Machine Learning Project

Instance Segmentation using YOLOv8 on Repair Dataset

Step 1

• Goal: We want to see how reducing the number of classes in the Repair dataset affects the model's accuracy

Tuning Yolov8 hyper-parameters [1]

- Learning Rate: 0.1
- Momentum: 0.937
- weight_decay: 0.0005
- hsv_h= 0.015
- hsv_s= 0.7
- hsv_v= 0.4

[1] https://docs.ultralytics.com/modes/train/#train-settings

Step 1: Training 14 class model Training

Pre-trained Model: yolov81-seg

• Image Size: 800 * 800 pixels

• Batch Size: 16

• Epochs: 250

• Device: L4[2]

[2] GPU: 22.5 GB Memory

Training Results

Table 3. YOLOv8 achieves the best results regarding the motif segmentation (PA_{motifs} includes all classes without background), while UNET wins when including the background in the evaluation (PA_{avg} refer to all classes including background, same for IoU).

Architecture	IoU_{motifs}	IoU_{avg}	PA_{motifs}	PA_{avg}
YOLOv8	0.582	0.538	0.634	0.797
Original U-NET	0.416	0.606	0.452	0.630
Modified U-NET	0.345	0.569	0.392	0.600

Training Results

Table 3. YOLOv8 achieves the best results regarding the motif segmentation (PA_{motifs} includes all classes without background), while UNET wins when including the background in the evaluation (PA_{avg} refer to all classes including background, same for IoU).

Architecture	IoU_{motifs}	IoU_{avg}	PA_{motifs}	$\mid PA_{avg} \mid$
YOLOv8	0.582	0.538	0.634	0.797
Original U-NET	0.416	0.606	0.452	0.630
Modified U-NET	0.345	0.569	0.392	0.600

Matrica	Bounding Box			Segmentation		
Metrics	Precision	Recall	mAP@50	Precision	Recall	mAP@50
14 Class	0.7866	0.8659	0.8439	0.8961	0.8113	0.9025

