAgAcC9KF1rOstV+6EFd/u+XjQwfqQmpfG+ekbEBAGgsSleKqa8Kq2RbQUKvGUyL6bJ/zkroNRsrUhPS1td7a+FvJhkZHwCAxqJ0pZjiLYVa8pfxibugZavz2L2Ju14Tle/J07u/TtZ5YwAAJE7IdAB4ma1e527TOT+fZ2T0SHVIe5d2NjI2AABNxUxXCqktS9fuhV0Td0FLxgqXJNUUZ2rpX5N370gAABKJ0pVCqg5la9WjwxN0NVuDr1+boGs1XaQmpE2v9DM2PgAATcXyIpplxN0faOTnVxgbP1IV1sqHRhgbHwCApqJ0pYiakgytfnJoQq419qtLNPSW1UZuaC1J0dqgVvx7pJnBAQBoJkqXS7TqXqqB16xP2vXrK9K0ZXbfFl9n4rcXauDV640VLkmK1oW04cWB5gIAANAMlC6XyG5bpS7jzB29cDpnfvddpeXUq+c522UZ3AkYqw9owS85IgIA4D2ULpzW5B+8oz4XbFEwLW46iuKxgHa+3cN0DAAAmozShQad/cP56nnudncUrqil1/7jQtMxAABoFkoXTmrS9xaozcAi5fcoVSg9ZjqOJMm2LR38sIPpGAAANAulCyeY+J2F6nPhFoUy3FG2JMmOSzNuudp0DAAAmo3SheNM+OZ76nfJJncVLlt6+qobVXUwx3QUAACajRPpU0DV4Sy99LnLG/Xc9FZ1ripcn6g6mG06AgAALULpSgW2VFeecdqnjf/PRep17jYHAjXNo+fdLsngwWAAACQAy4uQJI3+4jINum6dAkHbdJTjPDz1DkVr+GMKAPA+3s2gYXes1LDbVxk99PRUYnVBMcsFAPADSleKG3z9Go3+4nKjt/U5lYfOulN23IXBAABoBhfObcAxli0rYLuycMVjn4RyYTgAAJqBmS6fs20pVh884etWIK7+l2/U+P9cYiBVw2L1AT1+4a2K1fPHEwDgHy5+V7MVzoo4P6ptKVoTdnzcZKkrS9cz195w9LEViCuUEVX3s3Zq0vcWGkx2ak9dfpMi1WmmYwAAkFCuLV2BcFx3vPWo4+NW7M/R9KtudHzcZLECttLzao8eGdFuyCFd9s9ZhlOdWm1ZumybJUUAgP+wp8vn0vPqdfXjMyRJgVBMmYU1hhOdWnVRpmbccrXqyk5/phgAAF7j2pkuJI4VtNWqe6nyu5fqvF/PNR3nlGZ96VJVF3HyPADAnyhdnxEMx9S6f9Fpn1d5IMczMzJZrWt03fTnTMdoUOmOVifd8A8AgF9Quj4jq02NrnrkxdM+b9VjZ2j3e11VsrWgUbfYwakd2VSouT84lxtaAwB8jT1dzTTstg916d9f0aDr1qnrxF0KZ9ebjuRZ7/1+osp3tzIdAwCApKJ0tdCoz6/QBX+Yo0HXrlM4q/nFq6Y4UwdWtk9gMm/Yv6KDakuZKQQA+B+lK0HGfGm5stpUN/v1JdsKtfrJoQlM5A2rHh2msp35pmMAAJB0lC4Ys3NBN1XsyzUdAwAAR1C6EmjwDWuVllNnOoYn7JjfXcv+NkZlu/JNRwEAwBGUrgQadM16hbObf+ui4q2F2jy7TwITudeud7updEeB6RgAADiG0uUiFXvztGdxF9Mxkm7rnF46sKqD6RgAADiK0uUyB1Z20IaZ/U3HSJptb/bU+/8cxRERAICUQ+lymaqDOTqyqbXpGElTsr1A5XsoXACA1EPpcqEd83po3fMDTcdIuC2v99aml/uZjgEAgBHcBsiFaoqzVHnAX7fE2f5WDy35yzjVHMkyHQUAACMoXUi6XQu7auF9Z6q2NNN0FAAAjGF5EUkXqQ5TuAAAKY/S5VJrpw/W6qeGmI7RYnsWd9aCX042HQMAAOMoXS4Vqw8pVhc0HaPF4tGAojVh0zEAADCO0oWk2f9BB73x3WmmYwAA4AqUrgR67sZrVHUwO2HXW/5/o7XuOW8eHWHbkmzJjvFHDAAAidKVUHbckmQl8IqWbDuR13OGbUtF69volS9fYjoKAACuwZERCRKPeq8cJUvpjnzNvPtK0zEAAHAVV5euaO0xG8ktKZQeMxfmNGbec4XKduWbjmGcbcsXHwAAACDRXFu64pGgHp5y19HHuZ3LddWjLygtO2IwlbOCaVEF09xbNE+m8kCOXrzzKtMxAABwHc/s6arYm6dZ915qOsZJ1ZalKx5N/LdyxN0faMAVGxN+3WSx41JtaYbpGAAAuJJnSpebvfnd81SytTCh10zLqVNaTn1Cr5lMdlwq2tBGM++60nQUAABcyVOlK1oXUvneXNMxjlOxP0fR2sSv0g64aoMGXbs+4ddNBjsuHVrbjs3zAAA0wFOlq3x3K83/8RTTMY6z8L4zVbShbUKvmVFQo5z2lQm9ZjLF6oN6+fOXm44BAICreap0pYqe52z3ziyXLe1f0dF0DAAAXM9zpauuPF0HV7czHUOSdHh9G9UUZyb0mtntKlXYpzih10wmO2bp9W9eaDoGAACu57nSVbYzXyv+NdJ0DEnS6ieG6sjGNgm7Xna7Sg2/c6UGXrUhYddMJtuWtrzex3QMAAA8wbXndLndvuUdVba7VcKul92uUsPv8lbhWvfcIC36/UTTUQAA8ATPzXRJUsW+XO2Y391ohi2v90noLFerbmWeKVyS9OFjZ2jR7yeYjgEAgGd4snSV72mlZfeP0fa3epiOkhDZ7SrV/3LvHIIqScv+PkaJvbk3AAD+5snSJUllu/K1a2E3I2Nvn9dDhxK0mT+rTZXG/ccS9T5/W0KuBwAA3MmzpUuSDqzsoM2znd/IfXBVe5XuKGjxdTLyazTpe++q17nbE5AKAAC4mac30lfszdOKf42UZdnqc+FW03GaLJwVUbdJu03HaJZpv3njhK/VV6bp7Z9OcT4MAAAe4OnSJUkV+/K0/B+jZQVt9Z6W/CW6za/20fZ5PVt8nfS8Wk358fyWBzKk+1m7TvhaLBJQVttqSVLZrlZ677dnOh0LAADX8nzpkqTK/bla+texWvPUEI38/Ap1nbAnKeNsea23lv19jKoPZ7f4WoFwXO3POJSAVO4RDMfVecw+SVK7IYdkWbYW3jfJcCoAANzBF6VLkqoO5ajqUI4W/HKy0nPrNPkHC9Ru8OGEjlF9JCshhSucXa9L7n8lAYncK5wZVZ+Ltqj9sIPas7iLlv51nOlIAAAY5emN9CdTfThbJdsK9cZ/TdORTYUJu+7WN3pp1SPDWnydYHpU1zzxvPK7lyUglbuFM6Mq7F2igVev1+gvLjMdBwAAo3xXuj5RcyRLr371Yj1x8c2qPNCy2akdb3fXu7+epLryjBZdJxCK6cYXnlZOh6oWXcdrwplRDblxjUbcvcJ0FAAAjPHN8uLJfFKSnr/lGlmWffTrt8x+QsFw/LSvP/hhO73+zQsUjwYUrQ0nJFNmYW1CruM1oYyYht+5UrFIUB8+1vIZQwAAvMbXpesTkaq04x4/et7txz0OpUd1w4zpeuKSW477uh23FI8EExPCsnX7m48m5loeFUyLa/S9yxWtCWndc4NNxwEAwFEpUbo+K1YX+szjoB674DbZseSutoYyYkm9vhcEQrbGf2OxItVhbX61n+k4AAA4xrd7uprGSnLhsnXPwgeSeH1vCQRtnfU/76jnudz6CACQOihdSWYF4rrnvQdk8Z0+jmXp43129mmfCwCAH1AFkigQiumudx6icJ3COT+fp26TdkkWxQsA4H/UgSS6fe6jCoQoFA05/3dvqPOYvRQvAIDvUbqSJC23znSERovWBlVblq5YvZk/Dhf95TV1HLFfVuD0x3gAAOBVlK4kyGxdrZtmPqVQuns/rRitC6rqUJaqDmVpxb9H6vELbtOap4coWpugIzKa6JL7X1W7oYcoXgAA30rJIyOS7erHZiicFTUd46Q+KlvZ2rO4ixb9fuJxv7bs/rHKbl+lPhdsNZLtsn/M0qwvXqKDH7aXHef/BwAA/sI7W4Ll9yhRIOTO2ZpoXVDb3uylZ6+7/oTCJUlZbauUbnhZ9NL/e0Xped5ZmgUAoLEoXQnUun+RLv7bq0rPqzcd5QSfFK53fnb2KZ8z4u4P1HXiHgdTnVzbQYdZZgQA+A6lK0HaDT2oafe9oazWNaajnCBaF9TW13s3WLjc5II/zFH3s3byiUYAgK9QuhKg48h9mvLj+cppX2U6yknVlaVrwS/PavA5Bb2LldupwqFEp3fer+cqGHbvBxEAAGgqNtK3QMeR+5TbuULDblulvM7uKSzHitUHtPWN3qd9Xp8Lt6jLuL0OJAIAIDVRupqp05i9GvvVpWrT/4jpKKcUiwS0+smhWv5/Y0xHAQAg5bG82Aydx+7R2K+4u3DFY5ZW/HukpwvXsDtWsa8LAOAblK4m6jx2j8Z8eZnaDHBv4bLj0pK/jNOqR4abjtIiI+/54OObYgMA4H2UribwQuGSJNu2tHb6ENMxAADAMdjT1UgdR+3T2K8uVet+xaajNMi2pXk/nGo6BgAA+AxKVyN0GL5fE76xSIV9SkxHOa053zpfu9/rZjoGAAD4DErXabQbclCTvveu8nuUmY5yWq98+WLtX9HRdAwAAHASlK4GtO5fpCk/nq+8Lu48g+tYM+++XIfXtZVkmY4CAABOgtJ1Cvk9SzTtN28op4M7T5n/rCObW4vCBQCAe/HpxVMIpsU8U7ieveFaxSP8pwQAwM14pz6JvC5luvivr5qO0WhVh7LFLBcAAO7G8uJnZLer1FWPvqBwVtR0lEZ5+qobFK3hPyMAAG7Hu/UxMvJrdP1zzyiYFjcdpVGmX329KvfniFkuAADcj9L1sXB2vW5+5UkFgt647cyz11+rin258nPhenjqHbLj/v39AQBSC6VLtoLpMd3+5qOyPPL+btv6uIx4JHAz2TH//x4BAKkjxTfS2wqmxXTn/Ic9U7jiMUszbr1a5XtamY4CAACaIKVnuoLpMd319sOmYzTJrHsvVcnWQtMxki5WH5Bte6QJAwDQCClbusJZ9bp97qOmYzRJtDaYMnucHr/wVsUjQdMxAABImJRcXkxvVeupPVySVF8Z1uvfvECH17UzHQUAADRDSs503TzrSVkeqpu1Zema/6Mp2r+ik+koAACgmTxUPRKjVbdSWZY3joX4xJI/j9OexV1NxwAAAC2QUqWrsM8RXfXYCwqEvFO6Kg9mq7Ysw3QMRx3ZXJgye9cAAKkjpZYXL7n/FYXSY6ZjNFrFvhwt/vN47V7YzXQUR83+2kWK1oZNxwAAIKFSZqar0+i9CoS8cXufT2yYOUA73+5hOgYAAEiAlCldU3483zM3sZakku35Kt2ebzoGAABIkJRYXux9/haFMjxUuLbla/k/RmvnOz1MRwEAAAmSEjNdo7+4XGk5EdMxGm3/io4sKwIA4DO+L12Drl2rtNx60zEa7cjmQu1KsY3zAACkAl8vLw65cbWG37VS6R4pXcVbC7T0f8dq75IupqMAAIAE83Xp6jVtmzJa1ZmO0Sgl2/O1+I/jtW95Z9NRAABAEvh2eXHk595Xq65lpmM0StnuPL3760lGC9eW2X20ZwmFDwCAZPFt6eow/IDS87yxrFhXnq6DqzoYzVCyrVAV+3KNZgAAwM98WbrGfHmp2gwoMh2jUcr35GrBLyebjiFJ+vCxM1wx23XBH15XKMM7nzYFAKAxfFm6WnUv88QREVWHsvTaNy5UydZC01EkSRX78rTgl5O17/2ORnO0HVQkK+Cd+2MCANAYvitd476+WJ3H7jUd47RqSjL08hcuU/nuVqajHKfqYI7m/XCqDq1payzDzLsvV6SGey8CAPzFd6Urs7BG4Ux3nz5fV5GmGbdcrcoD7txDVXMkS69/6wI9eelNKtuV5/j4FftyJdtyfFwAAJLJV6Vr7NeWqOc5203HaFC0NqjpV9+gmuIs01EaVFeWoeqibM28+wpVHsg2HQcAAM/zTeka9YXlGnLDGgXT4qajnFIsEtDjF96q+op001Earb4yXc/ecJ2qj2Q6Mt6z11+r2tIMR8YCAMBJvjkcNRCOKxBy7+ZrOy49MvUOxaNB01GaLFYX0tNX3Hj08R3zHlEwnPhy+9xN16hsVytJLC0CAPzHF6Vr2B0rdcatH5qO0SDbtjxZuD5xbPaHzrpLkmQFbN397oOyEtCRbFuKRwOicAEA/MoHy4u2LMtOyBt/sti29OCZd5uOkTi2JdmW7FhAD066W3ZcR/9p0mXsT1/34h1Xqny385v2AQBwiudnugZdt06jv/i+6RgN+mgGx5/sWEAPTPycJCmjoEY3v/xko18774dTtf2tXsmKBgCAq3i6dFmBuILhmOkYDYrWBvXw1DuVCstmtSWZenDSPaZjAADgSp4tXYFQTP2v2KhxX19qOsop1VWk6fELb+XMKQAA4N09Xd0m7dKZ33nPdIwGPXnJzbJjnv0WAwCABPJkIwimR5VZWGM6RoMq9uXIZoYLAAB8zJOlq8OwAzrzv9w9yzXj1qsVj3j3iAgAAJBYnitdocyIWnUvMx2jQUUbW8uOM8sFAAA+5bnSVdinWBO/tch0jFM6sKq9Xv3KxYrWhk1HAQAALuKp0hXOrleH4QdMxzilvcs66c3vnqf6Su/cWxEAADjDU6Urt2OFxn5lmekYp/TebyeqttSZG0MDAABv8UzpSsupU6/ztpmOcUrb3uypugpmuAAAwMl5pnRlFNRq+J2rTMc4pVWPDVNtCbNcAADg5DxRusLZ9Rp682rTMU5p/QsDVH04y3QMAADgYp64DVA4K6KBV20wHeOk1j0/UCsfGq6aYkoXAAA4NdfPdIUyI5rwTfceEbHr3W6qLso2HQMAALic60tXMC2mnlN3mI5xUh8+MVRFG9qYjgEAADzA9aXLzYrWt2HzPAAAaBRXl65gelQX/Xm26RgAAAAt5tqN9IFQTFc+/KIKepaajnJS7/9zpHYv6mo6BgAA8AjXli5Zcm3hkqSqw9mKVKWd9NeueOhFZbSqTcg47/9rlLbM7puQawEAAHNcWbqsQFw3zXzKdIxTev9fI7V1Tu9T/npO+0plFiamdKVl1yfkOgAAwCxXli5JCSstibbq0TO06tFhikeCpqMAAAAPcWHpsnXHW4+YDnFSa6YP1vJ/jJYdc/XnDwAAgAu5rnTdteAhBcNx0zFOsPGlflry53Gy4xQuAADQdC5rELYCIfcVLtuWbNsyUrgmfGuR+ly02fFxAQBAYrmmdFmBuO5e+KAsy3SS49m2tO2NXnr3V5Ma9wLLlhL4e7AsyQrYkuzEXRQAADjOFaUrEIrpzvkPKxB0V7Gw49LOd7pr3g/PUWOb1I0vPK3MgsR+CODs/3lHPabsSOg1AQCAs1xRum6b85iCae5bVjywqoPe/O60Jr0mWhuSnYTuGEyLyQq473sEAAAax3jpSsutMx3hpOIxS5GqcJNf99yN16lsV6uEF6+pP52vTqP3JfaiAADAMUZLV2ZhtW54frrCWVGTMU6qeHOh5nz7gma99rkbrlPZzsQXr/RWdQqEYom9KAAAcISjpSurTZXyupQd/eeqx15Qep77TlyPRQKqPJjToms8d+N1KtlWkNDidc7P5qnNgKLEXRAAADjG0XO6zvrvd9Rl/F4nh2yWir25Td7LdTIzbrlGd7/7gKxQ4ppXXtdyRWs//c9Wsq2As8MAAPAA1x2OalqsPqCijW1MxzilKT96+7jHj11wq+rKMgylAQAAjcUUyTFikYC2vdlL8380NWHX3LOkS1I+zQgAALyF0nWM+oo0vf3TKQm95pxvXcC5pgAAgNL1iVgkoK1zepuOAQAAfIrS9bFYXVCL/zTBdAwAAOBTlC5J8ailVY8NMx0DAAD4GKVLUjwa0KpHhift+kv+Oo7N9AAApLiUL112XHrvdxOTOsaap4Yk9foAAMD9KF1xS5tm9TcdAwAA+FxKly7bluZ853zTMQAAQApI6dIlW9qzqKvpFAAAIAWkbOmybenFO680HQMAAKSIlC1dknRkU2tHxrnmqedlWY4MBQAAXCqlS5dT8ruXmo4AAAAMS9nS9eQlN5uOAAAAUkjKlq6akkxJrPkBAABnpGTpeuSc2yWHToi/462H6XYAACA1S1esPiinmlAwLcYmegAAkHql6+Epdygedea3fef8h2QFuekiAABIsdIVj1mybUuOrfdZYpYLAABIkkKmAzjp8QtvVazO27/lWCQgO35Mk2MiDQAAT/B2A3GxcFZ9Uq77ypcu0aE17ZNybQAAkDwps7xYW5bu6KzQTS8/pVB6zLkBAQCAq6VM6Xr+5mtUX5luOgYAAEhRKVG6yvfkyo55f0d75cFsRT2+Jw0AgFTl+3fwku35mv21i1Rbmmk6Sost+MVkFW925ibdAAAgsXw/0/XWD85RdVG26RgAACDF+bp0HVjVXpHqsOPjdhqzV4Fg3PFxAQCAe/m6dC358zhVHsh1fNypP5mnUAafXAQAAJ/ydekCAABwC0oXAACAA3xbujbN6quqQ/7ZQL91Ti+V78kzHQMAADSTb0vX5tl9jXxqccQ9KxTOiiT8utvf6qmKfZQuAAC8ypela+0zg1S6I9/I2P0v28gmegAAcALfHY66ZvpgffjYGao5kmU6CgAAwFG+m+k6vK6tscNQJ3//HWUU1BoZGwAAuJuvSteHjw/V3iWdjY3ffthBhdJZWgQAACfyVemq2Jdr7B6LU3/2lnI7ViTl2sv/b5T2LjNXJgEAQMv5qnSZ1KprmYJpybn1T9WhbEWq0pJybQAA4AzflK4PHhquza/2NR0DAADgpHxTuiJVYUVrnb+5tSSd/7vXVdi32MjYAADAG3xTukw591dvqsuEPQoEbdNRAACAi/midK169AytfnKokbFD6dGkFq5FfxyvzbNZNgUAwOs8fzjq2mcHadn9YyRZjo899advqcuEPUkdw45Zku387w0AACSW92e6bMlE4dLHw1r0IQAA0AieLl12XLLjZlqPFYjLspK7jyses4z9/gAAQGJ5unRtfrWvFv9pgpGxJ33vXfU6b3tSx3j/n6O0fsagpI4BAACc4enSBQAA4BWUrmYIZ9UrmOR7LEZqQorWeP5zDgAA4GOeLV2RmpBqSzOMjD3y8yvU54KtSR1j3bODtPaZIUkdAwAAOMfRqZSK/bkq3lpw9HF+91IFQs3bjL5ncRct/d9xiYrWaBn5NcpoVev4uAAAwNscLV0LfzPpuMfn/+51dRm/p9nFy4SB16xX34u3mI4BAAA8xujy4pxvX6D6yrQmv662LF0lx8yYOSW7faVyO1U4Pi4AAPA+43u6di/qqni08WdR1Zala92zg7Ti36OSmOrkep27Tf0u2Zz0cSr25ahku/OlEgAAJI/x0vX2T6YoVh9s9PPLdrYyUrjyupSpzYAiR8ba/V5XbeF+iwAA+Irx0iVJG14coHjs9LNdtaXp2j6vpwOJTtRx5H71Pn+bkbEBAID3uaJ0LfnL+I9u7HwaVYezteapoQ4kOl5+j5Kk39gaAAD4mytKlyQt/8do2XHTKU6usE+xek7d4chYRRtba+eC7o6MBQAAnOOa0rX6iTP03u8myj7F6RE1JRla9cgwZ0NJKuhVrH6XbnJsvNLt+dq7pItj4wEAAGe4pnRJ0voZg/T2T84+afGqr0jTtjd7O54pp0Oluozf6/i4AADAX1xVuiRpy2t99Ob3zjMdQ5KU37NEI+7+wHQMAADgA64rXZKlXQu6mQ4hScpoVat2Qw47Nt7BD9tp5SPDHRsPAAA4x4Wlyx1adS/Vmd9d6OiYNSWZKuVQVAAAfInSdQqhjKgKepaajgEAAHzC0RteN5Ydt/T0VTcc97V41Ll+mNu5XOf/bo5j4wEAAP9zZemSLFXuzzU2eiAUV3bbakfHPLCyvd752VmOjgkAAJzD8uJnZLer1BUPznR83FgkqPrKdMfHBQAAzqB0fYYVsJWWHTEdAwAA+Ayl6xgZ+TW6/rlnHB/38Lo2eu0/LnR8XAAA4BxK11G2ZEmB0CnuQ5TMkW1Ldpz/FAAA+Bnv9JIkW2m59brl1SdMBwEAAD7l0k8vOiuYHtPtbzxmZGzbdvY4DAAAYAbv9rIVzjS3cb5ka4Fm3XuZsfEBAIAzUr50WUFbt77GsiIAAEiuFC9dtrLbVhkbPR6zVFOSaWx8AADgnBQuXbbyupbrxhenG0tQeSBHs792sbHxAQCAc1K4dEnXPfOs6QgAACBFpGzpajf0kNHxY5GAija0MZoBAAA4J2VL12X/eFmWZW78urJ0vfWDc80FAAAAjkrJ0tVjynbTEQAAQIpJydI19WfzZKXk7xwAAJiSctVj4DXrZAWcv7/isaJ1QW2YOcBoBgAA4KyUK13jvrZEgaDZ0hWrC2rFv0YZzQAAAJyVUqVr1L3LFQjFTccAAAApKKVK16Br1ikQMjzLVR/Qoj9OMJoBAAA4L6VKlxvEYwFtmd3XdAwAAOCwlCldZ/9ovsJZEdMxAABAigqZDuCEc34+V93P3ml8aTEetfTaf1xoNAMAADAjJWa62g46rGDY/AZ627Z08MMOpmMAAAADfF+6pv12jrLaVpuOITsuzbjlatMxAACAIb4uXdN+O0ddxu9xxSyXJJXtyjcdAQAAGOLr0pVZWOOKwmXb0hMX32I6BgAAMMi3pev8372uNgOKTMc4qrY0w3QEAABgkC8/vXjOL+aq68Td3NQaAAC4hu9K19k/nK+e52yXZZlO8qmHJt8lyUWBAACA43w1FzTxOwvV56Itripctv3RKfQAACC1+a4NuKlwSdKDk+6WbJeFAgAAjvNd6XKTWD3fXgAA8BFaQRI9et7tsllaBAAA8lHpCmVEFEqPmo5xVG1puukIAADARXxTukbc84H6XbrZdIyjpl99g2L1vvtwKAAAaCbPtoJwVv1x91TMaFVrMA0AAEDDPFu6Oo/dq/N+Pdd0jJM6srlQdpxPLAIAgE/5ZnnRLQ6taatXvnSJorVh01EAAICLULoSbO4PzlV9JZvoAQDA8ShdCbRrYVdFaz27YgsAAJKI0pVAS/48TnVlGaZjAAAAF6J0Jcjm2X1UV86yIgAAODlKV4KseXqIakszTccAAAAuRelKgLXPDFLVoWzTMQAAgItRuhJg+1s9VVvCLBcAADg1SlcLffDQcJVsLzAdAwAAuBylq4UOftieTywCAIDTonS1wPv/HKlDa9qZjgEAADyA0tUCZbtaqb6CYyIAAMDpUbqaadn9o7VrYTfTMQAAgEdQupqppiRT0Rpuag0AABqH0gUAAOAASlczLP3bGG1+ta/pGAAAwEMoXc0QjwRkx/jWAQCAxguZDuAlti198OAIrXl6iOkoAADAY5iuaYLVTw7Vin+NlGSZjgIAADyG0tVkFC4AANB0lK5GikctxaN8uwAAQPOwp6sRYpGA1s8YqOV/H2M6CgAA8ChK1ynEo5ZqSz+6kfXOd7pr8R8nGE4EAAC8jNJ1ErFIQHsWd9Eb3znfdBQAAOATbFI6iYq9uRQuAACQUJSuz4jVB1S8pdB0DAAA4DMsL34sHrW0/4OOqinO1PwfTTUdBwAA+Ayl62PR2pBmf+1i0zEAAIBPsbwIAADgAEoXAACAAyhdAAAADqB0AQAAOIDS9bFgekxjvrzUdAwAAOBTlK6PBcNx9bt0k+kYAADApyhdAAAADvDsOV0HVnbQq1+96ISvD7t9lTqP3WcgEQAAwKl5tnTVlmZq3/LOJ3y9Yn+uMlrVSpLO+u93VNCr1OFkAAAAJ/Js6TqVir15qtibJ0ma8+3zFcqISpIu/turyiyoNRkNAACkMF/v6arYl6eSbYUq2VaoF++8UvWV4Qafn96qTpf+42WH0gEAgFTi69J1rKqDObLjVoPPCQRtZbercigRAABIJSlTugAAAEyidAEAADjAdxvpG/L4RbeajgAAAFJUSpUuO8bEHgAAMMOybds2HQIAAMDvmPoBAABwAKULAADAAZQuAAAAB1C6AAAAHEDpAgAAcAClCwAAwAGULgAAAAdQugAAABxA6QIAAHDA/wfH3y0RxexyzQAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# Training over Best Found Hyper-parameters\n", "from ultralytics import YOLO\n", "import torch\n", "torch.cuda.empty_cache()\n", "\n", "model = YOLO(\"yolov8l-seg.pt\")\n", "data_path = \"/content/drive/MyDrive/Repair Project/report/data/3c\"\n", "result_path = \"/content/drive/MyDrive/Repair Project/report/results/training/3c\"\n", "\n", "model.train(\n", " data= data_path + \"/data.yaml\",\n", " project=result_path,\n", " imgsz=800,\n", " epochs=250,\n", " batch=16,\n", " name=\"train_250_800_16\",\n", " device=\"cuda\",\n", " augment=True,\n", " cache=False,\n", " save=True,\n", " save_period=100,\n", " lr0 = 0.01,\n", " momentum= 0.937,\n", " weight_decay= 0.0005,\n", " hsv_h= 0.015,\n", " hsv_s= 0.7,\n", " hsv_v= 0.4,\n", " scale= 0.5,\n", " box= 7.5,\n", " verbose=True,\n", ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OtUF2Nze0A8v", "outputId": "53276004-3ed9-4f6d-f191-cb323286d58a" }, "execution_count": 11, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "\u001b[34m\u001b[1mengine/trainer: \u001b[0magnostic_nms=False, amp=True, augment=True, auto_augment=randaugment, batch=16, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=/content/drive/MyDrive/Repair Project/report/data/3c/data.yaml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=250, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=800, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=yolov8l-seg.