Files
2025-11-08 21:44:50 +01:00

80 lines
2.3 KiB
Python

import numpy as np
from scipy.optimize import minimize
class SRMSVM:
def __init__(self, C=1.0):
self.C = C
self.w = None
self.b = None
def fit(self, X, y):
X = np.asarray(X, dtype=np.float64)
y = np.asarray(y, dtype=np.float64).reshape(-1, 1)
unique_labels = np.unique(y)
if not (set(unique_labels) <= {1.0, -1.0}):
raise ValueError("Labels must be +1 or -1")
n_samples, n_features = X.shape
self.w = np.zeros((n_features, 1))
self.b = 0.0
self._optimize_srm(X, y)
return self
def _optimize_srm(self, X, y):
"""Solve the 1-norm SVM problem (RLP formulation)"""
n_samples, n_features = X.shape
def objective(params):
w = params[:n_features].reshape(-1, 1)
b = params[n_features]
s = params[n_features+1:n_features+1+n_features]
eta = params[n_features+1+n_features:]
misclassification_cost = self.C * np.sum(eta)
regularization = np.sum(s)
return misclassification_cost + regularization
def constraints(params):
w = params[:n_features]
b = params[n_features]
eta = params[n_features+1+n_features:]
return y.flatten() * (X.dot(w) - b) + eta - 1
bounds = (
[(None, None)] * n_features +
[(None, None)] +
[(0, None)] * n_features +
[(0, None)] * n_samples
)
x0 = np.zeros(n_features + 1 + n_features + n_samples)
x0[n_features] = 0.1
res = minimize(
objective,
x0,
method='SLSQP',
bounds=bounds,
constraints={'type': 'ineq', 'fun': constraints}
)
self.w = res.x[:n_features].reshape(-1, 1)
self.b = res.x[n_features]
def predict(self, X):
"""Predict class labels for samples in X"""
if self.w is None or self.b is None:
raise ValueError("Model not fitted yet")
X = np.asarray(X, dtype=np.float64)
scores = X.dot(self.w) + self.b
return np.where(scores >= 0, 1, -1).ravel()