[3] Semantic Motif Segmentation of Archaeological Fresco Fragments

Training Results

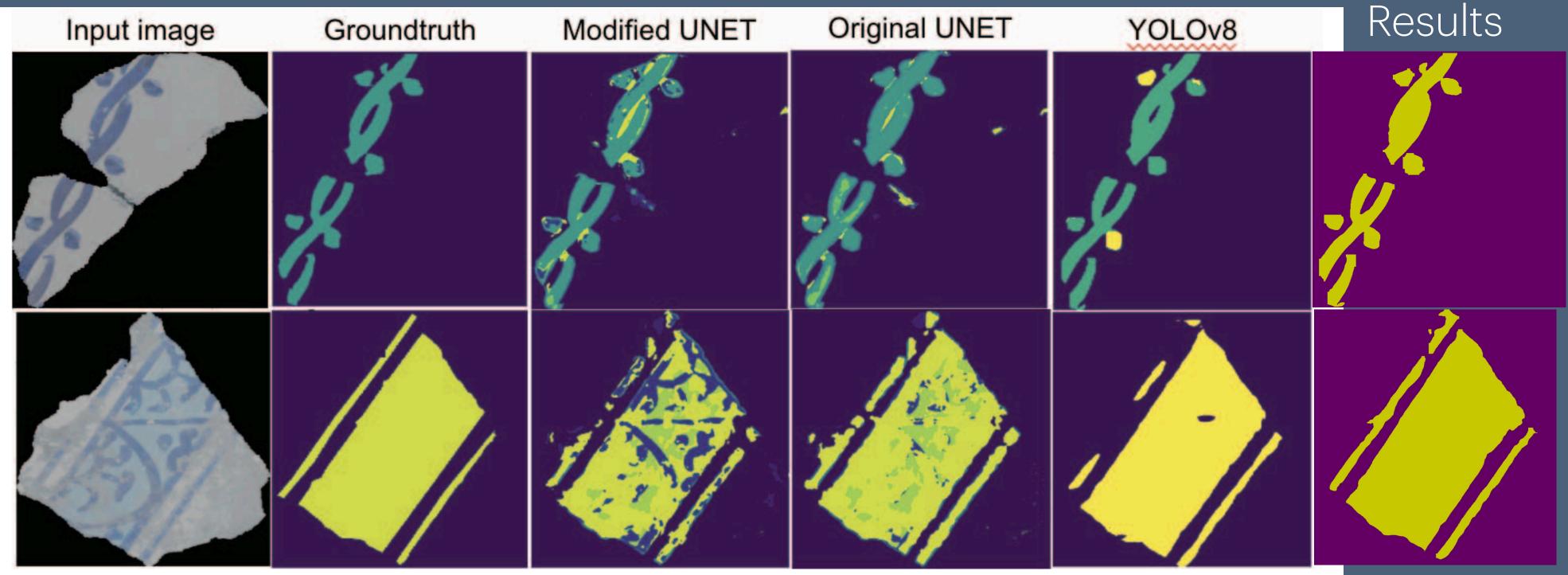
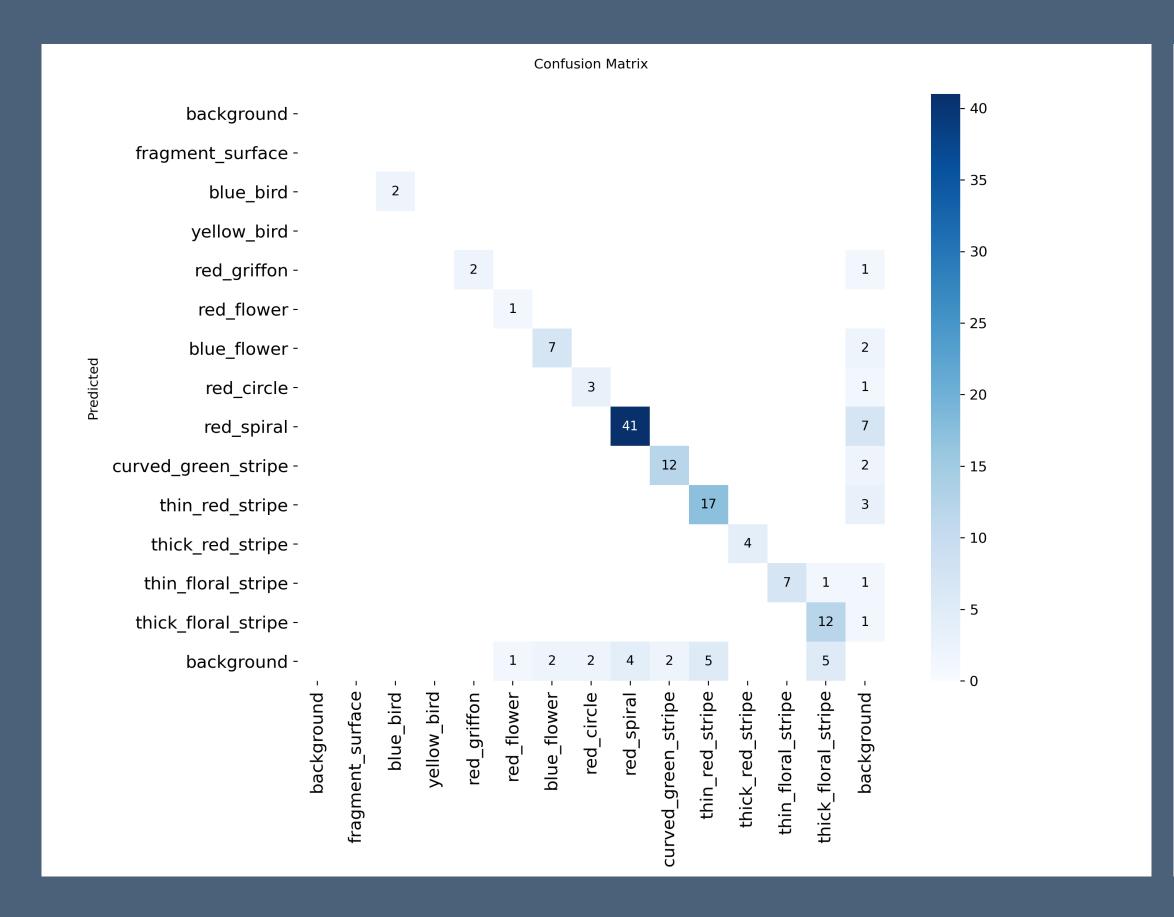