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train_250_800_16, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=/content/drive/MyDrive/Repair Project/report/results/training/3c, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=/content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16, save_frames=False, save_json=False, save_period=100, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=segment, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=8, workspace=None\n", "Overriding model.yaml nc=80 with nc=3\n", "\n", " from n params module arguments \n", " 0 -1 1 1856 ultralytics.nn.modules.conv.Conv [3, 64, 3, 2] \n", " 1 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 2 -1 3 279808 ultralytics.nn.modules.block.C2f [128, 128, 3, True] \n", " 3 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 4 -1 6 2101248 ultralytics.nn.modules.block.C2f [256, 256, 6, True] \n", " 5 -1 1 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] \n", " 6 -1 6 8396800 ultralytics.nn.modules.block.C2f [512, 512, 6, True] \n", " 7 -1 1 2360320 ultralytics.nn.modules.conv.Conv [512, 512, 3, 2] \n", " 8 -1 3 4461568 ultralytics.nn.modules.block.C2f [512, 512, 3, True] \n", " 9 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 3 4723712 ultralytics.nn.modules.block.C2f [1024, 512, 3] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 3 1247744 ultralytics.nn.modules.block.C2f [768, 256, 3] \n", " 16 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 3 4592640 ultralytics.nn.modules.block.C2f [768, 512, 3] \n", " 19 -1 1 2360320 ultralytics.nn.modules.conv.Conv [512, 512, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 3 4723712 ultralytics.nn.modules.block.C2f [1024, 512, 3] \n", " 22 [15, 18, 21] 1 7891321 ultralytics.nn.modules.head.Segment [3, 32, 256, [256, 512, 512]] \n", "YOLOv8l-seg summary: 231 layers, 45,938,361 parameters, 45,938,345 gradients, 220.8 GFLOPs\n", "\n", "Transferred 651/657 items from pretrained weights\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1mtrain: \u001b[0mFast image access ✅ (ping: 0.6±0.4 ms, read: 0.2±0.3 MB/s, size: 319.8 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/3c/train/labels... 324 images, 116 backgrounds, 0 corrupt: 100%|██████████| 324/324 [00:37<00:00, 8.59it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/drive/MyDrive/Repair Project/report/data/3c/train/labels.cache\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, method='weighted_average', num_output_channels=3), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mFast image access ✅ (ping: 0.8±0.1 ms, read: 0.1±0.1 MB/s, size: 109.8 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/3c/val/labels... 40 images, 12 backgrounds, 0 corrupt: 100%|██████████| 40/40 [00:09<00:00, 4.02it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/drive/MyDrive/Repair Project/report/data/3c/val/labels.cache\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "Plotting labels to /content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16/labels.jpg... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.001429, momentum=0.9) with parameter groups 106 weight(decay=0.0), 117 weight(decay=0.0005), 116 bias(decay=0.0)\n", "Image sizes 800 train, 800 val\n", "Using 8 dataloader workers\n", "Logging results to \u001b[1m/content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16\u001b[0m\n", "Starting training for 250 epochs...\n", "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 1/250 17.3G 1.174 1.982 3.774 1.355 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.06it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.81it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.0922 0.35 0.0828 0.0453 0.0992 0.38 0.0868 0.0465\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 2/250 15.9G 1.122 1.39 2.427 1.281 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.07it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.96it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.0203 0.453 0.0405 0.0176 0.0152 0.384 0.0166 0.00863\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 3/250 16.1G 1.363 1.504 2.358 1.404 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.08it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:03<00:00, 1.54s/it]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0 0 0 0 0 0 0 0\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 4/250 16G 1.372 1.479 1.98 1.453 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.01it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.0205 0.234 0.0172 0.00915 0.0169 0.112 0.0115 0.00677\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 5/250 15.9G 1.392 1.604 1.867 1.449 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 2.00it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.176 0.181 0.115 0.0602 0.158 0.177 0.099 0.0406\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 6/250 16.1G 1.364 1.527 1.866 1.413 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.00729 0.0606 0.00315 0.000633 6.97e-05 0.00741 3.63e-05 1.8e-05\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 7/250 16.1G 1.334 1.483 1.817 1.39 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.95it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.21 0.706 0.324 0.18 0.218 0.745 0.356 0.205\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 8/250 16.1G 1.282 1.435 1.671 1.336 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.92it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.233 0.24 0.14 0.074 0.279 0.225 0.124 0.0618\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 9/250 15.9G 1.213 1.337 1.534 1.297 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.216 0.602 0.274 0.172 0.237 0.387 0.235 0.127\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 10/250 16.1G 1.214 1.347 1.509 1.296 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.308 0.378 0.303 0.193 0.315 0.368 0.317 0.189\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 11/250 16.1G 1.162 1.271 1.479 1.281 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.377 0.614 0.44 0.265 0.525 0.558 0.498 0.293\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 12/250 16.2G 1.202 1.332 1.459 1.286 29 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.04it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.446 0.492 0.487 0.232 0.453 0.499 0.473 0.218\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 13/250 15.9G 1.182 1.29 1.456 1.314 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.03it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.482 0.412 0.378 0.214 0.47 0.412 0.385 0.228\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 14/250 16.1G 1.184 1.349 1.507 1.296 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.494 0.523 0.446 0.242 0.446 0.501 0.409 0.24\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 15/250 16.1G 1.122 1.358 1.376 1.266 37 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.37 0.689 0.47 0.302 0.396 0.681 0.507 0.312\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 16/250 16.1G 1.11 1.266 1.348 1.263 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.601 0.573 0.618 0.356 0.621 0.575 0.626 0.351\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 17/250 15.9G 1.116 1.239 1.345 1.247 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.548 0.614 0.561 0.344 0.56 0.625 0.617 0.363\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 18/250 16.1G 1.066 1.216 1.264 1.235 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.443 0.67 0.56 0.331 0.662 0.505 0.619 0.368\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 19/250 16.2G 1.028 1.208 1.214 1.174 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.567 0.598 0.616 0.364 0.59 0.635 0.619 0.364\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 20/250 16.1G 1.024 1.222 1.264 1.189 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.519 0.444 0.432 0.272 0.523 0.452 0.448 0.283\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 21/250 15.9G 1.04 1.236 1.282 1.217 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.692 0.542 0.562 0.348 0.726 0.532 0.55 0.347\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 22/250 16G 1.049 1.232 1.342 1.257 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.355 0.587 0.418 0.259 0.386 0.609 0.445 0.267\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 23/250 16.1G 0.988 1.166 1.177 1.209 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.519 0.473 0.489 0.303 0.499 0.448 0.415 0.234\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 24/250 16G 1.069 1.165 1.239 1.225 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.524 0.485 0.516 0.306 0.492 0.475 0.472 0.266\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 25/250 15.9G 1.035 1.261 1.275 1.217 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.429 0.492 0.428 0.284 0.416 0.46 0.417 0.231\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 26/250 16G 0.9423 1.125 1.128 1.166 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.681 0.592 0.643 0.435 0.613 0.738 0.725 0.427\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 27/250 16.1G 0.9632 1.12 1.106 1.178 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.39 0.388 0.393 0.274 0.387 0.362 0.383 0.248\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 28/250 16.1G 1.015 1.198 1.322 1.208 2 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.639 0.606 0.684 0.44 0.622 0.695 0.701 0.477\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 29/250 16G 0.9958 1.115 1.185 1.206 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.524 0.607 0.568 0.369 0.558 0.57 0.583 0.372\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 30/250 16.1G 1 1.14 1.165 1.238 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.639 0.703 0.706 0.441 0.697 0.659 0.732 0.464\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 31/250 16.2G 0.9937 1.218 1.145 1.188 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.598 0.609 0.603 0.368 0.63 0.654 0.646 0.395\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 32/250 16.1G 0.9797 1.222 1.119 1.161 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.609 0.622 0.648 0.436 0.603 0.65 0.677 0.425\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 33/250 15.9G 0.9187 1.066 1.063 1.144 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.67 0.582 0.699 0.499 0.6 0.657 0.716 0.483\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 34/250 16G 0.9747 1.157 1.116 1.182 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.59 0.775 0.712 0.482 0.622 0.774 0.74 0.476\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 35/250 16G 0.9553 1.123 1.111 1.182 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.609 0.705 0.681 0.46 0.665 0.755 0.744 0.486\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 36/250 16.1G 0.924 1.153 1.067 1.164 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.625 0.773 0.752 0.512 0.64 0.735 0.77 0.516\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 37/250 16.4G 0.9106 1.107 1.029 1.144 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.607 0.73 0.736 0.515 0.689 0.735 0.771 0.53\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 38/250 16G 0.9013 1.084 0.987 1.137 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.565 0.65 0.637 0.442 0.595 0.703 0.693 0.462\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 39/250 16.1G 0.9342 1.118 1.028 1.2 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.01it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.734 0.749 0.762 0.52 0.734 0.749 0.765 0.51\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 40/250 16G 0.9056 1.095 0.9793 1.136 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.706 0.709 0.73 0.497 0.704 0.765 0.786 0.489\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 41/250 15.9G 0.8668 1.112 0.9606 1.132 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.647 0.685 0.69 0.456 0.672 0.717 0.717 0.461\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 42/250 16.1G 0.9018 1.07 0.9785 1.133 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.718 0.668 0.725 0.479 0.745 0.717 0.757 0.493\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 43/250 16.1G 0.8604 1.075 0.9561 1.136 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.62 0.596 0.588 0.397 0.641 0.614 0.611 0.367\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 44/250 16.1G 0.8487 1.082 0.9157 1.124 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.804 0.617 0.72 0.488 0.851 0.62 0.735 0.428\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 45/250 16G 0.8339 0.9929 0.9055 1.099 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.68 0.668 0.688 0.489 0.727 0.723 0.739 0.481\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 46/250 16.1G 0.8513 1.074 0.8956 1.107 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.81 0.669 0.742 0.523 0.835 0.685 0.772 0.514\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 47/250 16G 0.8415 1.06 0.9281 1.088 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.583 0.711 0.647 0.423 0.633 0.734 0.697 0.476\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 48/250 16.1G 0.8526 1.044 0.8901 1.109 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.652 0.703 0.722 0.495 0.683 0.68 0.755 0.495\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 49/250 16G 0.8647 1.059 0.9534 1.129 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.634 0.672 0.671 0.469 0.692 0.734 0.729 0.47\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 50/250 16.1G 0.8615 1.021 0.8982 1.1 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.725 0.672 0.723 0.507 0.727 0.671 0.74 0.53\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 51/250 16.1G 0.849 1.012 0.8422 1.102 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.738 0.66 0.71 0.468 0.773 0.675 0.737 0.489\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 52/250 16.1G 0.8559 1.081 0.8999 1.115 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.02it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.685 0.623 0.737 0.497 0.807 0.613 0.774 0.505\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 53/250 16G 0.8208 1.042 0.8563 1.097 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.739 0.685 0.701 0.454 0.707 0.676 0.692 0.436\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 54/250 16.1G 0.7999 1.014 0.8593 1.085 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.811 0.653 0.738 0.529 0.844 0.626 0.768 0.527\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 55/250 16G 0.8255 1.04 0.8846 1.094 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.743 0.775 0.799 0.535 0.76 0.79 0.837 0.554\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 56/250 16.1G 0.803 1.036 0.9003 1.095 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.746 0.645 0.724 0.488 0.8 0.689 0.786 0.476\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 57/250 15.9G 0.7975 0.9986 0.823 1.081 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.652 0.734 0.713 0.515 0.663 0.741 0.722 0.517\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 58/250 16.1G 0.7747 0.9919 0.8268 1.06 37 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.721 0.72 0.755 0.51 0.731 0.735 0.777 0.529\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 59/250 16G 0.8006 0.9867 0.8912 1.094 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.684 0.736 0.704 0.473 0.73 0.759 0.761 0.5\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 60/250 16G 0.784 0.9759 0.8465 1.068 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.788 0.563 0.665 0.48 0.595 0.754 0.689 0.478\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 61/250 15.9G 0.7587 1.007 0.7733 1.07 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.811 0.687 0.731 0.524 0.82 0.714 0.786 0.534\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 62/250 16.1G 0.7318 0.9143 0.7307 1.048 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.695 0.673 0.708 0.496 0.735 0.71 0.726 0.51\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 63/250 16G 0.7934 0.9671 0.8497 1.09 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.691 0.74 0.733 0.533 0.71 0.756 0.756 0.504\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 64/250 16.1G 0.768 0.9412 0.8121 1.07 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.704 0.564 0.632 0.48 0.602 0.693 0.659 0.403\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 65/250 16G 0.7537 0.9747 0.8563 1.075 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.612 0.698 0.661 0.473 0.682 0.667 0.712 0.465\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 66/250 16.1G 0.7687 0.9667 0.761 1.091 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.764 0.752 0.786 0.576 0.792 0.762 0.816 0.558\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 67/250 15.9G 0.7569 0.9161 0.8021 1.052 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.634 0.677 0.685 0.498 0.684 0.713 0.768 0.519\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 68/250 16.1G 0.7413 0.9756 0.755 1.056 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.711 0.7 0.702 0.494 0.652 0.838 0.764 0.519\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 69/250 15.9G 0.7899 0.9368 0.7659 1.082 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.715 0.738 0.747 0.535 0.787 0.806 0.826 0.574\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 70/250 16.1G 0.742 0.9516 0.7595 1.055 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.799 0.744 0.802 0.568 0.769 0.79 0.822 0.548\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 71/250 16.1G 0.7438 0.9393 0.7228 1.05 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.739 0.721 0.742 0.521 0.754 0.735 0.787 0.541\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 72/250 16.1G 0.7286 0.8982 0.6969 1.017 27 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.68 0.812 0.725 0.527 0.714 0.878 0.802 0.532\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 73/250 15.9G 0.7215 0.8971 0.7234 1.034 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.66 0.767 0.737 0.549 0.78 0.726 0.769 0.535\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 74/250 16.1G 0.6882 0.8776 0.685 1.021 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.674 0.773 0.777 0.576 0.706 0.789 0.803 0.561\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 75/250 16.1G 0.7133 0.9498 0.7221 1.022 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.647 0.79 0.751 0.541 0.653 0.765 0.764 0.528\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 76/250 16.1G 0.7563 0.9928 0.7184 1.053 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.732 0.861 0.805 0.565 0.774 0.876 0.852 0.569\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 77/250 16.4G 0.7155 0.8752 0.7271 1.051 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.05it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.732 0.751 0.755 0.541 0.758 0.795 0.797 0.547\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 78/250 16.2G 0.7477 0.8937 0.7027 1.055 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.422 0.563 0.488 0.332 0.402 0.483 0.423 0.24\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 79/250 16.1G 0.7384 0.9354 0.7466 1.038 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.788 0.72 0.757 0.553 0.815 0.742 0.796 0.554\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 80/250 16G 0.7027 0.9004 0.7061 1.017 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.758 0.742 0.757 0.558 0.782 0.765 0.797 0.549\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 81/250 16G 0.6791 0.8811 0.6889 1.01 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.718 0.757 0.741 0.527 0.752 0.782 0.782 0.532\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 82/250 16.1G 0.7191 0.8712 0.6929 1.033 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.614 0.686 0.66 0.488 0.648 0.732 0.725 0.503\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 83/250 16.1G 0.7446 0.8957 0.6882 1.028 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.763 0.629 0.679 0.506 0.678 0.751 0.728 0.49\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 84/250 16.1G 0.6939 0.9169 0.6991 1.02 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.94it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.743 0.603 0.664 0.453 0.727 0.587 0.656 0.428\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 85/250 16G 0.7169 0.8748 0.6773 1.024 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.703 0.781 0.756 0.531 0.768 0.813 0.841 0.544\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 86/250 16.2G 0.6932 0.8987 0.6644 1.022 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.704 0.636 0.704 0.474 0.714 0.658 0.743 0.457\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 87/250 16.2G 0.6909 0.8566 0.6747 1.029 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.638 0.707 0.683 0.487 0.68 0.757 0.736 0.465\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 88/250 16G 0.7064 0.8794 0.683 1.051 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.756 0.69 0.727 0.523 0.779 0.712 0.759 0.535\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 89/250 15.9G 0.7204 0.8703 0.677 1.037 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.757 0.702 0.759 0.548 0.79 0.733 0.777 0.548\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 90/250 16G 0.6706 0.8815 0.6201 1.006 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.827 0.751 0.79 0.588 0.847 0.772 0.845 0.602\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 91/250 16.1G 0.6422 0.826 0.6011 1.003 19 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.768 0.767 0.801 0.581 0.781 0.782 0.822 0.586\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 92/250 16.1G 0.6419 0.7832 0.6159 0.9888 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.728 0.799 0.795 0.584 0.753 0.824 0.848 0.6\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 93/250 16G 0.6722 0.8562 0.5969 1.009 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.832 0.711 0.81 0.572 0.876 0.733 0.854 0.596\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 94/250 16G 0.6878 0.879 0.6461 1.019 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.802 0.834 0.836 0.582 0.815 0.849 0.848 0.601\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 95/250 16.1G 0.6784 0.8824 0.6685 1.025 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.697 0.839 0.782 0.553 0.724 0.869 0.831 0.542\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 96/250 16.1G 0.6273 0.8133 0.6036 0.9834 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.756 0.827 0.821 0.606 0.786 0.858 0.864 0.61\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 97/250 15.9G 0.653 0.8622 0.6135 0.9977 34 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.698 0.843 0.811 0.559 0.674 0.857 0.814 0.546\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 98/250 16G 0.6629 0.8591 0.6437 1.009 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.809 0.674 0.757 0.527 0.792 0.711 0.796 0.513\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 99/250 16G 0.6099 0.8104 0.6122 0.9909 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.733 0.767 0.746 0.541 0.805 0.843 0.809 0.564\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 100/250 16.1G 0.6786 0.8703 0.6423 1.017 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.828 0.713 0.755 0.581 0.837 0.72 0.772 0.542\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 101/250 15.9G 0.636 0.8059 0.6247 0.9942 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.716 0.792 0.74 0.536 0.732 0.832 0.781 0.527\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 102/250 16.1G 0.6215 0.8244 0.5926 0.9942 32 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.675 0.696 0.669 0.485 0.652 0.787 0.743 0.494\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 103/250 16G 0.6296 0.8052 0.5529 0.9906 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.706 0.788 0.755 0.542 0.719 0.803 0.796 0.548\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 104/250 16G 0.6312 0.8551 0.554 1.005 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.99it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.812 0.748 0.813 0.585 0.826 0.763 0.832 0.597\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 105/250 15.9G 0.6367 0.8014 0.5746 0.9921 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.833 0.767 0.817 0.583 0.875 0.805 0.867 0.564\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 106/250 16G 0.6381 0.8159 0.5948 0.9947 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.738 0.841 0.802 0.574 0.89 0.804 0.878 0.592\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 107/250 16.1G 0.6323 0.791 0.5838 1.004 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.723 0.757 0.752 0.546 0.741 0.772 0.777 0.523\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 108/250 16.1G 0.6381 0.8074 0.6075 1.013 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.717 0.772 0.735 0.534 0.746 0.794 0.78 0.544\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 109/250 16.4G 0.6651 0.8154 0.5986 1.024 34 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.764 0.803 0.798 0.543 0.773 0.809 0.815 