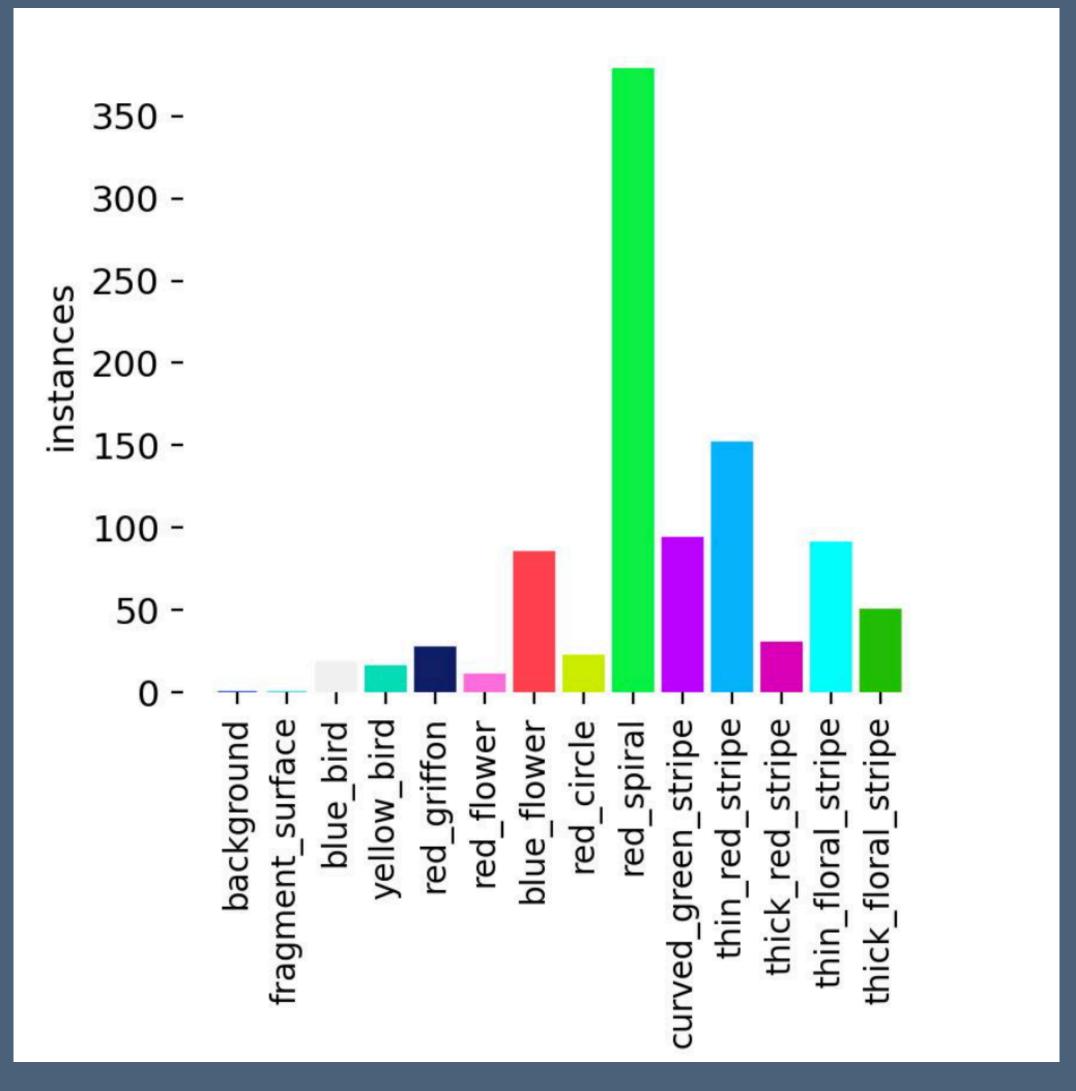
Figure 10. Semantic motif segmentation results of different architectures for Scenario 2.

Training More Results



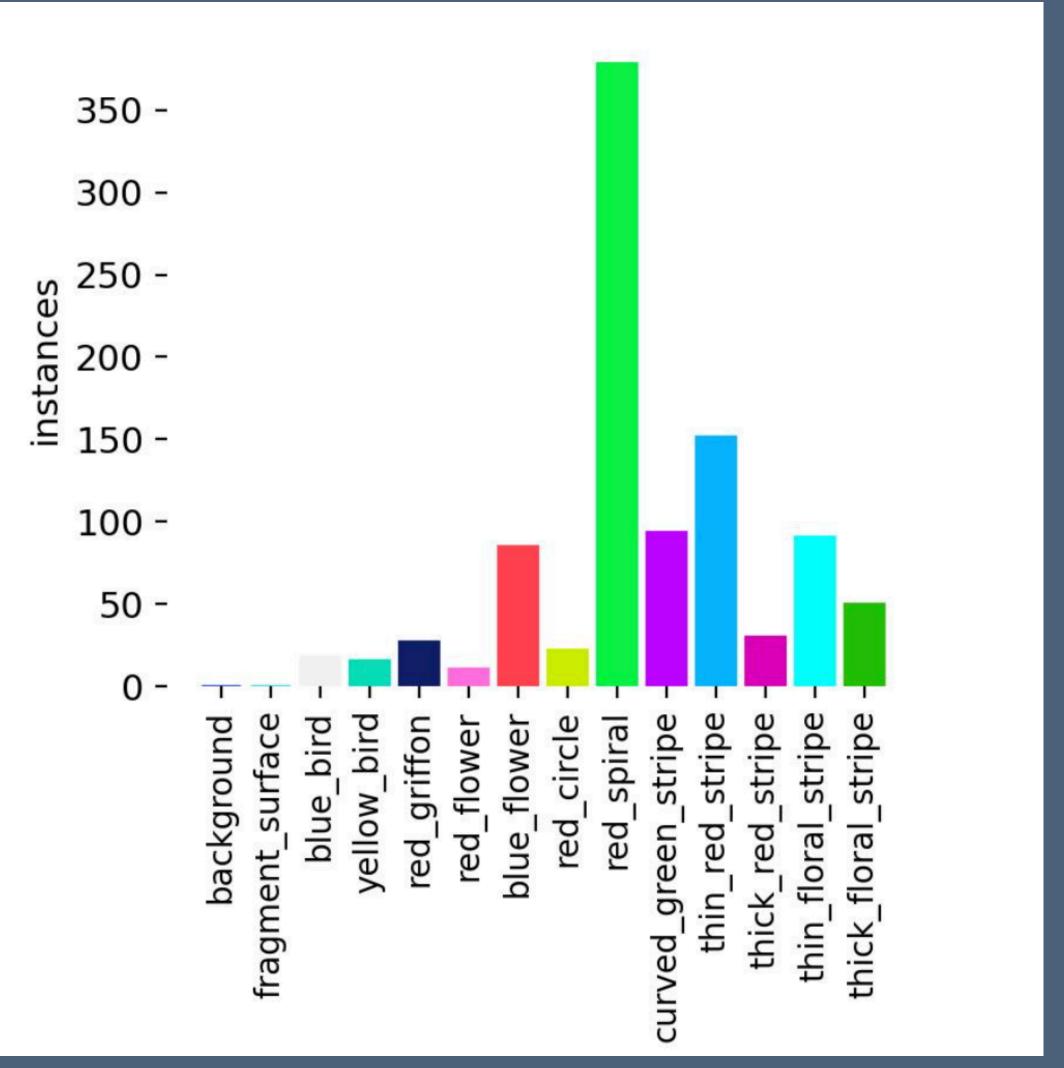


Training



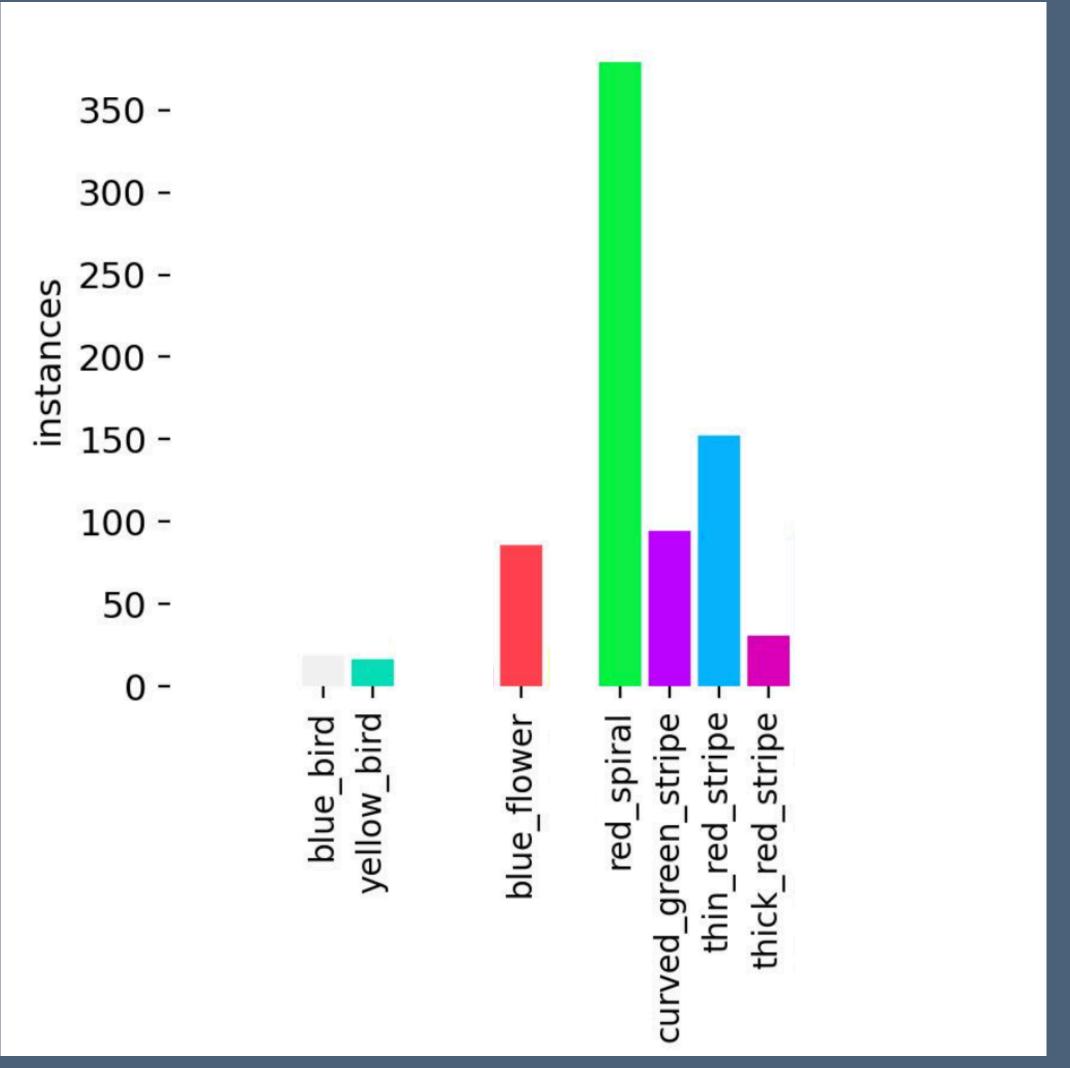
Training

• Step 1: I think a good first step would be to train a