0.562\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 110/250 16.1G 0.6493 0.8211 0.6136 0.9966 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.869 0.721 0.803 0.578 0.899 0.743 0.85 0.598\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 111/250 16.1G 0.6282 0.8159 0.5786 0.9826 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.734 0.856 0.822 0.623 0.748 0.853 0.85 0.612\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 112/250 16.1G 0.6241 0.7789 0.5977 0.9966 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.798 0.753 0.832 0.621 0.816 0.768 0.846 0.603\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 113/250 15.9G 0.6373 0.8008 0.6044 0.9997 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.784 0.825 0.844 0.624 0.801 0.84 0.863 0.632\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 114/250 16.2G 0.5964 0.8041 0.5835 0.9692 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.733 0.801 0.792 0.599 0.737 0.808 0.798 0.592\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 115/250 16.1G 0.6208 0.787 0.5779 0.9826 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.765 0.689 0.76 0.567 0.765 0.689 0.761 0.562\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 116/250 16.1G 0.6121 0.8037 0.5787 0.969 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.791 0.719 0.755 0.58 0.77 0.766 0.79 0.568\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 117/250 15.9G 0.6248 0.847 0.5528 1.018 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.815 0.726 0.797 0.598 0.834 0.741 0.822 0.591\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 118/250 16.1G 0.6365 0.8212 0.5737 1.003 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.801 0.722 0.784 0.574 0.81 0.739 0.811 0.565\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 119/250 15.9G 0.6049 0.8076 0.6184 0.9922 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.826 0.71 0.793 0.598 0.818 0.707 0.802 0.587\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 120/250 16G 0.5967 0.763 0.5698 0.9803 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.753 0.751 0.769 0.568 0.818 0.826 0.835 0.592\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 121/250 16.5G 0.6097 0.7908 0.5864 0.9685 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.743 0.778 0.79 0.577 0.778 0.827 0.831 0.589\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 122/250 16.1G 0.571 0.7604 0.5569 0.9744 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.761 0.795 0.802 0.587 0.814 0.841 0.838 0.605\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 123/250 16.1G 0.5562 0.7253 0.4942 0.9557 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.828 0.774 0.815 0.582 0.863 0.804 0.854 0.607\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 124/250 16.1G 0.5618 0.7277 0.5069 0.9583 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.799 0.789 0.823 0.616 0.812 0.804 0.85 0.622\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 125/250 15.9G 0.6165 0.79 0.5483 0.9724 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.828 0.85 0.863 0.662 0.928 0.809 0.912 0.65\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 126/250 16.1G 0.5726 0.7661 0.5316 0.9696 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.847 0.784 0.817 0.612 0.838 0.776 0.84 0.617\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 127/250 16.1G 0.5976 0.7954 0.5582 0.9768 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.813 0.791 0.815 0.578 0.789 0.808 0.817 0.591\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 128/250 16.2G 0.5814 0.7592 0.5377 0.9728 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.731 0.807 0.797 0.595 0.762 0.837 0.852 0.588\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 129/250 16.5G 0.6073 0.7822 0.5824 0.9634 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.782 0.822 0.824 0.608 0.806 0.843 0.869 0.602\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 130/250 16.1G 0.5827 0.7552 0.5618 0.9934 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.768 0.812 0.818 0.604 0.8 0.842 0.869 0.608\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 131/250 16G 0.5697 0.7427 0.5289 0.9687 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.673 0.833 0.801 0.611 0.723 0.901 0.881 0.611\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 132/250 16G 0.578 0.7495 0.5024 0.947 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.94it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.792 0.727 0.79 0.611 0.813 0.755 0.833 0.596\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 133/250 15.9G 0.538 0.6965 0.4727 0.9626 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.731 0.727 0.77 0.588 0.766 0.763 0.814 0.576\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 134/250 16.1G 0.5667 0.767 0.4992 0.9859 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.722 0.721 0.756 0.572 0.806 0.671 0.79 0.564\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 135/250 16G 0.5969 0.7568 0.5374 0.9883 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.847 0.75 0.829 0.606 0.83 0.832 0.856 0.591\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 136/250 16G 0.5573 0.726 0.5019 0.9573 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.774 0.788 0.816 0.58 0.788 0.803 0.833 0.556\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 137/250 15.9G 0.5858 0.7446 0.5006 0.9744 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.745 0.802 0.778 0.573 0.766 0.825 0.803 0.588\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 138/250 16.2G 0.534 0.682 0.4582 0.9432 34 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.785 0.784 0.772 0.569 0.81 0.806 0.828 0.586\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 139/250 16.2G 0.5321 0.6929 0.4482 0.9345 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.744 0.685 0.709 0.523 0.782 0.724 0.758 0.515\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 140/250 16G 0.5546 0.7373 0.4968 0.9643 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.801 0.743 0.787 0.589 0.847 0.78 0.822 0.58\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 141/250 16.5G 0.5421 0.7479 0.486 0.9563 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.834 0.769 0.788 0.589 0.85 0.784 0.802 0.589\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 142/250 16G 0.5651 0.7757 0.5347 0.9577 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.818 0.796 0.799 0.602 0.837 0.83 0.837 0.603\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 143/250 16G 0.5354 0.7457 0.5195 0.9599 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.773 0.759 0.78 0.581 0.814 0.787 0.812 0.572\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 144/250 16G 0.5464 0.7208 0.4908 0.9485 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.875 0.714 0.785 0.597 0.831 0.832 0.85 0.614\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 145/250 15.8G 0.5345 0.7112 0.4685 0.9259 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.875 0.795 0.831 0.629 0.899 0.818 0.866 0.633\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 146/250 16.1G 0.5634 0.7171 0.5122 0.9496 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.814 0.771 0.791 0.578 0.831 0.786 0.818 0.585\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 147/250 16.1G 0.5459 0.7395 0.5213 0.9465 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.874 0.732 0.793 0.589 0.887 0.796 0.864 0.598\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 148/250 16G 0.5348 0.6739 0.5014 0.9439 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.84 0.759 0.811 0.587 0.826 0.812 0.838 0.588\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 149/250 15.9G 0.536 0.6811 0.4909 0.9511 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.711 0.787 0.769 0.593 0.768 0.836 0.839 0.579\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 150/250 16.1G 0.5019 0.6601 0.4431 0.9197 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.714 0.807 0.791 0.588 0.762 0.863 0.865 0.604\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 151/250 16.1G 0.5443 0.7186 0.4923 0.9607 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.832 0.741 0.786 0.585 0.856 0.764 0.804 0.579\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 152/250 16.1G 0.5315 0.7334 0.4893 0.9401 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.773 0.787 0.78 0.589 0.814 0.773 0.803 0.583\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 153/250 16G 0.4968 0.7299 0.4498 0.9382 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.815 0.65 0.743 0.562 0.79 0.626 0.719 0.505\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 154/250 16.1G 0.5211 0.766 0.4485 0.9514 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.15it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.802 0.804 0.82 0.622 0.816 0.819 0.851 0.628\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 155/250 16.1G 0.5401 0.7218 0.4686 0.9461 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:01<00:00, 1.98it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.852 0.773 0.832 0.614 0.851 0.789 0.844 0.616\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 156/250 16.1G 0.5234 0.7201 0.4761 0.9466 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.858 0.753 0.832 0.624 0.879 0.789 0.877 0.627\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 157/250 15.9G 0.5327 0.7182 0.4858 0.9371 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.752 0.803 0.83 0.619 0.779 0.859 0.857 0.633\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 158/250 16.1G 0.516 0.6882 0.4742 0.9354 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.854 0.773 0.829 0.619 0.876 0.796 0.87 0.612\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 159/250 16.1G 0.504 0.6868 0.4516 0.9297 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.816 0.793 0.8 0.607 0.809 0.831 0.827 0.596\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 160/250 16.2G 0.487 0.6575 0.4511 0.9146 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.776 0.811 0.793 0.627 0.798 0.859 0.828 0.611\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 161/250 16.5G 0.521 0.742 0.4816 0.9529 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.823 0.798 0.817 0.616 0.841 0.812 0.844 0.606\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 162/250 16G 0.5237 0.6684 0.4488 0.943 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.774 0.885 0.844 0.647 0.796 0.92 0.882 0.633\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 163/250 16.1G 0.4949 0.637 0.4487 0.9223 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.822 0.775 0.794 0.623 0.824 0.847 0.855 0.612\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 164/250 16.1G 0.494 0.6542 0.4252 0.9321 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.751 0.803 0.807 0.63 0.742 0.845 0.828 0.613\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 165/250 16G 0.4844 0.649 0.4157 0.9221 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.795 0.812 0.811 0.609 0.817 0.835 0.85 0.6\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 166/250 16.1G 0.5065 0.7175 0.4721 0.9483 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.835 0.769 0.825 0.646 0.903 0.751 0.843 0.641\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 167/250 16.1G 0.4833 0.6918 0.4626 0.9183 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.837 0.776 0.835 0.632 0.853 0.791 0.849 0.622\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 168/250 16.1G 0.4763 0.6805 0.4406 0.9167 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.789 0.739 0.779 0.605 0.82 0.755 0.799 0.579\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 169/250 16.4G 0.4827 0.6788 0.4191 0.9278 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.829 0.787 0.794 0.633 0.848 0.802 0.813 0.605\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 170/250 16.1G 0.4882 0.6727 0.4286 0.9264 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.755 0.807 0.795 0.615 0.78 0.829 0.825 0.621\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 171/250 16G 0.4689 0.6554 0.4383 0.9131 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.806 0.742 0.78 0.62 0.849 0.78 0.84 0.589\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 172/250 16.1G 0.4618 0.6414 0.4388 0.9192 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.844 0.744 0.793 0.619 0.835 0.788 0.839 0.597\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 173/250 16G 0.4662 0.6223 0.4237 0.9178 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.774 0.78 0.796 0.622 0.809 0.814 0.838 0.606\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 174/250 16G 0.4839 0.6377 0.451 0.9344 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.808 0.772 0.82 0.633 0.857 0.796 0.864 0.605\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 175/250 16G 0.4778 0.6709 0.4201 0.9343 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.816 