model which accurately recognizes these.



Training

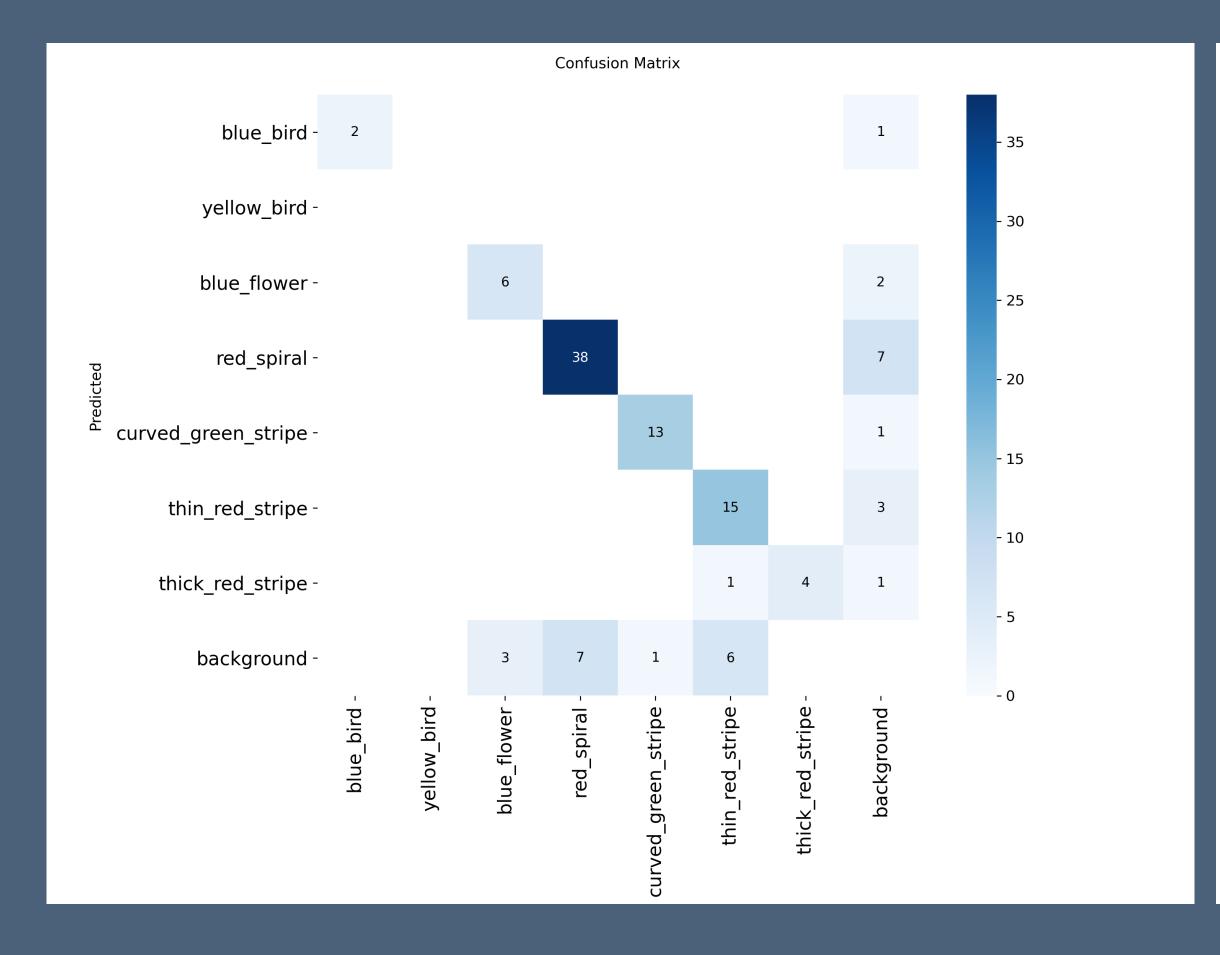
• Step 1: I think a good first step would be to train a model which accurately recognizes these.

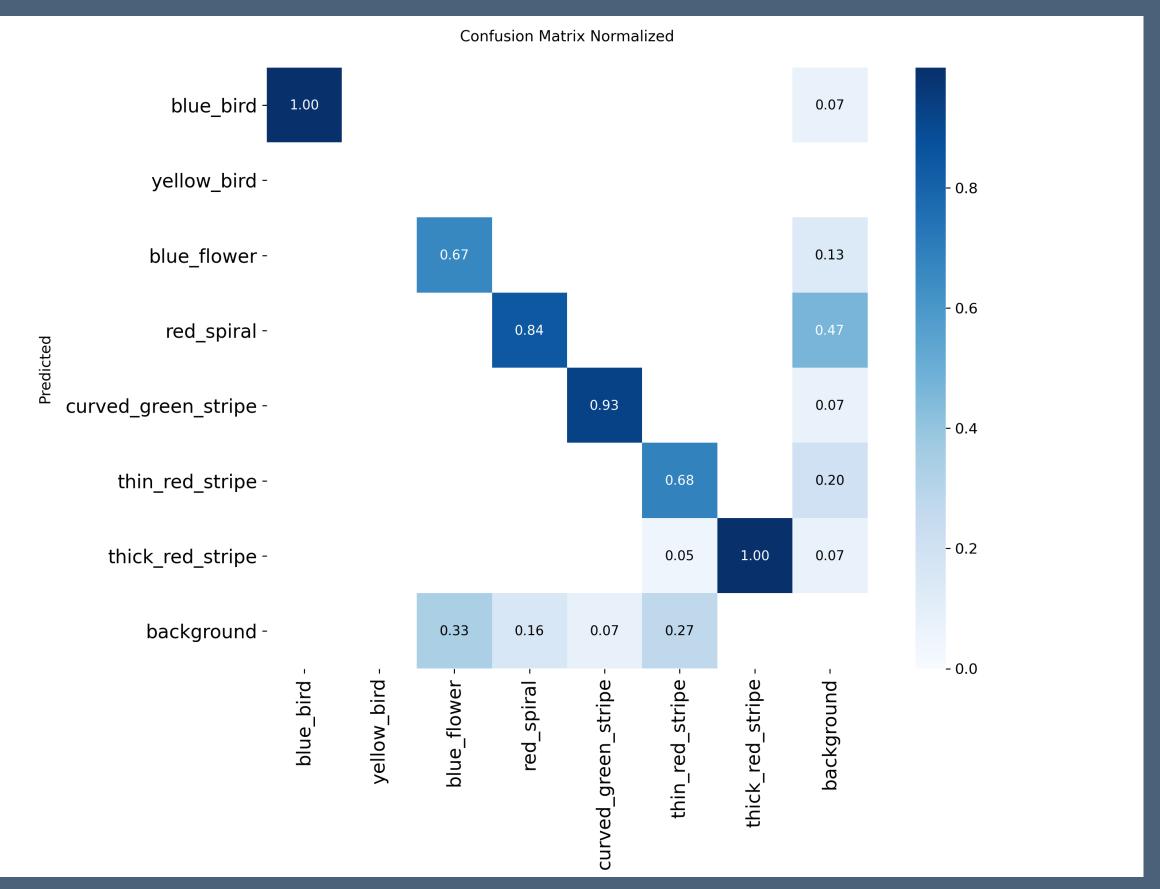


Training Results

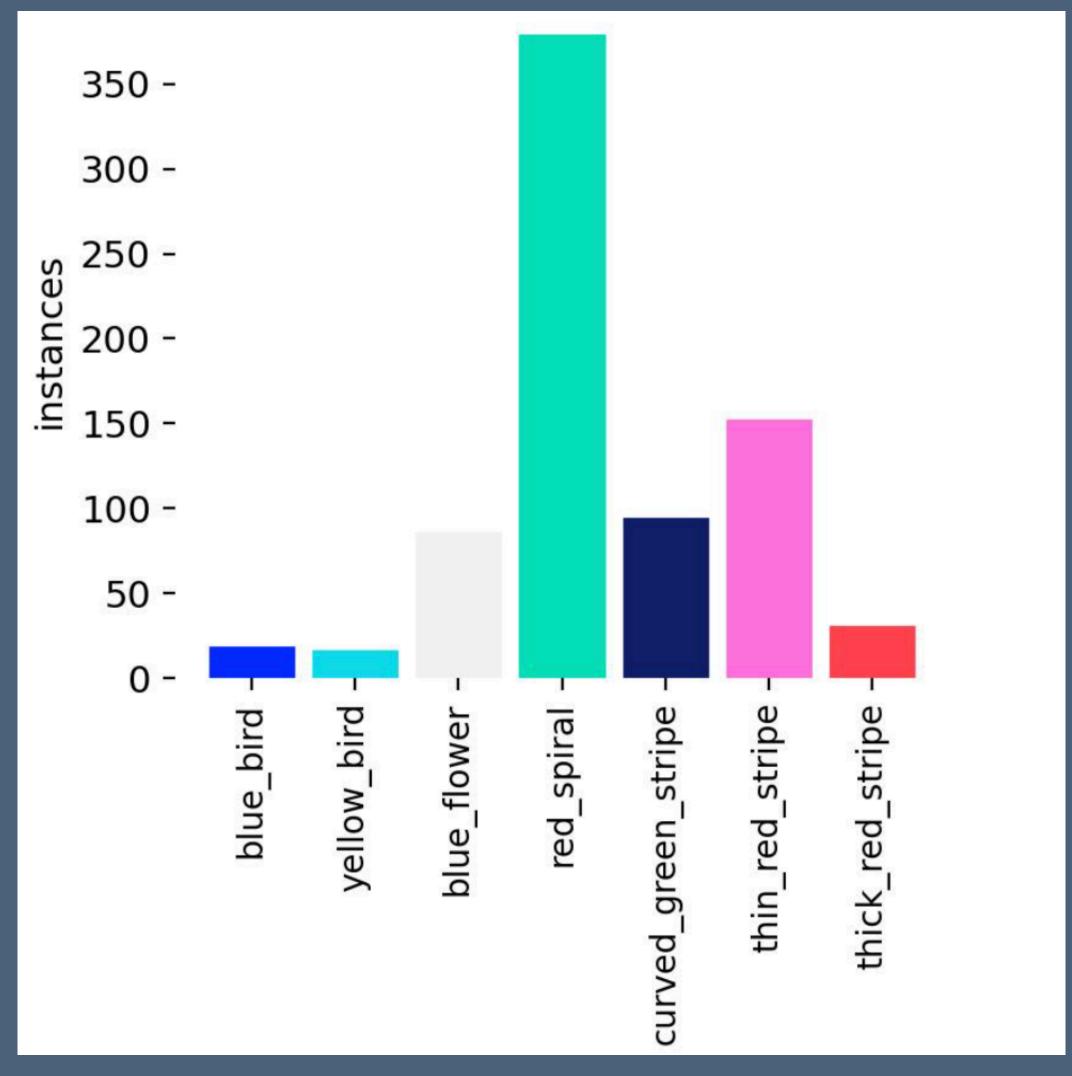
Matrica	Bounding Box			Segmentation		
Metrics	Precision	Recall	mAP@50	Precision	Recall	mAP@50
14 Class	0.7866	0.8659	0.8439	0.8961	0.8113	0.9025
7 Class	0.8241	0.8577	0.9203	0.8241	0.8577	0.9203