0.788 0.829 0.635 0.854 0.826 0.872 0.631\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 176/250 16.2G 0.4464 0.6355 0.4238 0.91 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.822 0.799 0.823 0.637 0.837 0.814 0.844 0.627\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 177/250 16G 0.4741 0.6586 0.4057 0.9172 30 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.829 0.765 0.813 0.624 0.863 0.794 0.847 0.615\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 178/250 16.1G 0.4863 0.6708 0.4205 0.9374 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.717 0.848 0.82 0.653 0.752 0.886 0.859 0.646\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 179/250 16G 0.4722 0.6489 0.419 0.9313 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.822 0.769 0.836 0.665 0.91 0.793 0.873 0.651\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 180/250 16.1G 0.4754 0.6436 0.399 0.9252 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.809 0.772 0.845 0.66 0.836 0.813 0.884 0.67\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 181/250 16G 0.4622 0.6511 0.3966 0.9136 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.06it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.836 0.775 0.822 0.64 0.841 0.826 0.868 0.64\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 182/250 16.1G 0.4795 0.6705 0.4126 0.9318 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.845 0.783 0.825 0.645 0.863 0.806 0.853 0.641\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 183/250 16.1G 0.4556 0.6119 0.401 0.9127 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.826 0.756 0.833 0.657 0.835 0.858 0.88 0.639\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 184/250 16G 0.4506 0.6301 0.3961 0.9056 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.734 0.818 0.823 0.63 0.772 0.833 0.841 0.614\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 185/250 16.4G 0.4511 0.6097 0.3816 0.9117 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.821 0.784 0.823 0.655 0.862 0.856 0.874 0.646\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 186/250 16G 0.4259 0.6102 0.4069 0.8978 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.75 0.813 0.802 0.61 0.792 0.858 0.85 0.596\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 187/250 16.1G 0.4424 0.5858 0.3627 0.9061 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.815 0.759 0.811 0.608 0.849 0.807 0.845 0.597\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 188/250 16G 0.4448 0.5761 0.3964 0.9109 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.859 0.749 0.819 0.63 0.861 0.825 0.845 0.603\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 189/250 15.9G 0.4491 0.6388 0.3938 0.9225 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.733 0.772 0.799 0.624 0.78 0.817 0.835 0.608\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 190/250 16.1G 0.4212 0.5905 0.377 0.8867 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.07it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.805 0.79 0.817 0.644 0.834 0.82 0.852 0.636\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 191/250 16.1G 0.4516 0.6588 0.3921 0.9064 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.783 0.82 0.829 0.654 0.835 0.832 0.873 0.652\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 192/250 16G 0.4401 0.6079 0.3984 0.8996 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.827 0.847 0.871 0.681 0.855 0.877 0.905 0.68\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 193/250 15.9G 0.4403 0.6481 0.3904 0.9113 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.829 0.834 0.855 0.657 0.843 0.848 0.879 0.654\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 194/250 16.2G 0.4132 0.6075 0.3751 0.8931 7 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.15it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.77 0.807 0.842 0.66 0.799 0.837 0.868 0.657\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 195/250 16G 0.431 0.648 0.3757 0.9013 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.854 0.735 0.826 0.656 0.888 0.764 0.849 0.625\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 196/250 16.1G 0.4392 0.6425 0.3911 0.9117 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.844 0.796 0.835 0.644 0.86 0.812 0.863 0.626\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 197/250 15.9G 0.4226 0.6288 0.4081 0.9121 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.799 0.806 0.825 0.638 0.837 0.842 0.865 0.621\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 198/250 16G 0.4294 0.5937 0.3852 0.915 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.791 0.802 0.853 0.67 0.808 0.817 0.881 0.649\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 199/250 16.1G 0.4417 0.6494 0.3946 0.9144 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.86 0.776 0.85 0.654 0.878 0.791 0.875 0.647\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 200/250 16G 0.427 0.6305 0.3914 0.9074 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.874 0.81 0.832 0.65 0.886 0.833 0.874 0.633\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 201/250 16G 0.4323 0.6041 0.414 0.9081 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.881 0.779 0.846 0.652 0.886 0.825 0.886 0.624\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 202/250 16G 0.4018 0.5974 0.3587 0.8989 29 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.854 0.801 0.836 0.65 0.881 0.834 0.87 0.629\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 203/250 16G 0.403 0.5756 0.3506 0.89 15 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.887 0.778 0.853 0.679 0.923 0.808 0.883 0.657\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 204/250 16G 0.3891 0.5746 0.3367 0.883 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.892 0.797 0.849 0.674 0.875 0.847 0.879 0.668\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 205/250 16.4G 0.399 0.5594 0.3613 0.8954 5 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.847 0.829 0.829 0.646 0.883 0.858 0.871 0.657\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 206/250 16G 0.3981 0.6038 0.353 0.896 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.16it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.838 0.812 0.837 0.658 0.875 0.842 0.875 0.648\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 207/250 16G 0.4005 0.5789 0.3473 0.8988 21 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.832 0.864 0.841 0.665 0.865 0.892 0.882 0.635\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 208/250 16.1G 0.4064 0.6049 0.3345 0.8931 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.83 0.817 0.827 0.664 0.853 0.839 0.855 0.631\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 209/250 15.9G 0.3752 0.5874 0.3434 0.8888 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.812 0.798 0.814 0.642 0.86 0.824 0.85 0.619\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 210/250 16.1G 0.4016 0.6042 0.3604 0.888 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.836 0.75 0.815 0.643 0.863 0.846 0.867 0.626\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 211/250 16.1G 0.3954 0.5798 0.3722 0.8927 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.797 0.822 0.834 0.639 0.829 0.851 0.871 0.625\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 212/250 16.1G 0.388 0.5937 0.3456 0.8731 14 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.825 0.776 0.826 0.639 0.863 0.805 0.867 0.63\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 213/250 15.9G 0.3872 0.5849 0.3376 0.8874 22 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.799 0.813 0.83 0.657 0.831 0.842 0.866 0.631\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 214/250 16.1G 0.3963 0.5939 0.3512 0.8904 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.15it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.841 0.783 0.814 0.649 0.873 0.813 0.849 0.632\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 215/250 16.2G 0.3739 0.5667 0.3306 0.8724 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.867 0.773 0.802 0.631 0.881 0.808 0.857 0.624\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 216/250 16G 0.3834 0.5473 0.3317 0.8933 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.873 0.773 0.832 0.667 0.909 0.803 0.892 0.656\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 217/250 15.9G 0.3776 0.5553 0.3362 0.8871 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.876 0.76 0.835 0.671 0.864 0.815 0.869 0.651\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 218/250 16G 0.3825 0.569 0.3288 0.8909 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.777 0.811 0.821 0.656 0.834 0.859 0.873 0.639\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 219/250 16G 0.37 0.5335 0.328 0.8635 25 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.833 0.823 0.844 0.671 0.873 0.861 0.9 0.674\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 220/250 16G 0.3885 0.5747 0.3463 0.8746 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.801 0.874 0.854 0.691 0.828 0.905 0.889 0.664\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 221/250 16.1G 0.3599 0.5332 0.3236 0.8767 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.809 0.836 0.833 0.68 0.838 0.864 0.876 0.667\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 222/250 16.1G 0.3703 0.5643 0.3244 0.8802 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.829 0.797 0.817 0.67 0.862 0.827 0.858 0.634\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 223/250 16.2G 0.3772 0.5793 0.3341 0.8826 9 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.789 0.822 0.808 0.659 0.873 0.806 0.852 0.644\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 224/250 16.1G 0.3716 0.5537 0.3264 0.8867 23 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.831 0.79 0.794 0.636 0.862 0.82 0.835 0.628\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 225/250 16.4G 0.3723 0.5625 0.3362 0.8953 17 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.09it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.809 0.802 0.811 0.645 0.839 0.833 0.847 0.634\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 226/250 16.1G 0.3744 0.5416 0.3225 0.897 10 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.15it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.815 0.805 0.832 0.658 0.831 0.82 0.852 0.641\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 227/250 16.1G 0.3573 0.5255 0.3123 0.8837 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.823 0.801 0.825 0.643 0.839 0.817 0.849 0.636\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 228/250 16G 0.3615 0.5508 0.3061 0.8877 13 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.87 0.782 0.805 0.64 0.87 0.819 0.845 0.639\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 229/250 16.4G 0.347 0.5338 0.3166 0.8702 12 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.898 0.776 0.815 0.647 0.908 0.817 0.849 0.64\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 230/250 16.1G 0.371 0.5723 0.3405 0.886 20 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.875 0.764 0.818 0.661 0.823 0.85 0.847 0.643\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 231/250 16G 0.3482 0.5371 0.3087 0.8706 28 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.875 0.768 0.81 0.657 0.886 0.793 0.841 0.634\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 232/250 16.1G 0.3421 0.5164 0.3162 0.8721 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.859 0.77 0.822 0.669 0.877 0.785 0.849 0.646\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 233/250 15.9G 0.3649 0.5713 0.3601 0.887 30 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.876 0.743 0.819 0.665 0.895 0.758 0.849 0.64\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 234/250 16.1G 0.3468 0.5432 0.3231 0.8714 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.868 0.766 0.823 0.669 0.886 0.781 0.858 0.64\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 235/250 16.1G 0.3635 0.5703 0.3227 0.874 24 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.877 0.762 0.838 0.678 0.834 0.839 0.873 0.652\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 236/250 16G 0.3527 0.5339 0.3093 0.8885 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.838 0.788 0.834 0.676 0.869 0.818 0.868 0.655\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 237/250 15.9G 0.3412 0.5151 0.3019 0.8697 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.863 0.772 0.837 0.673 0.864 0.823 0.868 0.652\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 238/250 16.2G 0.3406 0.5351 0.3043 0.8855 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.831 0.822 0.837 0.667 0.872 0.827 0.881 0.647\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 239/250 16G 0.3355 0.5274 0.2868 0.8814 16 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.852 0.804 0.851 0.675 0.867 0.819 