Training More Results

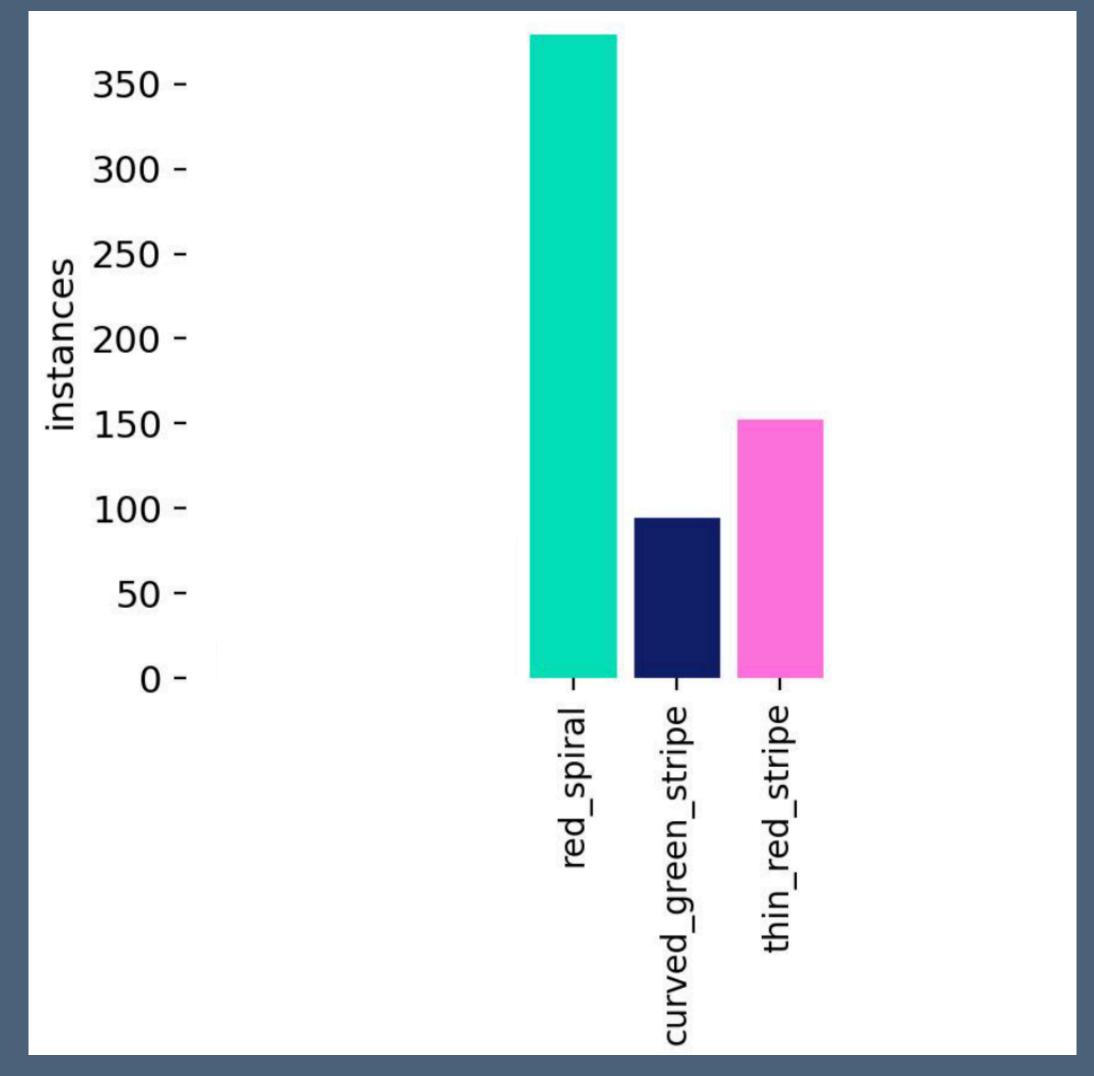




Training



Training



Training Results

Metrics	Bounding Box			Segmentation		
	Precision	Recall	mAP@50	Precision	Recall	mAP@50
14 Class	0.7866	0.8659	0.8439	0.8961	0.8113	0.9025
7 Class	0.8241	0.8577	0.9203	0.8241	0.8577	0.9203
3 Class	0.8112	0.8953	0.8977	0.8112	0.8953	0.8977

Step 1: Compare Models

Class Precision