0.875 0.664\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 240/250 16.1G 0.3462 0.5349 0.3014 0.8836 11 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.11it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.852 0.799 0.861 0.687 0.867 0.814 0.874 0.667\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "Closing dataloader mosaic\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, method='weighted_average', num_output_channels=3), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))\n", "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 241/250 16.5G 0.2986 0.4703 0.2881 0.8683 5 800: 100%|██████████| 21/21 [00:20<00:00, 1.01it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.828 0.836 0.854 0.674 0.843 0.85 0.875 0.661\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 242/250 16G 0.2988 0.461 0.2642 0.8656 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.795 0.836 0.836 0.665 0.807 0.852 0.863 0.657\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 243/250 16G 0.2751 0.4592 0.2384 0.8391 2 800: 100%|██████████| 21/21 [00:18<00:00, 1.11it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.819 0.815 0.839 0.665 0.834 0.83 0.865 0.653\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 244/250 15.9G 0.2949 0.4752 0.2503 0.8615 6 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.858 0.843 0.848 0.668 0.873 0.858 0.873 0.658\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 245/250 16.4G 0.2744 0.4605 0.2495 0.8336 8 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.08it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.827 0.841 0.85 0.679 0.842 0.856 0.875 0.662\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 246/250 16G 0.2791 0.4579 0.2477 0.8525 2 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.859 0.796 0.843 0.684 0.876 0.811 0.877 0.665\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 247/250 15.9G 0.2729 0.4675 0.2586 0.8458 18 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.14it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.848 0.8 0.847 0.684 0.828 0.866 0.882 0.669\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 248/250 16.1G 0.2885 0.4622 0.25 0.8566 1 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.01it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.865 0.781 0.847 0.693 0.83 0.866 0.883 0.67\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 249/250 16.3G 0.2575 0.4467 0.229 0.8422 4 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.10it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.86 0.792 0.845 0.691 0.861 0.836 0.88 0.67\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", " Epoch GPU_mem box_loss seg_loss cls_loss dfl_loss Instances Size\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 250/250 16.1G 0.2698 0.4407 0.2504 0.8454 26 800: 100%|██████████| 21/21 [00:19<00:00, 1.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 2/2 [00:00<00:00, 2.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 40 81 0.863 0.795 0.847 0.693 0.857 0.837 0.881 0.67\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n", "250 epochs completed in 1.533 hours.\n", "Optimizer stripped from /content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16/weights/last.pt, 92.3MB\n", "Optimizer stripped from /content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16/weights/best.pt, 92.3MB\n", "\n", "Validating /content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16/weights/best.pt...\n", "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "YOLOv8l-seg summary (fused): 125 layers, 45,914,201 parameters, 0 gradients, 220.1 GFLOPs\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\r Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 0%| | 0/2 [00:00\n", "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)', 'Precision-Recall(M)', 'F1-Confidence(M)', 'Precision-Confidence(M)', 'Recall-Confidence(M)']\n", "curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0.021054, 0.010527, 0],\n", " [ 1, 1, 1, ..., 0.63636, 0.63636, 0],\n", " [ 1, 1, 1, ..., 0.0071039, 0.0035519, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.62774, 0.62774, 0.68711, ..., 0, 0, 0],\n", " [ 0.50909, 0.50909, 0.56903, ..., 0, 0, 0],\n", " [ 0.47619, 0.47619, 0.59005, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.46739, 0.46739, 0.54368, ..., 1, 1, 1],\n", " [ 0.34146, 0.34146, 0.39765, ..., 1, 1, 1],\n", " [ 0.32258, 0.32258, 0.43677, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.95556, 0.95556, 0.93333, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.90909, 0.90909, 0.90909, ..., 0, 0, 0]]), 'Confidence', 'Recall'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0.021054, 0.010527, 0],\n", " [ 1, 1, 1, ..., 0.63636, 0.63636, 0],\n", " [ 1, 1, 1, ..., 0.014918, 0.0074591, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.62774, 0.62774, 0.70347, ..., 0, 0, 0],\n", " [ 0.50909, 0.50909, 0.56903, ..., 0, 0, 0],\n", " [ 0.5, 0.5, 0.61955, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.46739, 0.46739, 0.55663, ..., 1, 1, 1],\n", " [ 0.34146, 0.34146, 0.39765, ..., 1, 1, 1],\n", " [ 0.33871, 0.33871, 0.45861, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.95556, 0.95556, 0.95556, ..., 0, 0, 0],\n", " [ 1, 1, 1, ..., 0, 0, 0],\n", " [ 0.95455, 0.95455, 0.95455, ..., 0, 0, 0]]), 'Confidence', 'Recall']]\n", "fitness: np.float64(1.402305849447365)\n", "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', 'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']\n", "maps: array([ 1.2353, 1.6092, 1.2376])\n", "names: {0: 'red_spiral', 1: 'curved_green_stripe', 2: 'thin_red_stripe'}\n", "nt_per_class: array([45, 14, 22])\n", "nt_per_image: array([ 8, 14, 17])\n", "results_dict: {'metrics/precision(B)': np.float64(0.826940719694793), 'metrics/recall(B)': np.float64(0.8473028606709162), 'metrics/mAP50(B)': np.float64(0.8713851175641324), 'metrics/mAP50-95(B)': np.float64(0.680615555801979), 'metrics/precision(M)': np.float64(0.8555622972700969), 'metrics/recall(M)': np.float64(0.8774787797357243), 'metrics/mAP50(M)': np.float64(0.9053461901368953), 'metrics/mAP50-95(M)': np.float64(0.6800874649505345), 'fitness': np.float64(1.402305849447365)}\n", "save_dir: PosixPath('/content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16')\n", "seg: ultralytics.utils.metrics.Metric object\n", "speed: {'preprocess': 0.26829759999600356, 'inference': 17.56487192496934, 'loss': 0.00040727500163484365, 'postprocess': 1.4331795749058074}\n", "stats: {'tp': [], 'conf': [], 'pred_cls': [], 'target_cls': [], 'target_img': [], 'tp_m': []}\n", "task: 'segment'" ] }, "metadata": {}, "execution_count": 11 } ] }, { "cell_type": "code", "source": [ "evaluate_yolo_box_seg(\n", "\"/content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16/weights/best.pt\",\n", "data_path+\"/data.yaml\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "D7ZvrLSP0FTf", "outputId": "66a3d9ca-e4a5-4c3e-b35f-5a2e96f35761" }, "execution_count": 12, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics 8.3.174 🚀 Python-3.11.13 torch-2.6.0+cu124 CUDA:0 (NVIDIA L4, 22693MiB)\n", "YOLOv8l-seg summary (fused): 125 layers, 45,914,201 parameters, 0 gradients, 220.1 GFLOPs\n", "\u001b[34m\u001b[1mval: \u001b[0mFast image access ✅ (ping: 0.4±0.1 ms, read: 0.3±0.3 MB/s, size: 351.0 KB)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/drive/MyDrive/Repair Project/report/data/3c/test/labels... 39 images, 18 backgrounds, 0 corrupt: 100%|██████████| 39/39 [00:09<00:00, 3.92it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/drive/MyDrive/Repair Project/report/data/3c/test/labels.cache\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n", " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:02<00:00, 1.20it/s]\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ " all 39 48 0.811 0.895 0.898 0.716 0.811 0.895 0.898 0.692\n", "Speed: 5.7ms preprocess, 27.4ms inference, 0.0ms loss, 3.4ms postprocess per image\n", "Results saved to \u001b[1mruns/segment/val4\u001b[0m\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "{'box_precision': 0.8112426209553462,\n", " 'box_recall': 0.8952811615422949,\n", " 'box_map50': 0.8977972515998317,\n", " 'seg_precision': 0.8112426209553462,\n", " 'seg_recall': 0.8952811615422949,\n", " 'seg_map50': 0.8977972515998317}" ] }, "metadata": {}, "execution_count": 12 } ] }, { "cell_type": "code", "source": [ "from ultralytics import YOLO\n", "import matplotlib.pyplot as plt\n", "\n", "masks = get_yolo_masks(\n", " weights_path=\"/content/drive/MyDrive/Repair Project/report/results/training/3c/train_250_800_16/weights/best.pt\",\n", " image_path=\"/content/drive/MyDrive/Repair Project/report/data/3c/test/images/RPf_00481.png\"\n", " )\n", "\n", "plot_masks(masks)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 807 }, "id": "tFYPGJggxC9j", "outputId": "d24649a1-d801-4c59-9073-38790c2ee158" }, "execution_count": 8, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAMWCAYAAADLajMwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVvVJREFUeJzt3XeYVdWh/vF3nzJ9mBnK0HtHUOkdwRpQxF6jscSbaHq8N8lNbm7yS26KuclNTE+MJXbFjqKIioUOIkhHem8zTC+n7d8fKBEp087Za+99vp/n4XmcM+es9Q7IzMva66xt2bZtCwAAACkVMB0AAAAgHVC6AAAAHEDpAgAAcAClCwAAwAGULgAAAAdQugAAABxA6QIAAHAApQsAAMABlC4AAAAHhBr7xDusO1KZAwAAwLPus+9r8DmsdAEAADiA0gUAAOAAShcAAIADKF0AAAAOaPRGegBwMyuQUH6nStMxTlBbmq1oTYbpGABcgNIFwBeyiup0zTMzTcc4wbwfTdaWOX1MxwDgAlxeBAAAcAClCwAAwAGULgCeFwjF1W38TtMxAOC0KF0APC+UHdPE7883HQMATovSBcDTrGBCAy9fbzrGSe1d3lHlOwpMxwDgEpQuAJ4WCCU08q7lpmOc1La3eurwhnamYwBwCUoXAM+yAgmNvGuZ6RgntXN+Vx34sL3pGABchNIFwLOsgK3B1641HeMEuxZ20fK/jlDp5jamowBwEUoXAG+ybE3+f2+bTnFSJZvaULgAnIDSBcCzep23zXSEE+x4r5s+mt3XdAwALkTpAuBBti75y8umQ5xU1b48le8sNB0DgAtRugB4UvuzDpiOcIId73XTh4+eaToGAJeidAHwnCufeNZ0hJOqL89U9cE80zEAuBSlC4DnFHYvk2WZTnG8XYu6aMnvR5uOAcDFKF0APOX6WY9LLitckhSrC6m+Ist0DAAuFjIdAAAa68bZjyqrqM51q1wA0BisdAHwjHBO1JWFa8+yTpr3wymmYwBwOUoXAE/4/JxHFMyMm45xUnbCUiIWNB0DgMtRugB4QiCYcOUql21Lsk2nAOAFlC4ArmcFEqYjnNLB1cV67ZufMx0DgAdQugC43g0vP66MvKjpGKfhwiU4AK5D6QLgaqHsqGs7jZ04elQEADQGpQuAa2Xk1+uqJ59RdlGd6SgnVbqltV79+jTTMQB4BKULgGtdet9LymtfbToGACQFpQuAK+V1rFQg7N4N9PFoQFX7uM8igMajdAFwpfN+/qZada40HeOUqvblae53LjQdA4CHULoAuE7rviUK57j33YrxSECH1rUzHQOAx/C2GwCu0nbgIU36r3dV2L3cdJRTqivL0ts/5rY/AJqG0gWg0TqP2q3MgvqTfm7r3F5q6dkOxUMOaNy/L1Tr3kdaNE4qxSMB7Xi3u+kYADyI0gWgQZ1H71Z+x0qdedOHp9xntfWNXi26HU6Hs/dp9NeXqG3/kuYP4oBoTVgLfz3edAwAHkTpAnBaXcbu0uivLVFRr7KUztNn6ma1G3Q4pXMAgEmULgCn1HX8To28c1nKC1eXMbvUdoD7C1c8EtCqh88yHQOAR1G6AJyg08g96jZ+pzoO36fWfVK/v6rTyL2uv6woSYlYQKsfP9N0DAAeRekCcJxOI/Zo1FeWqu0AZ0pQt4k71GXMbkfmaolEzNKCX7GXC0DzUboAHKewR5lzhWvCDo28a5mKepY5Ml9L2AlLm1/razoGAA+jdAE4ptPIPRp45XpH5uoyZpdGfW2pq8/j+oSdkObcfZHpGAA8jtIFQJLUYeg+jf/OAhV0rXBkvpx2NZ4oXJJk25b2LutsOgYAj+M2QAAkSVkFdY4Vrs6jd2v4He87MldL2bb0/M2Xm44BwAcoXQBa7JnrrmzSwagZeRHlFtekLlCSHdlSZDoCAB+gdAFQh6H7NPH77zX79RW7W6mxtwDqOHyvJnx3frPnAgCvYk8XAAXDcWW2ijTrtU9cep0Sscb9+6148AFd8Ku5ysiNNmsuEx696PNq6T0lAUCidAFoofqKTDWmlLTuW6Jpf5qtUGY89aGS6OjXBwAtR+kC0GyPTbtBsbqGv40UdCvTZQ++oECoBXfENuDBc24xHQGAj7CnC0Cz2LYUjwbV8CrX0aLltcJl21IiGhCXFgEkCytdgOvYJ/85b0tuKgBPTL9ekcqMBp5lK69Dla566hlHMiXTg5NulZ3g36UAkofSBbhMYc8yXfXEsyc8vuqRM7XsT6MMJDo527Z0+hJoK7tNra574SmnIiVNIuaecgvAP/hnHIAUsJXdulY3vvK46SDN8vAFNysRDZqOAcBnKF0Aki6YEdeNs71ZuOobvGQKAM1D6QJcxAoklFVYd9LPhbOjCmV74Xyro6tcXvX0VdcoVhs2HQOAD1G6AJewAgm1P/OALvnLKyf9/KCr1mv4v72vcG7zDjFNpqoDubITJ9/t36prhSf3cUlS1f5TfV0A0HJspAeMslXU64gkKbOg/pSF6xNDrl+jRDSgVY+cpUhl8g7tjNaGVbU/V3kdqht8bvmuVpr9lWmqO5J9wueKeh3RlY8/l7RcTirf2UqzvjQ9qb+vAPBplC7AGFvFQw7q0vtmNelVZ938oRKxgNY8OVj1FVlJSXJwdXu985NzNPEH76lV58rjPlexJ191Zf+aZ95/T1H1wbwTxmg78JBmPPBiUvKYMOfui05aJAEgWShdgAEdh++VFbA17Q+vNuv1Q29bKdu2tPapM5JWvPat6KQF94zX2LsXqbB7uSSpbEeBFv56nPYu63za13YctlfT/jhblkevzB1c265RJ+sDQEvwXQZwWLcJO3TB/85tcUEZdvsHki2tfTp5xWvP0i5aN3OQxv37IknSvhUdFcqKKbtNjWpLco57bufRuxXMOHofxfN/8YYsD+8Qnf+LCao5lGs6BgCfo3QBDul1/hYFQglN+uG7SVsRGvbFD7RnaWcd+LBDcgaUVLajUIc3tlHb/iUaePkGDbx8g9Y8eYYOb2irXYu6qr48S90nbdekH76rzHzzm/pbateiLqpnHxcAB1C6gBTpee5WZRX96/iH0V9bolBWPOnz9Ji8XWU7ClVfnpzVrr3LOmvbmz3Vtn/JsccGX7dWkvThY0O06p9nafQ3lviicEnSBw8MVfWBE/eoAUCyUbqAJOo2cYeKeh59N+LAK9crr33D7wZsqSE3rNFHr/ZNWumSpINrinVgdbHaDzl43ONn3rhagWBCGXn+KFxb5vZSzaGchp8IAElA6QKSpPs52zXiy8tV1LPM8bnPuGatlv5xVNKK174VnbT8LyNUPPigep637aSrXn6w6eV+qtqfbzoGgDRB6QJaqMvYXeo2fqc6DttnpHBJUv/pmxQMxxWp+tctbBb9dqzsePN3t+9b0Un7VnRSYY+y40qXX2x4sb/KtheajgEgjVC6gBboPHq3Rt61TG36lpqOoj6f23Lcx4vvHSM7+VvIfGHDC/31wYPs5QLgLEoX0AzFQw7orJtWKb9zpVr3PmI6DprowOr2FC4AjqN0AU3UduAhTfjefMqWR62dOUi7F3cxHQNAGqJ0AU3Qum+JJv/47WMntsN7yncWnHDQKwA4gdIFNEJeh0pd+JvXFcqKnXBvQnjH2qcHacuc3qZjAEhTlC6gAdltajT977OUW1xjOgpaYP3zA/T+34crUsXp8wDMoHQBx7F1wyuPH/eIFbCV/amT5dPJyLuWqud520zHSIpIVQaFC4BRlC7gM3La1JqO4BrhnKhCmZw7AQDJ0PyTEwH42vB/W64Bl20wHSMpNrzQX+//bbjpGADSHKULwEkFQgkFQrbpGEmRiAeUiAVNxwCQ5ri8CPiEnbR+ZOusm1fpzJs+TNaAxti2tOX13lr4v+NMRwEAShfgFzOvuVoVu1p96hGrGaPYGnT1Oo24c7ms5rzcRWxb2vFOd739o8lq3u8FACQXpQvwgXj0k50CLSgXlq1+l2zSuLsXJSWTafve76g3vneB6RgAcAylC/CBF2+boYpdBc1+vRVIqNf5WzXpB+8lMZU5dkKK1fPtDYC78F0JSHNWMKHuk3Zoyk/eNh0laQ5vaKvX777IdAwAOA6lC/C42iNZSsSa/0bkdgMP6fxfvJnEROYk4pZqS7JVeyT7lM/JyKtXKDt2wuO1pdmy47yhG0DqULoAj3vju+erbFtRs14bCMeV2746yYnMqT6Qq6euuO6Ex8O5EWUXHT30duhtH6jvtM0nPGf216aqal+eKvfmy05QvgAkH6ULSFOBcFzdJ+7QeT97y3SUlAnnRpTfsVI9z9umobeuPO1zp/3hVUnSy3derP0rO0g273gEkFz8cw7wsCNbCxWpzmjy6wKhuLpP2qHzfu7vwjXwivW64tHnGyxcn3bJX15RpxF7JcsfB8MCcA9KF+Bhi+8doyNbWjfpNYFQXD3P2+bbFa5QdlRdxuzSwCvWa9RXljVrjGl/eFXdxu+URPECkDxcXgQ+Y+ubPY/9dzAjru4TdxpMk1xWMKE+n9usSf/lj6MhPiuUFdOAGRs05ptLWjzWhb+eqzd/cK62vdlTHK4KIBkoXcBxLL31g/OOfRTKjmri999T7wu2Gsx0cnuXd1TNoZwmvSaYEfdt4ZKk7NZ1SSlcnzjvZ2/p3ZyJ2jSrf9LGBJC+uLwInEasNqylfxhlOsZJrX9uoI5sbfylRSuQ0KAr16UwkT9N/P57OuOaNaZjAPABShfQgEh1htbOHGQ6RstYtobe/oFGfbV5e5zSmWVJo7+RvNUzAOmL0gU0IFqdobVPn2E6xnG2zO2lko/aNPr5lmVr2O0fpDCRv1mWrZFfWWo6BgCPY08X0Ai1pdn64IGzNfS2laajSJL2LOnc6HstTvjee+wDbyErIA25YbVCmTEt+r9xpuMA8ChWuoBGiFZnaNu8ng0/0WWm/OQt9Z+xUQNmbDQdJWnm/fdk2QZOcggEbQ28Yr0m/Kd/34gAILUoXUAjVe7N19I/jjQdQ+ufH6A9Szs36rk9z9smy0erXHO/e762zO2t1+++UHPuvtDx+QMhWz3O2e74vAD8gdIFNFK0OkMHVrc3HUNl2wpVfTCvwedN/cNsWQF/He65e3EXyba0a2E37VrQVa98ZZrjGTLyIjrvF284Pi8A76N0AU1QsqmNFv56rOkYp3TRb1/TZf98Xpf983l1Gr7XV6tcs750ieKR4KcesbTv/Y566Y7pjuYIhGx1m7BT598z19F5AXgfG+mBJojVhrXp5X6ygrbGfmux4/OvfXqQPnq17yk/37p3qXKLaxxMlHqvfGWaag7nqHxnwUluQm2pZFPj38WZLMFwQl3H7dIFv3pdc7/j/GVOAN7EShfQRLG6sDa8MEBLfu/8oal1ZVmKVGae9HMX//llZbepdThRar3ylWna/0EHle8oPEnhOipeH9SzN17hbDAdLV5dxu7W+b9kxQtA41C6gGaI14e07plBWv634aajHJPTtkaBoL/2cNUczpGdaOjblKXqg7mO5PmsYDihbhN26tyfvWlkfgDeQukCmikeCenDR87UBw+e7ch8a548Q6seOeukn7vkb7PUqkuFIzmc8vKdFx+9pOhygZCtHpO3a/KP55mOAsDl2NMFtEAiFtSKfwzTygfP1rh/X6j+l25KyTwbXuyvJX8YLTt+/L+TLvjf19V51B4Fw3FZPvon1OyvTdX+lR1OeUnRbQJBW70v3KIeU7Zr/bMDteT3Y0xHAuBClC6ghex4QPF4QO/9YqJC2TH1vmBrUsffMreX5v9ywgkFZMpP31K3CTt99Q7FeT+arK1ze8lOWPLaMfpWQAplxjX4ujU649q1WvbnkVr92JmmYwFwER/92xgwzLY074dT9I8xt2vfig5JHFcnXfGxAravCpdtS3bC+ngPV9O/MBOn1J+MFTi68jXqq0s18Ip1OvoHCACULiDJvLdC4wZ2Qnrv5xO1dW7vZr0+Upmpxy+5IcmpWsaypHH/sVB9pm6WFUiI8gWA0gXAqETM0uJ7x2jTrP6moySdZUmTf/SObl/4gLqM2a1gRuzYL0oYkH7Y0wWkQKwupEh1ODlj1fv3r2k8GtCKfwzT2qcGt3wwW4rWhBTOibV8rBT43O/mHPfxYxffoNqSHENpAJjg3+/mgEFzvv25lI0dyo4qlBlTMCOesjmcEKsP6sNHz9Sqf56dlPFqS3P07I1X6rrnn0rKeACQbJQuwEPCuRGN+eZi9Z+emqMpnBKrC2rdM4O04r7kHi5rxy3VHM5WTlt/ncwPwB/Y0wV4yJAbVnu+cEVrQlr//EAt/ePopI9dfTBPL3/5ElXuy0v62ADQUpQuAI6J1oS06eV+WnJv6g4PrdhdoDe/f17KxgeA5qJ0AXDM4Y1ttej/xqV8nmhNWCUftU75PADQFJQuwCPyO1eooGu56RjNFqkK6+CaYkfmKt9RqMW/41Y8ANyF0gV4RM8p29T7wuTeYsgpkeqw1j07SMv+NMqxOWtLs7V/ZXvH5gOAhlC6AKRUtCakNU8O1vK/jHR03rJtRVr9+BBH5wSA0+HICMADWvcpUYeh+03HaLJYXVCrHj5LKx8aajoKABjHShfgckW9SzXizuXqNn6X6ShNEo8EtPxvI4wWrrLthdr6Zk9j8wPAp1G6ABcr6lWqUV9d6rnClYhZWvy7MVrzhNnLe+U7C7Xjne5GMwDAJyhdgIvld6pU17G7TcdoskQ8oPXPDTIdQ5J0cE2xPprdx3QMAKB0AW5V1KtUZ928ynSMJkvELc374RTTMY6p3NvKsaMqAOB0KF2ACxV0K9Ok/3pX7c88aDpKs+x4t4fpCMfZOb+bNr7Uz3QMAGmOdy8CLpPXsVLn/fxNte5zxHSUJrNt6eUvXWI6xgmqD+apfGeB6RgA0hylC3CRnLbVmnrvqyroVmE6SvPY0sE1HEgKACfD5UXARQLhhHcLl8tteHGA1j0z0HQMAGmM0gW4RFZhrWbc/6LpGL4VqcxUfUWm6RgA0hilC3AJK2Aru3Wd6RgAgBShdAEukJFXr2uefdp0DN/74IGhemjyF7T5td6mowBIQ5QuwLBgZkw3vvqYwtkx01FazpJueftB0ylOKRELKlYX1js/OUfb3+akegDO4t2LgAsEwwnTEZLCso6+GUCyJVmm45ySnQjojf88/9jHlz/8vFr3KT3uOQ9NvkXxSFC3L7z/uMct935ZAFzOsm3bbswT77DuSHUWIO1YwYRum/+A736Qx+qDeuicW03HaIJTfRu0jvtcOCeqm994+OhnWnid4LGLb1BtSU7LBgHgGvfZ9zX4HC4vAsbYCoQSvitcn7CCXlq9s07x6/jPRWsydP+4L+qJGdebiQnA0yhdgBG2Qtkx3frOQ6aDpEQoM66bXn9EwUwf7FM7ga1QI7+ueDSgWF3wpL8ApB/2dAEGZORHdNPrj5iOkVIZuVFd98KTemzq501HSarMgnpd88zMRj138W/HaP1zg1KcCIBXULoAA26a84hvLyt+mhWwlVVYq7qybNNRksZOWKo53LivJ1bHt1gA/8J3BMBh+Z3S5zY/WQX1uuyhF/TkZf7ZAxWpzNTjl9xoOgYAD2JPF+Cwq5+e2eJ3vgEAvIdv/YCD2g44ZDoCAMAQShfgkA5D92n632cpEGrU0Xi+EcyIq3jwAdMxAMA4ShfgkAt+NVfBDC+dXZUc2a3rNOmH75qOAQDGUboAB/SYsk3BcNx0DACAQZQuwAHj/n2hQlmULgBIZ5QuIMUGXrFO4eyo6RgAAMM4pwtIocHXrdawL65QOMePt8MBADQFK11ACvWfsVEZeaxyAQAoXUDKDPvi+8ptV206BgDAJbi8CKTAiC8v08Ar17PKBQA4hpUuIAXan3lAmfkR0zFcI7e4WuO/O990DAAwitIFJNnory9Wm/4lpmO4Sjg7pnaDuAUSgPRG6QKSrKBbuTJyuawIADgepQsAAMABlC4gicZ/Z746j9pjOoYrte5dqvPvmWs6BgAYw7sXgSQZ881F6jd9k4Lh9LupdWMEQrYyW9WbjgEAxrDSBSRJKCtG4QIAnBKlCwAAwAGULiAJRn11ifrP2Gg6BgDAxShdQEtZtmRJlmU6CADAzShdQAsNvfUDnXnjatMxAAAuR+kCWiAQiivA5nkAQCNwZATQTIFwXENuWK2ht640HQUA4AGsdAHN1OeizRp553LTMTwlGI4rs6DOdAwAMILSBTRDKDuq7Na1pmN4TvHgQ5r8o7dNxwAAIyhdQDN0HbtLI+9ilauporUhVe7NNx0DAIygdAFwzOENbbXw1+NNxwAAIyhdQBNlFtSpTb8S0zEAAB5D6QKaqN3AQzr7llWmYwAAPIbSBTRBdusadR69x3QMAIAHUbqAJmjVtUJDrl9jOgYAwIMoXUAjZbeuUb+LN5mOAQDwKEoX0EjZbWrV/1JKFwCgeShdAAAADqB0AQAAOIDSBQAA4ABKF9AIucVVmvSDd03HAAB4GKULaIRgZlxtB3AKPQCg+ShdAAAADqB0AQ3IaVutS/7ysukYAACPo3QBDbACtnLa1pqO4Xmlm4s09z8uMB0DAIyhdAGnkdmqTlc9+YzpGL6QiAcUqco0HQMAjKF0AadjSeGcmOkUAAAfoHQBpxDOiejG2Y+ZjgEA8AlKF3AagaBtOoIv2LYkfisBpDlKF3BStiwKV9KU7yzQC7dcZjoGABhF6QJOIpgR181zHzEdw2cs0wEAwChKF4CUshNStCZsOgYAGEfpAk5gK6uwznQI36g+mKsXb73MdAwAMI7SBXyGFbB1/UtPmo4BAPAZShdwHFsF3ctNhwAA+BClC/iMq5541nQE30jELJVuaW06BgC4AqULQMrUV2bq9bsvMh0DAFyB0gV8Stfxu0xHAAD4FKULOMbWhb9+3XQI30jELG1/u4fpGADgGpQuACkRqw9pwT0TTMcAANegdAEfG3z9GtMRAAA+RukCPjbqq0tlcacaAECKULoAAAAcQOkCJE343nuyArbpGL4Rjwa04FfjTccAAFehdAGS+l78EZcWk8hOWNoyp4/pGADgKpQuAAAAB1C6kPam/mG2AsGE6RgAAJ+jdCHtFQ8+KIu/CUmTiFt68dYZpmMAgOvwowZpbcaDLyiUGTMdw3eObOUm1wDwWZQupLX8TpWscgEAHMGPGwBJYyekx6beaDoGALgSpQtp6+qZTyuzVb3pGL5TX5FlOgIAuBKlC2krlBXjbC4AgGMoXQCSwralBybcZjoGALgWpQvpyeKWP6lgJ1g6BIBToXQhLV0z82nltqsxHQMAkEYoXQCSIl4fNB0BAFyN0gUgKR6acoskLi8CwKlQupB2MgvqZAXZ0wUAcBalC2ln2h9nK79jlekYvlK5N890BABwPUoXgBabec3Vks2lRQA4HUoX0kphjyMKZXGD62Q6tL6tbAoXADSI0oW0MvEH76mga4XpGL7yyp0Xy47zrQQAGsJ3SgAAAAdQugAAABxA6QLQbBte7K9EjG8jANAYfLcE0GxL/zhKiRgn0QNAY1C6kDb6Td+ovA6czwUAMIPShbTR+4It3OQaAGAMpQtAsyz8zVjF6kKmYwCAZ1C6ADTLtrd6KhFlPxcANBalC0CTzfvRZNVXZJqOAQCeQukC0GQHVxezygUATUTpAtAkc797vqoP5pqOAQCeQ+kC0CQVu1txNhcANAOlC2njzR+cp0Pr25qOAQBIU5QupI1IZSa3rGmh2V+bqrJthaZjAIAn8RMIQKNFa8KyE3zbAIDm4LsnAACAAyhdSDu2bTqBN83+2lQdWtvOdAwA8CxKF9LKrDumq3Rza9MxvMmWJMt0CgDwLEoX0gyloTkSMUu2ze8dALQEpQtAg978/nna934n0zEAwNMoXUg70eqw7ITpFN4RrQkpzi1/AKDFKF1IOy9/eboq9+abjuEZC/53vHYv6mo6BgB4HqULwCnVHslStDpsOgYA+AKlC2mnoFuZAmGuLzbGin8M0453e5iOAQC+QOlC2jn3Z28pr3216RgAgDRD6QJwUuU7W6lqf57pGADgG5QuACe1cVZ/7VrQzXQMAPANShfSStfxO5XZqt50DNcr+ag1J/cDQJJRupBWzr5lJfu5GmHXwq4cEwEASUbpQtro87mPlFtM4WrIoXVttXc5p88DQLJRupA2+k77iFWuRji4tlh7l3U2HQMAfIfSBeCYA6uLteX13qZjAIAvUboAHFO+s0AHV7c3HQMAfInSBQAA4ABKFwBJ0r4POmjVP88yHQMAfIvSBUCSVFeWpfKdhaZjAIBvUboA6MCHxVr0f2NNxwAAX6N0AVC0NqyaQ7mmYwCAr1G6kDbe/P55OrS+rekYrnNofVu99YNzTccAAN+jdCFtRKoylYjxv/xnJWIBRaoyTccAAN/jJxCQxkq3FOmVOy82HQMA0gKlC0hjdsJSIhY0HQMA0gKlC2nENh3AVcp3tdLzN11uOgYApA1KF9LG1N+/qvZDDpqO4Qq2fXSVS7JMRwGAtEHpAtKMbUuVe/P1zLVXm44CAGmF0gWkmfryTD195bWmYwBA2qF0AWnEtqW68izTMQAgLVG6gDQSqw1xWREADKF0IS3ktKtWKCtmOoZRti2V7ywwHQMA0halC2lh3N0L1f7M9H7nYiIW0Au3cEQEAJhC6QLSgG1L+1d2MB0DANIapQtIA3bC0qtfm2Y6BgCkNUoX0sL+VR1UU5JtOoYRti1tfaOX6RgAkPZCpgMgPRT2OKIOZ+9v9us3vDCwRfOveWKIuo7dpZw2tS0ax4s2vDBAC+4ZbzoGAKQ9Shcc0f6sA5rwvQXNeq1tHy0O3LKmeY4WLn7vAMA0Li8CPvb+fcNMRwAAfIzSBfjYygfPFqtcAOAOlC7Ap977xQTZNoULANyC0oW0seL+YSrbkR4nss/70WRtfKm/ROkCANdgIz3SxoFVHVRfkWk6Rsq9+f1ztf3tHhQuAHAZVrqQVub/coIqduebjpFSe9/vJDvBX20AcBu+MyOtHNnSWtHasOkYKTP7a1MVqcwwHQMAcBKULsBHyrYXssoFAC7Fd2fAJ2Z96RLVpumtjgDACyhdgA+8fOfFOri6mFUuAHAx3r0IR2x6uZ+2zOl97OPx31mgvtM2G0zkH7O/NlX7V3bg3YoA4HL8sxiOsOMBxerCx369+z+T9MCEW7V7cWfT0TwvXh+kcAGAB1C6YISdCCgRC+q1b31O+1e2l23ruF+pMv3vL6l1n9LUTeAg25Ze++ZFOvBhe9NRAACNwOVFmGVbevnLlxz30I2zH1NWUZ2sZC/eWLZkKfnjGmDb0ls/OFe7F3cR91YEAG9gpQsuYB3367Fpn1e0JvlnaU2991W1H3Iw6eOa8N7PJmrbW71E4QIA76B0IS0EwnFZgRRet3RQPBpQIs5fXQDwGr5zIy2c+9O31GnEPtMxkmLpH0Zp86t9TccAADQRe7rgSrWl2YrVJud/z4y8egUz4kkZy7RoTUixOv7aAoAX8d0brjTz6muSMk5mQZ0m/ud76jpud1LGM+3DR8/UxpcGmI4BAGgGShd8K6uoVmO/tUg9Ju8wHSUp6soyVXuE2/wAgFdRuuBbg69bo94XbjUdIylqS7P0wQNDteH5gaajAACaidIFX8rrUKm8DlWmYyRFTUm2Vj18ltY9c4bpKACAFqB0wXfyO1Vo2B0r1OeiLaajJMW+9ztq7VODTccAALQQR0bAV/I7VWjYF1eo71R/3Ey76kDu0ZtZAwA8j5Uu+MaxwjXNH4Wr+mCOVj54tja8wD4uAPADShd8Ia9jpYbd4Z8VLkkq31VA4QIAH6F0wfNy21dp5J3LfPNORenoZcWNL/Y3HQMAkESULnhOKCuqUV9deuzj7Na16nnudnOBkqzmcLaW3Dv64xtaAwD8gtIFzwlmxDXoqvWmY6RMfUUmhQsAfIh3LwIuUluapYW/GWc6BgAgBVjpAlyiviJDc797gQ6ubm86CgAgBShdgAtEa0Ka/dVpKtnU1nQUAECKULoAw2L1Qb1w62Uq31FoOgoAIIXY0wWYZovCBQBpgJUueE59ZaYem3bDsY/b9C/R5347x2Ci5kvELD15+XWmYwAAHMBKF7zHtlRbmnPs154lnTX3O+ebTtVkdkJ69HOfV92RbNNRAAAOYKULnmcnAorWhk3HaBLblh6acovi9fwVBIB0wXd8+MLe5Z30xn+ep/N/8abpKI0Wrw+e8Fheh0pd88zTLR77kQtvUrQmo8XjAACSh9IFf7At2XFLti1ZlukwLWBJgZBtOgUAIAXY0wXf2PFud73z/86RnTCd5PQScUv3j7tdkpfbIQCgqShd8BFLm1/rq0X/N9Z0kFOKRwN6cNKtkp3awhUIJySxYgYAbkLpAhwSrQ3p4fNvlh0/1V87W6GsWFLmumnOo8psVS+KFwC4B6ULvhOPBBWrO3GTumlPTL/+M+9WtJXZqu7Yr4Lu5brqiWeTNt9Nrz+qrMKjYwMAzGMjPXxn40sDlFVYp5F3LTcd5Ziaw9myE5+5pGgdLUap9PnXHpNtS09cer1kSzWHc1M6HwDg1ChdQApV7stTIhbQS1+81NgRDpYl3TDrCcWjAT1z3VWq3NPKSA4ASHdcXoQv1R7JVm1pltEM5TtbafZXpmnm1deovtxsFkkKhhO68rFnVdSr1HQUAEhLlC740qZZ/bVxVn+jGeb9aIoq97prVSmUFdf0v89S+zP3q03/w6bjAEBa4fIikAIH17ZTpMqdJ8Jn5EU1/e8vq/pQjt772UTVV2bq0Npi07EAwPdY6YJvHdlSpIrd+Y7Pu39Ve737P5NUsavA8bmbIrddjT73uzma/KO31eHsfabjAIDvUbrgW1te76Ndi7o6Oufe9ztq4f+OU9m2IkfnbYmCbhUa/50F6jRij+koAOBrlC4gSfYs66Qlvx+t0s1tTEdpsqJeZRr9jSXqPGq36SgA4FuULvja7kVdVPJRa0fm2vpGL5VsbOvIXKnQpm+pRn11qbqM3WU6CgD4EqULvrZrYTeVOlC6ds7vqoNrvL8ZvU2/Uo28c5m6jttpOgoA+A6lC7636eV+OrwxdZf8ds7vquV/HaEjW5xZUUu1Nv1KNeLLy9VlDCteAJBMlC743r4VnVS1Ly9l4x/e2NaT+7hOp02/UrXuyyGqAJBMlC6khZUPna2STclfidr+Tndtfq1P0sd1g34Xb+IyIwAkEYejIi0c3tBOdWXJvRXProVdtOT3o317L8PCHuXK61hlOgYA+AalC2iGPUs7af49E1R9IHWXLQEA/sLlRaSNd382KWmXGOsrM9OicA297QN1m7jDdAwA8AVKF9JG9YE8xepbvri79/2OWvCr8UlI5H45bWqVkRcxHQMAfIHLi0ATHFzTTm9893xFqjJNRwEAeAwrXUgrr35tqkq3NO++iKWbizT7q9PSrnBN+N583sUIAEnAShfSSqwuLDthNfl15bta6YVbLlMiFkxBKncLZcYVCCVMxwAAz6N0AQ2oOpCrZ669SnYifReGz/vFm8d9PPPqq1W5159HZQBAqqTvTxGkredvulwVu/Nl2w0/t64sU0/OuC6tC5ckWQH7uF8AgKZjpQtpyNLTV12j62c9odx2Nad8lm1LiXhAUtMvR/rNG989Xzve7f6pR/g9AYCmSu9/viONWYpHgqdc7bJtqa4sS49ffKOzsVzN+tQvAEBTUbqQtp6+8lpV7c87oXh9Urgem/p5M8EAAL5E6UJae+ry61S1P0+1R7KOlS87YVG4PiVSHVY8kn7v2gSAZGNPF9LeU5dfJ0m69rknZQXsZh0p4WcLfz1Ouxd3NR0DADyP0gV87KkrrjMdAQDgY1xeBAAAcAClCwAAwAGULgCnVLqlSNUHc03HAABfoHQBOKX1zw3Uvvc7mY4BAL5A6QJwSh3O2q9WXctNxwAAX6B0ATil3hduVfHgg6ZjAIAvULoAnFaPydtV0L3MdAwA8DzO6QJwWj3O2SErYKtyT/6xxz54cKjqy7MMpgIA76F0AWhQ94k7j/t47dNnULoAoIm4vAgAAOAAShcAAIADKF0AAAAOoHQBAAA4gNIFAADgAEoXAACAAyhdAAAADqB0AQAAOIDSBQAA4ABKFwAAgAO4DRCA07JtSbbpFADgfZQuAKeUiFt65yfnaMucPqajAIDnUboAnFQ8GtDCX4+jcAFAkrCnC8BJvf/34dr44gDTMQDANyhdAE4QrQkpVstCOAAkE99VARwTrQmp9ki21j83UOueOcN0HADwFUoXYFDplqJTfi6cHVV+pyrHskSqw1o3c5CW/3WkY3MCQDqhdAGm2Jaeu/HKU366Tf/DGv+dBcoqqFOrLpUpjRKpCmv98wMpXACQQpQuwKVKNrbVS7fPUMfhe3X2LSuV16FKBV0rkj7PJ4Vr2Z9GJX1sAMC/sJEecLl973fSq1+bpo0v9k/J+Ee2FVG4AMABlC4AAAAHULoAAAAcwJ6uNJTfqUK9zt/a7Nd/+OiZshP0dacdXFOslf88K+njVh/ITfqYAIATUbrSUKuuFRp51/Jmv37140NkJ5IYCI2yf2VH7V/Z0XQMAEAzsVwBAADgAEoXAACAAyhdaLLzfvGmZNmmYwAA4CmUrjRT1KtUo76ytEVjdJ+4U9P+MFsSxQsAgMZiI30aadW1XOf+7C0V9Sxr8Vgdh+/Tpfe/JDtuada/XdrycAAA+BwrXWkklBlLSuGSJMuSis84pOIhBzXjwReSMiYAAH7GSleayO9UoYt+Oyfp41qW1HbAYV373JPHPV66ubXmfufCpM8HAIBXUbrShBW0lduuJjVjW1J+p6rjHsstrtYNrzymPUs7653/Nzkl8wIA4CVcXkwDOW2rddlDLzg6ZyBkK6dNrXpfsEU3zX1YY765yNH5AQBwG0pXOrCkjNyokakDIVuZ+RENunqdbnn7QZ31hZVGcgAAYBqlC44IBG2FsuIa8aXlOuOaNabjAADgOEqXz2UW1On6F58wHeMYKyBZAVuc8QUASDeULl+zZQVsWS77Ux79jSXqd8km0zEAAHCUy34cI5nCOVF9/tXHTMc4gWWZTgAAgPMoXb5lK5QdMx0CAAB8jNLlU4FwQje+8rjpGCcVrQ0pHgmajgEAgKMoXXDc8r+O0JbX+5iOAQCAoyhdvmSrVZcK0yEAAMCnULp8yArYuuqJZ03HOKmakmzVlWWZjgEAgOO49yIctf65gdoyJ7mXFsM5EbXuU3ra55RtL1R9BWUPAGAOpct3bHUZs9t0iJOq3Junit2tkjpmOCeiftM3aey3Fp/2eSvuH6qDq4slSQc+bK9oTUZScwAA0BBKlw9d+JvXTUc4qW1v9Uz6Kld+p8oGC5ckDbv9g2P/veT3o1S1P08753dTPMJfAQCAM/iJ4zP9pqfPSe/hnIi6n7Ojya8b/fWlkqTF945WpCpDH83uKzvO9kYAQGpRunxm4vffc+WJ76VbirR/VYekjplVVKfhd6xo9uvHfGPJ0XEK6rT68SGyExQvAEDqULp85OxbP2j4SYYcXF2sne91Nx3jpEZ9dZlC2THZcUsfPDBUkgtbKwDA8yhdPjLsiytcucpVsqm1tr7Zy3SM0/pkz1dGXkRLfj/GcBoAgB9RupByZTsKtXdZ56SOGc6NaMSXlyd1TEkafP0ahXOixz6O1oa15F5KGACg5ShdPjH5x/NkBWzTMU5weEMbrX3qjKSPG8qKqfcFW5M+rmVJAy7beOzjurJMShcAICnYOewTPc/d5spLizWHc3RwTXvTMQAAMI7SBc8J50R0wT1zTccAAKBJKF0+cMnfZikQSpiOcYLDG9po0W/HJn3cQCih4sGHkj4uAACpROnygTZ9S2S58E8yWhNW5Z7k3vYHAACvcuGPajTF5Y88p1BWzHQMxwQzY7ri0edMxwAAoMkoXR6X267alatcJZtaa+53Lkj6uJZlK7e4JunjAgCQai78cY3GuuqpmcosqDcd46QS8YAiVZmmYwAA4BqULg8L50RdeUxE2fYCzbpjuukYAAC4CoejIqmq9ufq2Ruu5ObRAAB8Bj8ZPct9p89Lkm1bKStcgVBcX5j3z5SMDQBAqlG6POrqmTOV285dG8ptW7ITqb3e6cbLqQAANAalC0lTdyRLT195rekYAAC4EqULAADAAZQuD8rIr1cg6K7b/ti2VFeeZToGAACuRenyoIv//IryO1WZjnGMbUtHthbp2euvSuUsym1fncLxAQBILY6M8Ji8DpUKZsRNxzhOvD6o5268MqVzWAFb1z77dErnkI4WyPIdBcc+rq/kgFcAQHJQujxmyk/nqbB7uekYvnV4Q1u9eOtlpmMAAHyIy4seUtS7VBm5EdMxjmPb0v5VHVI9izqcvT/Fcxz9Wl68dUbK5wEApCdKl4eM/voSFfUqMx3jOHbc0mvfmJryeab9aXbK5wAAIJUoXXC9XhdsNR0BAIAWo3TB9ab8ZJ4jJ9FvfLF/6icBAKQtSpdHdJu4Q/kdK03HOI5tS6ufGGI6RtIs+NV4SdxnCACQGpQuj+g77SMVdKswHeN4trTsT6NMpwAAwBMoXWgW25YW/25MyucZ/fXFKZ8DAAAncE4XmuW9n03Uppf7pXyeM65d68h+LgAAUo2VLjTLplf6yU/7n976rymyE/75egAA7kPp8oAhN36oDmel/nDQdLb97R7yU4kEALgPpcsDinodUXbrOtMxjnn5yxdLdurnmfanV2QFHJgIAAAHULrQZAfXFMuJVaHiwQfZzwUA8A1KF1zp8oefUzAj7shcz954hRIx/ioAAFKLnzQuN/xLy9XrvPS7DU5+50rHVrkq9+SL/VwAgFSjdLlcRl5EoSxnVnwa4/Hp16d8Vejqp59WOCea0jk+8dSV1yhWx8kpAIDU46cNGu3xS65XzeEcpXpVKCM/4tgqV6QyQ6xyAQCcwEqXiw27430NunKd6RjHHF0RSm1BuebZp5RV6Mw7NZ+87FrVV2Q6MhcAAJQuFwsEE7Jc8if0+CXXK1KVkfJ5AqGEY6tcRy+TssoFAHCGS36kw+1s21LKC4rFmVwAAP+idME1rn5qpvLaVzsyVyLGChcAwFmULrhCMCPm6JW+mdderZrDuc5NCABIe5QulwpmxBw7HNS0cE5El97/kgq6VpiOAgBAylC6XOqMa9dqyA1rTMdIuYz8ek39w6tq07fUdBQAAFKK0gWjpvxknorPOOTonNUHc7jtDwDAcRyOikYp6FaurILjz8+ybUtl24qaPWZucZXC2c6cPP9pc759kaoP5Dk+LwAgvVG60CiX/OWVEx6zbeml2y+VnbB0eEO7Jo85+utL1OHsA8mI12hHthVy2x8AgBFcY0GzWZY044GXNP3vs9Rh6L4mvbawxxFlt65NUbJTe+9nE1Wxu8DxeQEAoHS5UF7HShX1PGI6RqMFMxK66P/mqNvEHeo8aneDzy/qVaqxdy9Sx2H7HUj3Lwc+LOa2PwAAY7jO4kJdx+1S32mbTcdoknB2TBf+71zVlWVq8e/GqK48S7sXdT3hea37lGjUV5eq88i9jmd8/77hKt9Z6Pi8AABIrHQhybIK6zX5x+9ownfnq/s524/7XJt+hzXyrmXqMmaPmXAAABhE6UJK5HWo1uBrjz9nrNPIveo6ruHLj6mwbV4PVe3jHYsAAHMoXS7Tpt9hdZ+4w3SMpMjvVKm+0zaZjiFJ2vxaHzbQAwCMYk+XyxT2LPPN5be8DtUa9sUVsgK2yncWqMdnLjcCAJBOKF1IqfxOVRp6+weqLclW8WBnT54HAMBNKF1IufyOVcrvWGVs/jVPnqGDa4qNzQ8AgMSeLvjc2qcHadUjZ6m2JMd0FABAmqN0wdfKdxZQuAAArkDpcpGOw/dq1FeWmo7hG2uePENbXu9tOgYAAJIoXa6SkRtRbnGN6Ri+UVuarfqKLNMxAACQROkCAABwBKULvrT6icFa/cQQ0zEAADiG0gVfikeCSkSDpmMAAHAMpQsAAMABHI4KX7Ftad0zg7T8LyNMRwEA4DisdMFXNr/WR4t+M1aSZToKAADHoXTBN+yElIgFROECALgRpQu+sePd7nrvZ5NMxwAA4KQoXQAAAA6gdMEX4pGA6isyTccAAOCUKF3whf0rO+i9n3NpEQDgXpQueF60NqSKPa1MxwAA4LQoXfC8I1uKtOCeCaZjAABwWpQueFqkOqyDa4pNxwAAoEGcSA/PitaEtOGFAVr6h9GmowAA0CBWuuBZtaXZFC4AgGdQuuBJ0dqQNr3Sz3QMAAAajdIFT4pWh7XywaGmYwAA0GiULgAAAAdQuuA50dqQlrCXCwDgMbx7EZ4SjwT09o8na8c7PUxHAQCgSShd8IxEzNLr/3Gh9izpYjoKAABNxuVFeIZtWxQuAIBnUbrgCXZCevG2GaZjAADQbJQueIJtWyr9qI3pGAAANBulC65n29JTV1xrOgYAAC1C6XKJDmfv0zn//Y7pGK5VfSDXdAQAAFqE0uUSgVBCGXlR0zFc6eHzb5ZkmY4BAECLcGQEXO2hKV9QrJb/TQEA3sdKF1wtXh8Uq1wAAD+gdMG1Hpx0i+wEhQsA4A+ULrhSIv5J2aJ0AQD8gdIF14lHAnrkgpsUj7CXCwDgHy7+qWYrnOP+d/PF6kOy43TXZInWhPTk5dcpWpNhOgoAAEnl2tIVCCf0hbceNh2jQa996yLtXtTVdAzfeOa6q1RfnmU6BgAASccSDVyj5nA2G+cBAL5F6YJrvHznJao5zMnzAAB/onS1UKsuFQplu3/vmduVbS9QPBI0HQMAgJShdLXQuLsXqd8lmyheLTTvv6eo+kCe6RgAAKQMpSsJxt29SP2nb6R4NdOB1cWKVPNuRQCAv1G6kmTstxcrt1216Ries29FB737P5NUuaeV6SgAAKQUpQtGrXr4LJXvKDQdAwCAlKN0uUTV/jxtf6e76RiO2vFeN1XuzTcdAwAAR1C6kuiMa9cqI6++Wa+t2F2gj17pm+RE7rb5tT4q31loOgYAAI6gdCXRoCvXK5zLZvrG2PJ6L5VsamM6BgAAjqF0ucjhjW214YX+pmOk3JbXe+n9+4arYleB6SgAADiG0uUi1Qfy9MGDQ7XhRX8Xr4NriylcAIC0Q+lymeoDeb6+7PbRq320I83eMAAAgETpcqXt83po3bMDTcdIus1zemv5X0aoaj/vWAQApB9KlwvVluaoar//bolTcyhH1Qf993UBANAYlC44YsvcXlr1yFmmYwAAYAyly6XWPTNIa546w3SMpNjxbjctuGe86suzTEcBAMAYSpdLxWrDitWGTMdIilh9SJGqTNMxAAAwitKFlNq1sIve+ck5pmMAAGAcpcvF3v/7cE+/i3HfBx30+n9cqEQ0aDoKAADGUbqSyLaTPF4iIDthJXdQh9i2JFuy4/wvBgCAROlKqmeuvUrVB3JNxzDOtqXD69vqlbsuNh0FAADX8MdObVfx5spUMpVtL9SLt11mOgYAAK7i6tIVq/vUXiBLCmXGzYVpQKw+KNtObuEKhOIKBBNJHTPVbFuK17OHCwCAz3Jt6UpEg3po8q3HPs7vXKHLH35eGblRg6lObda/TU/6TZyHfXGFBl6xIaljppKdkI5sLdILt1xuOgoAAK7jmT1dlXta6eUvXWI6Bk6jrixLz33+StMxAABwJc+ULjerPpSjRDS5v5UZefXKyIskdcxUshPy5f0iAQBIFk+Vrlh9SBV78k3HOMG8H07Rka2tkzrmgMs3aNBV65M6ZqrYCeng2mI2zwMAcBqeKl0Vuwr09o8nm45xnLIdBYrWhJM6ZlZRrfLaVyV1zFSxbWn/qg6adcelpqMAAOBqnipdbrT4d2NUsqltUsfsee4276xyxS29cid77QAAaIjnSld9RaYOrC42HUOSdGh9W9WWZid1zNziKrXuU5rUMQEAgHmeK13lOwq14r5hpmNIklY/NkQlG5O3ypVbXKWzb1mpgZd745gI25Y2z+ljOgYAAJ7gudIlSVUH8rRrURejGfYu76jyJJ7LlVtcpbNvXemZc7lsW1r3zCC9+9NzTEcBAMATPFm6yncUauOL/Y1m2DynT1JXuQq6lXtmhesTi34z1nQEAAA8w5OlSzp68vm2t3oYmXvngq46vD65lxX7X7oxaeM5ZcSdy01HAADAM1x7G6CGlO8s1PK/jZBtW+p13jZH5967rJNKN7dJylg5bas1+htLHP8aWsqypLNuXqWM3KMHuMbqQ1r6h9GGUwEA4F6eLV3S0cuM7/99uCQ5Vlq2v91duxcnbz9ZZkG95wrXJyxLx462iEcDym5dq7qyLC25d4zhZAAAuI+nS5d0tHgt/+sIBYIJ9Zi8I+XzlW5urbLtRUkZK7t1jcZ+e1FSxjItGE6o79TNitUFFQgltOg340xHAgDAVTxfuqSjJ9Uv/eMoWUFb3SfuTNk8W9/sqY9m903KWJmt6nT+L99Q+zMPJmU8twhlxdXvkk0q7FGm0s2tWfUCAOBjnt1I/1kVuwu06Ddj9eJtl2rfBx1SMkfV/jxV7m3V4nHCORFN/cOrvitcnwhnx9R55F71v3SjRn99sek4AAC4gi9Wuj5RtT9fVfvz9faPJysjN6IpP5mn1n2OJGXsbW/10OrHhiRlLCtoq23/kqSM5WYZuVH1n7FRtm2xyR4AkPZ8Vbo+UX0gT9WSXvvm5xQIJyRJM+5/Udmt65o13s75XTX/ngmqL89qcbZgZkxXPPJci8fxiozcqAZesV6JaEDL/zrSdBwAAIzxZen6RM3h3GP//ewNV8oK2Lr2uacUyoo3eow9Szvp7R9PVqQqs8V5AqG4rnv+yWaXP68KZ8c0+Lo1ikeC+uABd9zCCQAAp/m6dH1aXdnRG1M/fskN/3rQkm6e+8gJzy3f2Uov3jZDkpSIBRSrC7c8gGXrxlcfU2Z+pOVjeVAoK66zb1mpeDSoDx85y3QcAAAcZ9m2bTfmiXdYd6Q6iwG2gpknWfWypXgkmX3U1i1vP9SkFTa/SsQsJWIBzb9ngja/mpx3ggIAYNp99n0NPidtVrpOzlK83pnfgpOWuzQUCNkKhOKa9F/vKl4f1La3epmOBACAI3xzZIR72bptwQOyLNM53CUQtHXuz95SlzG7JDVqsRUAAE+jdKWQFUjotvkPKBCkVJyMZUkX/XaOOgzdL4oXAMDvKF0p9IV5/1QgRJk4HcuSLvnLK2o36JAoXgAAP6N0pUgoK2o6gqfMeOAltepaYToGAAApQ+lKkRteeVwhNs83SWZ+vWSx2gUA8CdKVwpkt6mRRXloshkPvKS2Aw5TvAAAvkTpSrK8jpW68vFnFc6JmY7iSZc9+KLaDTxE8QIA+A6lK4kKupfp0vteUlZBvekonjbjgZdUPPggxQsA4CuUriRp3bdEU+99VTlta01HaZS6skyV72plOsYpXXrfLAXD7IkDAPhHmp9InzyTfvCu8jpUm45xWpHqsA582F6SdGBVex1a105jv71IhT3KDScDAMD/KF1J0HHYXmW4/EbW0ZqQNrwwQEv/MPq4x9c/N1Bjv73YUKrT6zF5u7a83lsSx/kDALyP0tUCHYftVX7nSp110yq16lxpOs4pRWtDWvv0GVr+15GmozTJlJ+8ra1v9JKdoHQBALyP0tVMnUbu0aivLlXb/iWmo5xWrD6o1Y8N0Yp/DD/p50s2tdGB1cVqP+Sgw8kAAEgvbKRvhs6jdmvUV9xfuOKRgFb8Y9gpC5ck7V/ZUbsWdnUwFQAA6YmVribqPGq3Rt61TG0HuLtwJWKWlvx+tNY9c4bpKAAAQJSuJvFK4bIT0vx7JmjTrP6mowAAgI9xebGROg7fe3QPl8sLlyTZtuWbwjXlJ/MkcUgqAMD7KF2N0OHsfRr7rUVq06/UdJQG2bb0+r9faDpG0vQ6f5vpCAAAJAWXFxtQPPiAJnxvvmcOEH3lzou1f2VH0zEAAMBnULpOo03/w5r847fVqot7z+D6tBdumaHDG9qajgEAAE6Cy4unUNjziC64Z65nCtdzn7/848LV9INE1z83UBtf6pf8UAAA4BhWuk4iv3OFpv1xtnLaeOPm1ZJUtqNQzb1dTn15lurKs5KaBwAAHI/S9Rm5xVWa8cCLyiqoNx2l0Z68/Folov5ctHzs4htMRwAAICkoXZ+SVVirq558RuGcmOkojfbk5deqal+e/HpT6LojWfLr1wYASC+Uro+FcyO6/qUnFMxImI7SaE9dcY2vCxcAAH5C6ZIUzIjpptcfUSDorUM445GgKFwAAHiDPzcCNYktWfJU4bJt6emrrlbN4RzTUVLK9s4fCQAADUrzlS5bwYy4bnn7IdNBGi0Rt/T8zZerYneB6Sgp99A5t8hO8O8CAIA/pHXpCmbGdes7D5mO0SQvf+kSHdnS2nQMAADQRGlbusI5Ed385sOmYzRJrC4oO8EeLgAAvCgtr91kFtTp5jceluWh/hKpCmvOty/SoXXFpqMAAIBmSLuVrtziKl3z7NOyPFY33/2fSdq3opPpGAAAoJk8Vj1a7uqnZyoY9s5ZXJJUczhb0ZpwysbPLKhTVkFdysZvjvKdrWTbHlqKBACgAWm10tW6T4nnjrWqOpCrBb8arz1Lu6RsjoFXrFf/SzelbPzmeOGWy5SIBk3HAAAgadJqpeviP7+iUGbcdIwm+fCRM7VrQTfTMQAAQAulVenymrIdBarcl286BgAASIK0ubzYfdJ2BTy0l+vItkIt/8sIVrkAAPCJtFnpGv+dBQpnx0zHaJQjWwu1/K8jtOPdHo7MV7KxjUo2ceAqAACplBalq/+MDQp5pHBJ0r4VHbXjnR6OzbdrYTftXpK6jfoAACANLi8Oumqthn/pfWXkRk1HaZSSj1prJ5cUAQDwHd+XrgGXb1BmfsR0jEYp3VKkpX8cpT2sOgEA4Du+vrx49q0fKLddtekYjVaxuxWFCwAAn/J16eo2YacyW3lklWtzkT585Exj829+tY92L+lsbH4AAPzOt6Vr5FeWqrB7mekYjVK2o0Dv/s8kHVzT3liGI1tba/Fvx2jv8o7GMgAA4Ge+LF0j71qqgZevV0ae+zfPV+zO15vfP0+HN7QzHUVl24s0/54J2r/SXPkDAMCvfFm6CrqXe6JwSVKsLqQjW9xzRlbFrgLVV2aajgEAgO/47t2Lo7++WJ1H7TEdo0G1R7I0647pirvwps7zfzlB2UVzVTz4kOkoAAD4hq9K14g7l2ngFesVynL/Ta3tuKWK3QWmY5xUbUmO5tx9kYLhuC7+8ysq6Fbh6PzP3niForVhR+cEACDVfHV5MSMv4onCVV+ZoWeuv8p0jNOqL89SzeFcvXjbDFXtz3V07tqSbMm2HJ0TAIBU881K1/B/W64BMzaYjtGgaG1IT0y/XrE6b6zkRKoyNfPaq2VZtq6f9UTKD5qdec1VqivLSukcAACY4JvSFQgnFAjZpmOcVjwa0CMX3KREzH37uE4nXn/0f5PHpt547LFb331QVgrWSWN1IUmscgEA/McHpcvWWV9YpTM//6HpIKdlJ6QHJ93q6ctmny6L94+/XVbA1m3zH5AkWS38smxbeua6q1R90NlLmQAAOMXze7oGXb1OI768vMU/9FPNTlieLlwnsC3Z8YDuH3u7Hpp8i+zE0WLZrKES0gtfuEzlOwrEKhcAwK+8vdJl2bICtusLVzwa0IMTbzUdI0UsxetDun/cF5VVVKsbZj3+2U8rEDzxsm8ibkkfP/zKXRerZFNbB7ICAGCOp0tX32kfaey3FpuO0aAHJ92qdFjBqTuSrQcm3H7cY13G7tL5v3jjhOfOv2eCNr/a16loAAAY59nSFQjFFcqKmY7RoPqKDNMRjNq9qKsemuzXVT4AABrPk6UrEI6rz+c2a/x/LDQdpUGPTv28v/ZyAQCAZvHkRvqOQ/dp0g/eMx2jQZV7847tWwIAAOnNcytdwcyY8jpWmY7RoCPbCvX8zZfLTniy1wIAgCTzXCNo069EE/9zvukYDXrp9kuVcOHNrAEAgBmeKl2h7KjaDjhsOkaD9q9sf/RcLgAAgI956vJiq84VGnf3ItMxTmv3ks568/vneebeigAAwBmeWunygvd+PlHR6vQ+JgIAAJzIM6UrI69evc7fajrGaW2e01vRGla4AADAiTxTurKK6nT2LatMxzitD+4fqkhlpukYAADAhTxRusK5EQ25YbXpGKe1duYg1ZVlmY4BAABcyhMb6cM5UQ28fIPpGKe05skztPKhs1VfQekCAAAn5/qVrlB2VGO/7e53LG5/u4fqyrJNxwAAAC7m+tIVzIir55TtpmOc0or7h+rI1iLTMQAAgMu5vnS53cE1xVxWBAAADXJ16QpmxjT13ldNxzil5X8droOri03HAAAAHuDq0mUFbLUdUGI6xilV7G6lSBVHRAAAgIa59t2LgVBcVz7+rOkYp7T0TyO1c363U37+ikefVTgnmvR53/je+SrZ1Dbp4wIAgNRyZemyAgld/9ITym5dZzrKKdWVZZ32/op5HauUkZv80hXMiCd9TAAAkHquvbzo5sK1/K/DtfnVPqZjAAAAD3HhSpetL7z1T9MhTmnlQ2dp1SNnyY67tq8CAAAXcl3puvW9BxUMJ0zHOKVELEDhAgAATeay9mArEHJv4Vr9+GCt+MewBp93wyuPpWQTPQAA8C7XlC4rkNBtCx6QZZlOcnK2LdkJS1IDAS1bVsBO2ddhBWxJdmoGBwAAKeOK0hUIxXXL2w8pEHRnmbAT0obnB2jpH0c3+Nzrnn9S2UWpexPA9L+/rNZ9SlM2PgAASA1XlK6bXn9EwQz3Xlbc+mYvLfjVhEY9N1YXku3O7ggAAAwyXroy8utNRziteDSgaM2pz+P6rGeuu1p1R7gXIwAAOJ7x0nXNzKcVzomZjnFKe5Z21vxfTGzSa2pKclR9MIcVLwAAcIzRIyPyOlbKcuk+LkmK1QVVcyinya97/qYrJElXPPasinodce2bAwAAgHOMrnRN/9ssZeZHTEY4rUPr22n+L5u2yvVpz914pew4jQsAABgsXW36H1bAxYegRmtCOrKlqMXjHFjdnsuMAADAXOk696dvpfRohZYq31mghb8e3+JxXrnzEo7VAgAA5jfSu1GkOqw9yzqbjnFKnUftUSibE+8BAPASStdnRGtCWvv0GVr2p1Gmo5zS6K8vVU6bGtMxAABAE1C6PqOuPEvv/22E6RgAAMBnKF2fEq0Nae1TZ5iOAQAAfIjS9Smx2pDWPDnEdAwAAOBDRkrX0NtWKLt1rYmpAQAAjDBSunpM2a6MPHe9+y5WF9T8XzbuptYAAABNZfQ2QG4RjwY097sXaM+SLqajAAAAn2JPlyQ7blG4AABASqV96UrELb10x6WmYwAAAJ9L+9IlWyr9qI3pFAAAwOfSunTZtvTUldeajgEAANKA46Xrwt/MUVHPI05Pe3K2VH0gL6VTXD/rcclK6RQAAMADHH/3YmZ+vQIh2+lpjbhx9qPKKqqTRekCACDtpe3lRduWHpp8S0rnCOdGKVwAAECSw6Xrov97TcVDDjo55WnFI0HTEQAAQJpI6eXF4f+2XGffuvK4x9yw8mPb0gPjb1MqN1vd/MY/FcyIp2x8AADgLSnf0+WGkvVZD068VXYixYt8lju/dgAAYEba7emKR7z/JccjAdk2jQ4AAC/xfgNpoocvuFmJmLf3cr142wxV7mllOgYAAGiCtCtdAAAAJqRV6ao+mGM6AgAASFNpVbqevfFKxetTfx5sqy7lsqz0OAAWAAA0TtqUrtLNRbLjzmw+n/73WQrnxByZCwAAeIPjtwEy4eDadprzrYsUrckwHQUAAKSptFjpeuu/zlV9RZbpGAAAII35vnTtWthFsVrnFvS6TdyR0pPo9yztpPrKzJSNDwAAUsP3pWvpH0eprizbsfnG3b1QGXnRlI3//t+Hq/pAXsrGBwAAqeH70gUAAOAGvi5d658foNpS51a5zrhmjTLyIo7NBwAAvMPXpWvTrH6OXloceOX6lF5aBAAA3uXr0gUAAOAWvi1d7983TOW7CkzHSKoV9w9V+U5/fU0AAKQLX5auFf8YqnUzByni4NEKY+9eqNzi6pTOcWBVe84bAwDAo3xZuko2tXG8nLQfckDhbG79AwAATs53pWvZn0do7/udTMcAAAA4TkqPal/z5GB9NLvvsY8n/de76nD2gVROqaoDeYpWO3uPxSk/eUtFvY44OicAAPCWlK501VdkqWJ3wbFfc79zgQ6tb5uy+Zb9eYS2v90jZeOfSk67GgUzEo7PCwAAvMPRy4v1FVlKRFM3ZaQqQ/F65+6zKElTfvqW2g9J7eodAADwPt/t6XJaRm5EgZCd8nnm/fdk7V3OXjUAALzKN6Vr2Z9HaP3zAx2dc/KP56nLmN2OzBWPBGUnfPPHBQBA2nH8p/isL01XyUetkzqmbUt2wpJsK6njNsQK2rLoQQAAoBGcrwxJLka2La186Gx9+OiZSR23ETM7N5Mt2Q4XSgAAkFzO7jpPgXUzB+n9v41wfN6J339PvS/Y6shc7/50kna808ORuQAAQGoYuTgWrw/K5oQFAACQRoyUrpe+OEMVu1u1eJx4NKBYnecX604rVhdUPBo0HQMAALSQsW3gdWVZSsRbtk9py5zeWvbnUUlK1HjhnIiCmXFH5lr6x1HaOre3I3MBAIDUMVa6Zv3bpTq0rl2Li5fTMvLrNeabi9Xnoi2mowAAAA8xeuDBrDsuVaSyefdJjFSHVX0oN8mJGnbGNWvV/9JNjsxVW5qluvIsR+YCAACpZfyUqcMb2zZrtWvP0s6Ov2sxu02NcttVOzbfmqcGc2kRAACfMF66XvvGVMXrvbFRvM9FmzXgso2mYwAAAA8yXrokaeeCbk06QqL2SJYOrWuXukAAAABJ5orSNe+H5yoRa3yUkk1t9OEjZ6Uw0YladSlX2wGHHZ0TAAD4hytKlyStf25go1a7ag5na+d73VIf6DM6Dtun3hc6cwK9JB3e0EaHN7R1bD4AAJBarildi383tlH3F6zcm691z5zhQCKz9iztrD1LupiOAQAAksQ1pUuSlv9lhGzn7iPdaK37lKjH5O2mYwAAAA9zVen68NGztOg3Y11VvIp6lWrUV5eq67jdpqMAAAAPc1XpkqR1zwwyHeE4eR2q1GXMHkfn3LO0k7a+0cvROQEAQGq5rnRJ0hvfO/+kj1fuy9PSPzl3r8XCnkc09LYPHJvvE+U7C1SyiU30AAD4iQtLl3XKdydGqjJ0YFUHx5JkFdSpePAhx+YDAAD+5cLS5Q4F3cs0/rsLHJ9316Iu+vDRMx2fFwAApBal6xRCWTEV9SxzfN768kxV7c93fF4AAJBarixddsLSzGuuMh0DAAAgaVxZuiRLlfvMrfa06lKuqb9/1fF5dy3qogX/O97xeQEAQOq5tHRJiWhAj0+/3vF5c4urdNk/X1BWQb3jc8cjQUWrMxyfFwAApF7IdIBTs1RzKEcPnnOLctrWaOq9r+ql2y9N/awBWxm50ZTPAwAA0otrV7qOshSvDykeCcpOWIpHUtsRswprdc0zT6d0DgAAkJ5cXrqcZEuWFAiZuQfRnmWd9MZ3T34oLAAA8D5K18fCuVHdOPsxwyksw/MDAIBU8UbpsqVELJVRbQXDcVmGOo+dSPXXBwAATPPET/qaw7l69oZUndtlK6uwTp9/zdwq16H17TTnW58zNj8AAEg9T5SuVLKCttHCBQAA0kOaly5bue2qjSZIxCzVHckymgEAAKReepcuS7ruhaeMRijbXqjX//0ioxkAAEDqpXHpstW6T6npEAAAIE2kcemSLn/4eaPzx+qDKtnUxmgGAADgjLQtXZ1H7zEdQTWHc/TOTyabjgEAABzg4nsvpk6Pydt03s/fNHYuFwAASD9pudI15afzZKXlVw4AAExJu+ox8Mp1sgJm7q/4adHakDa93M90DAAA4JC0K12jv7ZEgaALSld1WCsfHGo6BgAAcEhala7hX1quQChhOgYAAEhDaVW6Bl25ToGQ+VUuAACQftKqdLlFtCak+fdMMB0DAAA4KG1K1zk/elvhnKjpGJKkRCygne91Nx0DAAA4KG1KV+eRe1xxaTFWH9Scb3OvRQAA0k1aHI564a/nKKuwznQMJWKWXrr9UpVu5tY/AACkm7RY6SrqdcQVq1y2bVG4AABIU74vXVN/P1u5xdWmYwAAgDTn68uLn/vdq+o4fJ8rDkO1E9IT0683HQMAABji25WuC389R51G7nVF4fpEXVm26QgAAMAQX650nfuzN9V13C5uag0AAFzDd6XrnP9+Wz3P3SbLMp3kX2xbemDCbaZjAAAAg3y1FjTuPxaoz9TNripckiRbshNuCwUAAJzkq9IlyX2FS9L942+X5MJgAADAMb4pXVYwoUAwYTrGCWL1QdMRAACAC/imdI348nINuGyj6Rgn+Oe5X5BsVrkAAEh3nt1IHwjHlZEbOfZxKCtmMM3J1ZVlmo4AAABcwrOlq9v4nTr/l2+ajnFaT1x6vey4bxYTAQBAC9AIAAAAHEDpSpGSTa1ls5cLAAB8jNKVIi9/+RIlorxzEQAAHEXpSoE9SzspwV4uAADwKZ7dSO9WO97tprf/32TF6/mtBQAA/8JyTJIt/M04RaszTMcAAAAuQ+lKoo2z+ilaHTYdAwAAuBClK4k+fORMRao4EBUAAJyI0pUkHz42RLVHsk3HAAAALkXpSpItr/dWpJJVLgAAcHKUriRY/rfhqtyTbzoGAABwMUpXEuz/oAN7uQAAwGlRulpo8b2jVbKpjekYAADA5ShdLVS2vVDRGs7lAgAAp0fpAgAAcAClqwUW/Gqc9i7vZDoGAADwAEpXC9RXZCoRDZqOAQAAPIDS1UwLfjVO2+b1NB0DAAB4BKWrmeLRoOw4v30AAKBxQqYDeI1tS0t+P1qbZvUzHQUAAHgISzVN9MH9Q7XmicGSLNNRAACAh1C6moXCBQAAmobSBQAA4ABKVxPEIwHF6tkGBwAAmo7S1QRrZ56hDx85y3QMAADgQZQuAAAAB3CtrAmyCuuUVVQry7KVVVh32uce2VYk2Wy4BwAAR1G6GqGuPFPR6rD6XfyRErGAQlkx9bloy2lf889zb1a0JsOhhAAAwO24vNiAurJMrXlysFY+dLYkacCMjQ0WLknqOGyfZNkpTgcAALyC0tWAg2uLtfLBoU1+3YDLNygQTKQgEQAA8CJKV4rM++EUJWJB0zEAAIBLULoAAAAcQOlqhMIeR9Rl7G7TMQAAgIfx7sUGFHYv08i7lqn7pJ2mowAAAA+jdDWgVZdKtepS2aTXLP3TSMUj7OcCAAD/4tnSdWh9O73943OOfdzrgq3qNn6XwUT/sunlfmyiBwAAx/Fs6ao+kKfNr/U99vHhjW214YUBGnL9anUctt/xPIvvHa2K3a0kSZEqDkUFAADH82zp+qyybUUq21akit2tlNOmRqO+tlRt+5c4Mvfi343Wxpf6cwI9AAA4Jd+Urk98Ur7m/fcUZeRGJEnn3/OGctvVpGS+Rb8do02z+lG4AADAafmudH2ifEfhsf9+5a6LFQzHNf3vs5SRF03uPDsLKFwAAKBBvi1dn1axq0CS9Nznr5As6eqnZyoYbtktepb+aaS2vtFLtaXZyYgIAAB8Li1K1yeq9udLkp649HpZDdyMunWfUk39/WvHPbb+uQFa8Y9hkqRIdYbi9Wn12wcAAFogLVtD3ZGGV6f2Ls/Sw+ffdNxj8UhQ8Uha/pYBAIAWokGcgp0IKFKVaToGAADwCe69CAAA4ABKFwAAgAMs27ZPv6McAAAALcZKFwAAgAMoXQAAAA6gdAEAADiA0gUAAOAAShcAAIADKF0AAAAOoHQBAAA4gNIFAADgAEoXAACAA/4/gdoYwicS/tkAAAAASUVORK5CYII=\n" }, "metadata": {} } ] } ] }